
R-Trees and applications

Efficient grid queries in the Dynamo 
reservoir modelling software



R-Tree Project

A.N. Yzelman (UU)

Supervisors

A.N. Swart (Alten)

G.L.G. Sleijpen (UU)

Project Owners

Eric Haesen (Alten)

Hans Molenaar (Shell)



Overview

• Problem: Querying large spatial 
databases.

• Application in Dynamo reservoir simulation 
software.

• R-Trees.
- Example
- Testing
- Implementation



Querying spatial data

• Needed in areas of:
1. Image processing

(Ray-tracing / CAD)
2. Geographical information systems 
(e.g., TomTom)

3. Robotics



Example

The San Francisco road network



Typical Queries

• Containment
“What objects are contained in ...”

• Neighbours
“What objects are close to...”

• Intersection
“What objects cross...”



The Naive Approach

-> Test all objects

May take enormous amount of time:

174599 nodes for San Francisco Map

Conclusion: need a clever data structure



Trees

Example: Binary Search tree

Each node has max. two children



Trees

• Searching takes O(log(n)) time
(2048 entries take twice the time of 1024 
entries!)

• Insertion/Deletion may be slower

Main issue for spatial data: 

need an ordering



Dynamo

• Dynamo uses high resolution grids
• Queries: neighbours, intersections, overlap
• Currently uses a bisection method, which 

may be sub-optimal

Dynamo may benefit from a custum 
taylored R-Tree implementation



Example Grid



R-Trees

• Consider a simple two-dimensional case:



R-Trees

• Add Bounding Boxes



R-Trees

• Add Bounding Boxes



R-Trees

• Add Bounding Boxes



R-Trees

• Add Bounding Boxes



R-Trees

• Add Bounding Boxes



R-Trees

• Add Bounding Boxes



R-Tree Properties

• Every node contains between m and M 
data elements unless it is the root.

• All leaves appear at the same level, and 
contain all the data elements.

• The bounding boxes used tightly encloses 
the objects within.



R-Tree Properties

• Every node contains between m and M 
data elements unless it is the root.

m and M may be chosen with memory or 
disk cache size in mind. In the latter case, 
R-trees reduce to the well known B-trees.



Subtleties

• By the previous example, an R-tree can be 
built in many different ways.



R-Trees



Variants

• By the previous example, we saw an R-
tree can be built in many different ways.

• Leads to many different R-tree variations.



Variants

• By the previous example, we saw an R-
tree can be built in many different ways.

• Leads to many different R-tree variations.
• For example:

R*-tree, PR-tree, Hilbert-tree, R+-tree,

and more...



Testing

• Use real life geographical data supplied by 
Shell.

• Test several R-tree variations.
• Tune tree parameters to the specifics of 

Shell data.
• Quantify results in terms of query time, 

memory usage and query response 
quality.



Implementation

• Object-Oriented C++
• Easily extended
• “Plug & Play” solution for spatial data 

storage
• Generic design targeted at n-dimensional 

polygons in different spaces





Questions?


