ALP User Documentation 0.7.alpha
Algebraic Programming User Documentation
|
A collection of functions that allow GraphBLAS operators, monoids, and semirings work on a mix of zero-dimensional, one-dimensional, and two-dimensional containers. More...
Functions | |
template<typename Func , typename DataType , typename RIT , typename CIT , typename NIT , Backend implementation = config::default_backend, typename... Args> | |
RC | eWiseLambda (const Func f, const Matrix< DataType, implementation, RIT, CIT, NIT > &A, Args...) |
Executes an arbitrary element-wise user-defined function f on all nonzero elements of a given matrix A. | |
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend> | |
RC | mxv (Vector< IOType, backend, Coords > &u, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Vector< InputType1, backend, Coords > &v, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr) |
Right-handed in-place sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication. | |
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend> | |
RC | mxv (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr) |
Right-handed in-place doubly-masked sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication. | |
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend> | |
RC | mxv (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &mask, const Matrix< InputType2, backend, RIT, NIT, CIT > &A, const Vector< InputType1, backend, Coords > &v, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr) |
Right-handed in-place masked sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication. | |
template<Descriptor descr = descriptors::no_operation, class Semiring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend> | |
RC | mxv (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &u_mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const Semiring &semiring=Semiring(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_semiring< Semiring >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value, void >::type *const =nullptr) |
Right-handed in-place doubly-masked sparse matrix times vector multiplication, \( u = u + Av \). | |
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , Backend implementation = config::default_backend> | |
RC | mxv (Vector< IOType, implementation, Coords > &u, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Vector< InputType1, implementation, Coords > &v, const Ring &ring, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr) |
Right-handed in-place sparse matrix–vector multiplication, \( u = u + Av \), over a given semiring. | |
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename RIT , typename CIT , typename NIT , typename Coords , enum Backend implementation = config::default_backend> | |
RC | mxv (Vector< IOType, implementation, Coords > &u, const Vector< InputType3, implementation, Coords > &mask, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Vector< InputType1, implementation, Coords > &v, const Ring &ring=Ring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr) |
Right-handed in-place masked sparse matrix–vector multiplication, \( u = u + Av \), over a given semiring. | |
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend> | |
RC | vxm (Vector< IOType, backend, Coords > &u, const Vector< InputType1, backend, Coords > &v, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr) |
Left-handed in-place sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication. | |
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend> | |
RC | vxm (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &mask, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr) |
Left-handed in-place doubly-masked sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication. | |
template<Descriptor descr = descriptors::no_operation, class Semiring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , enum Backend backend> | |
RC | vxm (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &u_mask, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Semiring &semiring=Semiring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Semiring >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!grb::is_object< IOType >::value, void >::type *=nullptr) |
Left-handed in-place doubly-masked sparse matrix times vector multiplication, \( u = u + vA \). | |
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , enum Backend implementation = config::default_backend> | |
RC | vxm (Vector< IOType, implementation, Coords > &u, const Vector< InputType1, implementation, Coords > &v, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Ring &ring=Ring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr) |
Left-handed in-place sparse matrix–vector multiplication, \( u = u + vA \), over a given semiring. | |
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename Coords , typename RIT , typename CIT , typename NIT , Backend implementation> | |
RC | vxm (Vector< IOType, implementation, Coords > &u, const Vector< InputType3, implementation, Coords > &mask, const Vector< InputType1, implementation, Coords > &v, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type *=nullptr) |
Left-handed in-place masked sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication. | |
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename Coords , typename RIT , typename CIT , typename NIT , enum Backend implementation = config::default_backend> | |
RC | vxm (Vector< IOType, implementation, Coords > &u, const Vector< InputType3, implementation, Coords > &mask, const Vector< InputType1, implementation, Coords > &v, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Ring &ring=Ring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr) |
Left-handed in-place masked sparse matrix–vector multiplication, \( u = u + vA \), over a given semiring. | |
A collection of functions that allow GraphBLAS operators, monoids, and semirings work on a mix of zero-dimensional, one-dimensional, and two-dimensional containers.
That is, these functions allow various linear algebra operations on scalars, objects of type grb::Vector, and objects of type grb::Matrix.
RC eWiseLambda | ( | const Func | f, |
const Matrix< DataType, implementation, RIT, CIT, NIT > & | A, | ||
Args... | |||
) |
Executes an arbitrary element-wise user-defined function f on all nonzero elements of a given matrix A.
The user-defined function is passed as a lambda which can capture whatever the user would like, including one or multiple grb::Vector instances, or multiple scalars. When capturing vectors, these should also be passed as a additional arguments to this functions so to make sure those vectors are synchronised for access on all row- and column- indices corresponding to locally stored nonzeroes of A.
Only the elements of a single matrix may be iterated upon.
Func | the user-defined lambda function type. |
DataType | the type of the user-supplied matrix. |
backend | the backend type of the user-supplied vector example. |
[in] | f | The user-supplied lambda. This lambda should only capture and reference vectors of the same length as either the row or column dimension length of A. The lambda function should prescribe the operations required to execute on a given reference to a matrix nonzero of A (of type DataType) at a given index \( (i,j) \). Captured GraphBLAS vectors can access corresponding elements via Vector::operator[] or Vector::operator(). It is illegal to access any element not at position i if the vector length is equal to the row dimension. It is illegal to access any element not at position j if the vector length is equal to the column dimension. Vectors of length neither equal to the column or row dimension may not be referenced or undefined behaviour will occur. The reference to the matrix nonzero is non const and may thus be modified. New nonzeroes may not be added through this lambda functionality. The function f must have the following signature: (DataType &nz, const size_t i, const size_t j) . The GraphBLAS implementation decides which nonzeroes of A are dereferenced, and thus also decides the values i and j the user function is evaluated on. |
[in] | A | The matrix the lambda is to access the elements of. |
The remainder arguments should enumerate all vectors the lambda is to access elements of. Each such vector must be of the same length as nrows(A) or ncols(A). If this constraint is violated, grb::MISMATCH shall be returned. If a given vector length equals nrows(A), the vector shall be synchronized for access on i. If the vector length equals ncols(A), the vector shall be synchronized for access on j. If A is square, the vectors will be synchronised for access on both i and j.
x[i] += x[i+1]
. Vectors can only be dereferenced at position i and i alone, and similarly for access using j. For square matrices, however, the following code in the body is accepted, however: x[i] += x[j]
.RC mxv | ( | Vector< IOType, backend, Coords > & | u, |
const Matrix< InputType2, backend, RIT, CIT, NIT > & | A, | ||
const Vector< InputType1, backend, Coords > & | v, | ||
const AdditiveMonoid & | add = AdditiveMonoid() , |
||
const MultiplicativeOperator & | mul = MultiplicativeOperator() , |
||
const Phase & | phase = EXECUTE , |
||
const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type * const | = nullptr |
||
) |
Right-handed in-place sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication.
See the documentation of grb::vxm for the full specification of this function.
RC mxv | ( | Vector< IOType, backend, Coords > & | u, |
const Vector< InputType3, backend, Coords > & | mask, | ||
const Matrix< InputType2, backend, RIT, CIT, NIT > & | A, | ||
const Vector< InputType1, backend, Coords > & | v, | ||
const Vector< InputType4, backend, Coords > & | v_mask, | ||
const AdditiveMonoid & | add = AdditiveMonoid() , |
||
const MultiplicativeOperator & | mul = MultiplicativeOperator() , |
||
const Phase & | phase = EXECUTE , |
||
const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!std::is_same< InputType2, void >::value, void >::type * const | = nullptr |
||
) |
Right-handed in-place doubly-masked sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication.
See the documentation of grb::mxv for the full specification of this function.
RC mxv | ( | Vector< IOType, backend, Coords > & | u, |
const Vector< InputType3, backend, Coords > & | mask, | ||
const Matrix< InputType2, backend, RIT, NIT, CIT > & | A, | ||
const Vector< InputType1, backend, Coords > & | v, | ||
const AdditiveMonoid & | add = AdditiveMonoid() , |
||
const MultiplicativeOperator & | mul = MultiplicativeOperator() , |
||
const Phase & | phase = EXECUTE , |
||
const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!std::is_same< InputType2, void >::value, void >::type * const | = nullptr |
||
) |
Right-handed in-place masked sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication.
See the documentation of grb::mxv for the full specification of this function.
RC mxv | ( | Vector< IOType, backend, Coords > & | u, |
const Vector< InputType3, backend, Coords > & | u_mask, | ||
const Matrix< InputType2, backend, RIT, CIT, NIT > & | A, | ||
const Vector< InputType1, backend, Coords > & | v, | ||
const Vector< InputType4, backend, Coords > & | v_mask, | ||
const Semiring & | semiring = Semiring() , |
||
const Phase & | phase = EXECUTE , |
||
const typename std::enable_if< grb::is_semiring< Semiring >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value, void >::type * const | = nullptr |
||
) |
Right-handed in-place doubly-masked sparse matrix times vector multiplication, \( u = u + Av \).
Aliases to this function exist that do not include masks:
true
was given as a mask. We thus describe the semantics of the fully masked variant only.Let \( u, \mathit{u\_mask} \) be vectors of size \( m \), let \( v, \mathit{v\_mask} \) be vectors of size \( n \), and let \( A \) be an \( m \times n \) matrix. Then, a call to this function computes \( u = u + Av \) but:
true
; andtrue
, and otherwise substituting the zero element under the given semiring.When multiplying a matrix nonzero element \( a_{ij} \in A \), it shall be multiplied with an element \( x_j \) using the multiplicative operator of the given semiring.
When accumulating multiple contributions of multiplications of nonzeroes on some row \( i \), the additive operator of the given semiring shall be used.
Nonzero resulting from computing \( Av \) are accumulated into any pre- existing values in \( u \) by the additive operator of the given semiring.
If elements from \( v \), \( A \), or \( u \) were missing, the zero identity of the given semiring is substituted.
If nonzero values from \( A \) were missing, the one identity of the given semiring is substituted.
grb::Matrix< void >
.The following template arguments may be explicitly given:
descr | Any combination of one or more grb::descriptors. When ommitted, the default grb::descriptors:no_operation will be assumed. |
Semiring | The generalised semiring the matrix–vector multiplication is to be executed under. |
The following template arguments will be inferred from the input arguments:
IOType | The type of the elements of the output vector u. |
InputType1 | The type of the elements of the input vector v. |
InputType2 | The type of the elements of the input matrix A. |
InputType3 | The type of the output mask (u_mask) elements. |
InputType4 | The type of the input mask (v_mask) elements. |
The following arguments are mandatory:
[in,out] | u | The output vector. |
[in] | A | The input matrix. Its grb::nrows must equal the grb::size of u. |
[in] | v | The input vector. Its grb::size must equal the grb::ncols of A. |
[in] | semiring | The semiring to perform the matrix–vector multiplication under. Unless grb::descriptors::no_casting is defined, elements from u, A, and v will be cast to the domains of the additive and multiplicative operators of semiring. |
The vector v may not be the same as u.
Instead of passing a semiring, users may opt to provide an additive commutative monoid and a binary multiplicative operator instead. In this case, A may not be a pattern matrix (that is, it must not be of type grb::Matrix< void >
).
The semiring (or the commutative monoid - binary operator pair) is optional if they are passed as a template argument instead.
Non-mandatory arguments are:
[in] | u_mask | The output mask. The vector must be of equal size as u, or it must be empty (have size zero). |
[in] | v_mask | The input mask. The vector must be of equal size as v, or it must be empty (have size zero). |
[in] | phase | The requested phase for this primitive– see grb::Phase for details. |
The vectors u_mask and v_mask may never be the same as u.
An empty u_mask will behave semantically the same as providing no mask; i.e., as a mask that evaluates true
at every position.
If phase is not given, it will be set to the default grb::EXECUTE.
If phase is grb::EXECUTE, then the capacity of u must be greater than or equal to the capacity required to hold all output elements of the requested computation.
The above semantics may be changed by the following descriptors:
false
, and \( v_j \) will be read from if and only if \( \mathit{v\_mask}_j \) evaluates false
.size_t
to the InputType1 of v.When any of the above non-SUCCESS error code is returned, it shall be as though the call was never made– the state of all container arguments and of the application remain unchanged, save for the returned error code.
RC mxv | ( | Vector< IOType, implementation, Coords > & | u, |
const Matrix< InputType2, implementation, RIT, CIT, NIT > & | A, | ||
const Vector< InputType1, implementation, Coords > & | v, | ||
const Ring & | ring, | ||
typename std::enable_if< grb::is_semiring< Ring >::value, void >::type * | = nullptr |
||
) |
Right-handed in-place sparse matrix–vector multiplication, \( u = u + Av \), over a given semiring.
See the documentation of grb::mxv for the full specification of this function.
RC mxv | ( | Vector< IOType, implementation, Coords > & | u, |
const Vector< InputType3, implementation, Coords > & | mask, | ||
const Matrix< InputType2, implementation, RIT, CIT, NIT > & | A, | ||
const Vector< InputType1, implementation, Coords > & | v, | ||
const Ring & | ring = Ring() , |
||
const Phase & | phase = EXECUTE , |
||
typename std::enable_if< grb::is_semiring< Ring >::value, void >::type * | = nullptr |
||
) |
Right-handed in-place masked sparse matrix–vector multiplication, \( u = u + Av \), over a given semiring.
See the documentation of grb::mxv for the full specification of this function.
RC vxm | ( | Vector< IOType, backend, Coords > & | u, |
const Vector< InputType1, backend, Coords > & | v, | ||
const Matrix< InputType2, backend, RIT, CIT, NIT > & | A, | ||
const AdditiveMonoid & | add = AdditiveMonoid() , |
||
const MultiplicativeOperator & | mul = MultiplicativeOperator() , |
||
const Phase & | phase = EXECUTE , |
||
const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type * const | = nullptr |
||
) |
Left-handed in-place sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication.
See the documentation of grb::vxm for the full specification of this function.
RC vxm | ( | Vector< IOType, backend, Coords > & | u, |
const Vector< InputType3, backend, Coords > & | mask, | ||
const Vector< InputType1, backend, Coords > & | v, | ||
const Vector< InputType4, backend, Coords > & | v_mask, | ||
const Matrix< InputType2, backend, RIT, CIT, NIT > & | A, | ||
const AdditiveMonoid & | add = AdditiveMonoid() , |
||
const MultiplicativeOperator & | mul = MultiplicativeOperator() , |
||
const Phase & | phase = EXECUTE , |
||
const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!std::is_same< InputType2, void >::value, void >::type * const | = nullptr |
||
) |
Left-handed in-place doubly-masked sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication.
See the documentation of grb::vxm for the full specification of this function.
RC vxm | ( | Vector< IOType, backend, Coords > & | u, |
const Vector< InputType3, backend, Coords > & | u_mask, | ||
const Vector< InputType1, backend, Coords > & | v, | ||
const Vector< InputType4, backend, Coords > & | v_mask, | ||
const Matrix< InputType2, backend, RIT, CIT, NIT > & | A, | ||
const Semiring & | semiring = Semiring() , |
||
const Phase & | phase = EXECUTE , |
||
typename std::enable_if< grb::is_semiring< Semiring >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!grb::is_object< IOType >::value, void >::type * | = nullptr |
||
) |
Left-handed in-place doubly-masked sparse matrix times vector multiplication, \( u = u + vA \).
A call to this function is exactly equivalent to calling
See the documentation of grb::mxv for the full semantics of this function. Like with grb::mxv, aliases to this function exist that do not include masks:
Similarly, aliases to this function exist that take an additive commutative monoid and a multiplicative binary operator instead of a semiring.
RC vxm | ( | Vector< IOType, implementation, Coords > & | u, |
const Vector< InputType1, implementation, Coords > & | v, | ||
const Matrix< InputType2, implementation, RIT, CIT, NIT > & | A, | ||
const Ring & | ring = Ring() , |
||
const Phase & | phase = EXECUTE , |
||
typename std::enable_if< grb::is_semiring< Ring >::value, void >::type * | = nullptr |
||
) |
Left-handed in-place sparse matrix–vector multiplication, \( u = u + vA \), over a given semiring.
See the documentation of grb::vxm for the full specification of this function.
RC vxm | ( | Vector< IOType, implementation, Coords > & | u, |
const Vector< InputType3, implementation, Coords > & | mask, | ||
const Vector< InputType1, implementation, Coords > & | v, | ||
const Matrix< InputType2, implementation, RIT, CIT, NIT > & | A, | ||
const AdditiveMonoid & | add = AdditiveMonoid() , |
||
const MultiplicativeOperator & | mul = MultiplicativeOperator() , |
||
const Phase & | phase = EXECUTE , |
||
typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type * | = nullptr |
||
) |
Left-handed in-place masked sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication.
See the documentation of grb::vxm for the full specification of this function.
RC vxm | ( | Vector< IOType, implementation, Coords > & | u, |
const Vector< InputType3, implementation, Coords > & | mask, | ||
const Vector< InputType1, implementation, Coords > & | v, | ||
const Matrix< InputType2, implementation, RIT, CIT, NIT > & | A, | ||
const Ring & | ring = Ring() , |
||
const Phase & | phase = EXECUTE , |
||
typename std::enable_if< grb::is_semiring< Ring >::value, void >::type * | = nullptr |
||
) |
Left-handed in-place masked sparse matrix–vector multiplication, \( u = u + vA \), over a given semiring.
See the documentation of grb::vxm for the full specification of this function.