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Central question

Given a sparse m× n matrix A and an n× 1 input vector x.

How to calculate
y = Ax

on a shared-memory parallel computer, as fast as possible?
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Central obstacles

Three obstacles oppose an efficient shared-memory parallel
sparse matrix–vector (SpMV) multiplication kernel:

inefficient cache use,
limited memory bandwidth, and
non-uniform memory access (NUMA).
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Central obstacles
Visualisation of the SpMV multiplication Ax = y with
nonzeroes processed in row-major order:

Accesses on the input vector are completely unpredictable.
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Central obstacles

The arithmetic intensity of an SpMV multiply lies between

2
4

and 2
5

flop per byte.

On an 8-core 2.13 GHz (with AVX), and 10.67 GB/s DDR3:

CPU speed Memory speed
1 core 4 · 2.13 · 109 nz/s 2/5 · 10.67 · 109 nz/s

8 cores 32 · 2.13 · 109 nz/s 2/5 · 10.67 · 109 nz/s

The CPU-speed exceeds by far the memory speed.
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Central obstacles

E.g., a dual-socket machine, with two quad-core processors:
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Pairs of cores may have different bandwidths.
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Central obstacles

If each processor moves data from and to the same memory
element, the effective bandwidth is shared.
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Starting point
Assuming a row-major order of nonzeroes:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


CRS storage:

A =


V [4 1 3 2 3 1 2 7 1 1]
J [0 1 2 2 3 0 3 0 2 3]
Î [0 3 5 7 10]

Kernel:
for i = 0 to m− 1 do

for k = Îi to Îi+1 − 1 do
add Vk · xJk

to yi
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Starting point
Assuming a row-major order of nonzeroes:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


CRS storage:

A =


V [4 1 3 2 3 1 2 7 1 1]
J [0 1 2 2 3 0 3 0 2 3]
Î [0 3 5 7 10]

#omp parallel for private( i, k ) schedule( dynamic, 8 )
for i = 0 to m− 1 do

for k = Îi to Îi+1 − 1 do
add Vk · xJk

to yi
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Results

Methods DL-2000 DL-580 DL-980
OpenMP CRS (1D) 2.6 (8) 3.5 (8) 3.0 (8)

CSB (1D) 4.9 (12) 9.9 (30) 8.6 (32)
Interleaved CSB (1D) 6.0 (12) 18.2 (40) 17.7 (64)

pOSKI (1D) 5.4 (12) 14.8 (40) 12.2 (64)

Row-distr. block CO-H (1D) 7.0 (12) 24.7 (40) 34.0 (64)
Fully distributed (2D) 4.0 (12) 8.3 (40) 6.9 (32)

Distr. CO-SBD, qp = 32 (2D) 4.0 (8) 7.4 (32) 6.4 (32)
Distr. CO-SBD, qp = 64 (2D) 4.2 (8) 7.0 (16) 6.8 (64)

Block CO-H+ (ND) 2.5 (12) 3.1 (16) 3.2 (16)

Average speedups relative to sequential CRS. Actual
number of threads used is in-between brackets.
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Distribution types
Implicit distribution, centralised local allocation:

If each processor moves data from and to its own unique
memory element, the bandwidth multiplies with the number
of available elements.
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Distribution types
Implicit distribution, centralised interleaved allocation:

If each processor moves data from and to its own unique
memory element, the bandwidth multiplies with the number
of available elements.

c© 2012, ExaScience Lab - Albert-Jan Yzelman Strategies for parallel SpMV multiplication 16 / 47



Distribution types
Explicit distribution, distributed local allocation:

If each processor moves data from and to its own unique
memory element, the bandwidth multiplies with the number
of available elements.
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Distribution types

Parallelisation maps nonzeroes to processes:

πA : {0, . . . ,m− 1} × {0, . . . , n− 1} → {0, . . . , p− 1};

process πA(i, j) performs yi = yi + aijxj .

Vectors can be distributed similarly:

πy : {0, . . . ,m− 1} → {0, . . . , p− 1}, and
πx : {0, . . . , n− 1} → {0, . . . , p− 1}.
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Distribution types
ND (no distribution): πx and πy are left undefined;

maximum freedom for choosing πA.

1D distribution: πA(i, j) depends on either i or j;
typically, πA(i, j) = πA(i) = πy(i).

2D distribution: πA, πx and πy are all defined.

Implicit distribution: process s performs only computations
with nonzeroes aij s.t. πA(i, j) = s.

Explicit distr. (of A): process s additionally allocates storage
for those aij for which π(i, j) = s, on
locally fast memory. Explicit distribution
of x or y is similar.
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Cache-optimisation

Cache-aware: auto-tuning, or
coding for specific architectures

Cache-oblivious: runs well regardless of architecture

Matrix-aware: exploits structural properties of A
(usually combined with auto-detection
within cache-aware schemes)
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Parallelisation type

Coarse-grained: p equals the available number of units
of execution (UoEs; e.g., cores).

Fine-grained: p is much larger than the number of
available UoEs.

A coarse grainsize easily incorporates explicit distributions;
a fine grainsize spends less effort to attain load-balance.
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No vector distribution

We define πA such that for all s ∈ {0, . . . , p− 1},

|{aij ∈ A | π(i, j) = s}| = b nz/pc+

{
1, if s mod p < nz mod p

0 otherwise
;

i.e., perfect load-balance.

Which nonzeroes go where, and the order of processing of
nonzeroes, is determined by the Hilbert-curve.

c© 2012, ExaScience Lab - Albert-Jan Yzelman Strategies for parallel SpMV multiplication 23 / 47



No vector distribution
x is implicitly distributed (using interleaved allocation):
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No vector distribution
y is explicitly distributed, but must be replicated:
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No vector distribution

This strategy is called block CO-H+, and is
non-distributed,
implicit,
fully cache-oblivious, and
coarse-grained.
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1d distribution
Many existing methods fall in this distribution type.

The openMP parallelisation shown at the start is:
1D,
implicit,
not optimised for cache,
fine-grained.

the parallel Optimised Sparse Kernel Interface (pOSKI,
by Byun et al., UCB) is better as it is (by default):

1D,
explicit,
cache- and matrix-aware optimised (auto-tuned),
coarse-grained.

c© 2012, ExaScience Lab - Albert-Jan Yzelman Strategies for parallel SpMV multiplication 27 / 47



1d distribution
For a good fine-grained 1D method we refer to Compressed
Sparse Blocks (CSB, by Buluç et al., UCSB/LBNL/MIT):

1D,
implicit (originally locally allocated, but can be interleaved),
cache-oblivious,
fine-grained.

We also constructed the row-distributed block CO-H
strategy, which is:

1D,
explicit,
fully cache-oblivious,
coarse-grained.
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1d distribution
Sketch of the row-distributed block CO-H strategy:

(Left: p = 1, right: p = 2.)
This method uses πA = πy, allocates x in an interleaved
fashion, and allocates A and y in a distributed, explicit way.
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2d distribution
Pre-processing: full matrix partitioning.
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The communication metric minimised (the λ− 1-metric), is
exact (see Yzelman & Bisseling, 2009). Available software:

Mondriaan (Bisseling et al., UU),
Zoltan (Boman et al., Sandia),
PaToH (Çatalyürek & Aykanat, Ohio State), and
Scotch (Pellegrini, Bordelais).
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2d distribution

Full matrix partitioning yields the three π{A,x,y} maps.

These are used in an explicit way; each process allocates its
own local A(s) matrix and x(s) and y(s) vectors.

Local vectors overlap with each other; the number pf
redundantly stored elements is given by the (λ− 1)-metric.

That is also the measure for communication, and is
minimised by partitioning.
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2d distribution

The classical parallel SpMV algorithm consists out of three
steps and one synchronisation. Each process s executes:

copy remote input vector elements (all j with πx(j) 6= s),
perform a local (optimised) SpMV multiply, synchronise,
get and add remote contributions to local output vector.
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2d distribution
In the paper, we augment this strategy with the Separated
Block Diagonal (SBD) form.

We denote the local indices of the red separator cross by
r−s , r

+
s , c

−
s , c

+
s and the local matrix size by ms × ns.
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2d distribution
In the paper, we augment this strategy with the Separated
Block Diagonal (SBD) form.

Each processor s ∈ {0, 1, . . . , p− 1} executes:
1: for j = cs− to cs+ do
2: get xsj from remote process
3: calculate ys = L(s)xs (CO-SBD)
4: calculate ys = A(s)xs

5: synchronise
6: for i = rs− to rs+ do
7: write ysi to remote process

We can add in locally refined SBD forms as well.
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2d distribution
Locally refined SBD:

This is the full explicitly 2D distributed CO-SBD strategy.
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2d distribution
In the paper, we augment this strategy with the Separated
Block Diagonal (SBD) form.

Each processor s ∈ {0, 1, . . . , p− 1} executes:
1: for j = cs− to cs+ do
2: get xsj from remote process
3: calculate ys = L(s)xs (CO-SBD)
4: calculate ys = A(s)xs

5: synchronise
6: for i = rs− to rs+ do
7: write ysi to remote process

Adding in locally refined SBD forms...
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2d distribution
In the paper, we augment this strategy with the Separated
Block Diagonal (SBD) form.

Each processor s ∈ {0, 1, . . . , p− 1} executes:
1: for j = cs− to cs+ do
2: get xsj from remote process
3: calculate ys = L(s)xs (Cache-oblivious SBD)
4: calculate ys = S(s)xs (Compressed BICRS)
5: synchronise
6: for i = rs− to rs+ do
7: write ysi to remote process

We can add in locally refined SBD forms as well.
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Overview
Overheads

Strategy Characteristics Data Time NUMA
Block CO-H+ impl. ND coarse O(mp) O(m) x, y
openMP CRS impl. 1D fine - low x

CSB impl. 1D fine low low x
pOSKI expl. 1D coarse - ? x

RD block-H expl. 1D coarse - - x
2D CO-SBD expl. 2D coarse µλ−1 + qp µλ−1 + l -

Data overhead: extra storage required over Θ(2nz +m).
Time overhead: extra real time required for 1 SpMV.
NUMA overhead: potentially unbounded data movement

across the memory hierarchy (sockets).

Not-scalable overhead is printed red. ‘Low’ overhead is negligable
in practice. l is the latency of a global synchronisation.
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Setup
We use 23 matrices from four different categories:

Structured matrices
small matrices (vectors fit into L3 cache)
large matrices

Unstructured matrices
small matrices
large matrices

We ran experiments on three different architectures:
DL-2000: two-socket six-core Intel Xeon X5660
DL-580: four-socket ten-core Intel Xeon E7-4870
DL-980: eight-socket eight-core Intel Xeon E7-2830

All machines have a bandwidth of 10.67 GB/s per socket.
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Results per category
Small structured DL-2000 DL-580 DL-980

Interleaved CSB (1D) 6.0 (12) 12.6 (40) 8.7 (48)
pOSKI (1D) 4.7 (12) 10.9 (20) 8.4 (16)

Row-distr. block CO-H (1D) 10.1 (12) 36.1 (40) 52.4 (64)
Fully distributed (2D) 3.1 (12) 2.3 (8) 2.1 (8)

Distr. CO-SBD, qp = 64 (2D) 3.6 (8) 3.1 (8) 2.8 (8)

Small unstructured
Interleaved CSB (1D) 4.8 (12) 17.9 (40) 13.8 (64)

pOSKI (1D) 6.3 (12) 20.3 (40) 15.5 (48)
Row-distr. block CO-H (1D) 8.7 (12) 32.6 (40) 49.0 (56)

Fully distributed (2D) 4.4 (12) 9.2 (40) 6.1 (16)
Distr. CO-SBD, qp = 64 (2D) 4.4 (8) 7.8 (16) 9.0 (16)
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Results per category
Large structured DL-2000 DL-580 DL-980

Interleaved CSB (1D) 5.4 (12) 18.0 (40) 22.0 (64)
pOSKI (1D) 3.9 (12) 12.2 (40) 11.9 (64)

Row-distr. block CO-H (1D) 3.8 (12) 10.9 (40) 16.4 (64)
Fully distributed (2D) 3.5 (12) 10.6 (30) 10.2 (40)

Distr. CO-SBD, qp = 64 (2D) 3.6 (8) 7.8 (32) –

Large unstructured
Interleaved CSB (1D) 7.9 (12) 24.3 (40) 26.3 (64)

pOSKI (1D) 6.6 (12) 19.4 (40) 16.2 (64)
Row-distr. block CO-H (1D) 5.4 (12) 19.2 (40) 24.6 (64)

Fully distributed (2D) 5.1 (10) 13.6 (40) 12.3 (64)
Distr. CO-SBD, qp = 64 (2D) 5.4 (8) 11.7 (32) –
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2d-SBD with qp up to 512
Partitioning for qp = 512 (using Mondriaan with ε = 0.3)
was only successful on two structured matrices.
We test on the DL-980:

cage15 adaptive
q\p 8 16 32 64 8 16 32 64
1 3.0 3.9 5.7 4.8 6.0 11.1 11.7 15.3
4 2.5 3.5 − 5.5 6.4 9.7 − 15.8
8 2.5 − 5.9 6.7 5.8 − 14.8 16.3
16 − 3.7 5.3 − − 10.9 17.5 −
32 2.2 3.4 − − 5.5 10.9 − −
64 2.0 − − − 6.0 − − −

iCSB 3.2 6.0 10.6 14.6 8.4 15.9 28.5 38.1
1D-H 5.2 6.9 9.2 14.7 4.4 6.5 10.7 18.8
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Conclusions
We categorised existing techniques, and used this
classification to construct new SpMV multiplication
methods.

Of the considered methods, the row-distributed block CO-H
strategy performs best, on average.

On highly NUMA systems, explicitly distributed strategies
continue to speed up, while implicit methods start to stall.

The overhead of 2D methods is costlier than the
uncontrolled input vector accesses of 1D methods, but this
gap decreases when more sockets are added; 2D methods do
seem mandatory for future large-scale computing.
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Future work
Incorporate low-level tuning. The row-distributed block
CO-H strategy then may display a gain similar to that of
parallel CRS with pOSKI presented here.

Load-balancing for 1D coarse-grained schemes must
improve in order to compete with CSB.

Investigation of hybrid shared-memory schemes; e.g., the
overhead of the 2D schemes increase with p, but applying
2D distributions only over sockets reduces p tremendously.

Implementing overlap of communication in the 2D scheme.
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Thank you

Thank you for your attention!

Pre-print and software are available at:

http://people.cs.kuleuven.be/~albert-jan.yzelman
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