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Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming
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Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):

• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!
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Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus

• humble

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;
• allow only scalable expressions.
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Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS

1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x ( n ) , y ( n ) , z ( n ) ;
grb : : Matr ix< double > A( n , n ) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s ( n ) ;
grb : : Vector< bool > s ( n , 1 ) ; // nz cap : one
grb : : Matr ix< void > L( n , n , nz ) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID ( s ) << "\n" ;
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Algebraic Programming

Basics

Algebraic structures are types. E.g., min : D1 × D2 → D3 reads

grb : : o p e r a t o r s : : min< double , int , double > minOp ;

More complex structures may be composed:

grb : : Monoid<
grb : : o p e r a t o r s : : add< double >,
grb : : i d e n t i t i e s : : z e r o

> addMon ;

grb : : Semi r ing<
grb : : o p e r a t o r s : : add< double >,
grb : : o p e r a t o r s : : mul< double >,
grb : : i d e n t i t i e s : : ze ro ,
grb : : i d e n t i t i e s : : one

> mySemir ing ;
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Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set( x, 1.0 ); // xi = 1, ∀i
• grb :: setElement( y, 3.0, n/2 ); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply( z, x, y, minOp ); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply( z, x, x, minOp ); // zi = min{xi , yi}, ∀i
• grb :: eWiseApply( z, x, y, addMon );// zi = xi + yi , ∀i
• grb :: mxv( y, A, x, mySemiring ); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:
• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.
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• grb :: eWiseApply( z, x, y, minOp ); // zi = min{xi , yi}, for i = n/2
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• grb :: eWiseApply( z, x, y, addMon );// zi = xi + yi , ∀i
• grb :: mxv( y, A, x, mySemiring ); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:

• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.
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Algebraic Programming

Algebraic type traits

Algebraic type traits: compile-time introspection of algebraic info
• grb :: is_associative < Operator >::value, true iff (a � b)� c = a � (b � c);

• grb :: is_idempotent< Operator >::value, true iff a � a = a;

• grb :: is_monoid< T >::value, true iff T is a monoid;

• ...

Algebraic type traits transfer to richer algebraic structures:
• grb :: is_commutative< grb::operators::add< double > >::value? 3,

therefore
i s_commutat ive< Monoid<

op e r a t o r s : : add< double >, i d e n t i t i e s : : z e r o >
>::value? 3

These are all compile-time constant (through C++11 constexpr):
• similar to the standard C++11 type traits.
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Algebraic Programming

Algebraic type traits

Algebraic type traits help
• detect programmer errors,
• decide which optimisations are applicable, and
• reject expressions without recipe for auto-parallelisation.
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Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl ( alpha, x, addOp );
- is_monoid< addOp >::value? 7, since
parallelisation requires identity and associativity!

foldl ( alpha, x, addMon ); 3

Above errors are all compile-time (through C++11 static_assert ), with
clear error messages.
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Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;

• reorder computation to improve cache hit rates
- if S is commutative;

• replace primitives with cheaper ones:
- grb :: eWiseApply( z, x, x, S ); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set( z, x ); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...
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Algebraic Programming

Historical context

- The Design and Analysis of Computer Algorithms,
Aho, Hopcroft, Ullman (1974)

- Introduction to Algorithms (first edition only),
Cormen, Leiserson, Rivest (1990)

- Elements of Programming,
Alexander Stepanov & Paul McJones (2009)

- Graph Algorithms in the Language of Linear Algebra,
Jeremy Kepner & John Gilbert (2011)

- From Mathematics to Generic Programming,
Alexander Stepanov & Daniel Rose (2015)

- GraphBLAS.org, following work by Kepner & Gilbert,
Kepner, Gilbert, Buluç, Mattson, et alii (2016)

- A C++ GraphBLAS, Y. et al. (2017–2020)
- Algebraic Programming (2021 onwards)
- ...
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GraphBLAS

GraphBLAS.org; Kepner, Gilbert, Buluç, Mattson, Moreira, ...
• for example, y = Akx , parametrised in a semiring:

t emp la te< typename Semi r ing , typename NonzeroT , typename VectorT >
grb : : RC mpv(

grb : : Vector< VectorT > &y ,
c on s t grb : : Matr ix< NonzeroT > &A, c on s t s i z e_ t k ,
c on s t grb : : Vector< VectorT > &x ,

grb : : Vector< VectorT > &bu f f e r ,
c on s t Semi r i ng &r i n g = Semi r i ng ( )

) {
// e r r o r check i ng and e r r o r p r opaga t i on omi t ted
grb : : vxm( y , x , A, r i n g ) ;
f o r ( s i z e_ t i = 1 ; i < k ; ++i ) {

s td : : swap ( y , b u f f e r ) ;
grb : : vxm( y , b u f f e r , A, r i n g ) ;

}
}

Solve different problems with different semirings:
• plus-times: numerical linear algebra,

• Boolean: reachability / connectivity,

• min-plus: shortest paths,

• ...and more – see e.g. Aho, Hopcroft, and Ullman ’74; Kepner & Gilbert ’11.
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Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):
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Example
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Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A
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Ax : shortest distances within one hop:
• x contains one nonzero;

• compute sum with inputs, reduce into output using min.
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Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
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• SSSP via Akx using the semiring (N0,min,+,∞, 0):


0


︸ ︷︷ ︸
x+=Ax

+=



x 7 5
7 x 8 9 7

8 x 5
5 9 x 15 6

7 5 15 x 8 9
6 8 x 11

9 11 x


︸ ︷︷ ︸

A


0


︸ ︷︷ ︸

x

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

b

a

e

f

Ax : shortest distances within one hop:
• x contains one nonzero, select corresponding adjacent vertices;

• compute sum with inputs, reduce into output using min.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman



Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A
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Ax : shortest distances within one hop:
• x contains one nonzero, select corresponding adjacent vertices;
• compute sum with inputs, reduce into output using min.
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Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):
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A2x : shortest distances within two hops:
• swap input and output vectors, repeat procedure;

• multiple paths reach e.g. b: min{5 + 7 = 12, 9, 15 + 7 = 22} = 9.
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Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):
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A2x : shortest distances within two hops:
• swap input and output vectors, repeat procedure;
• multiple paths reach e.g. b: min{5 + 7 = 12, 9, 15 + 7 = 22} = 9.
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Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):
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A3x : shortest distances within three hops:
• swap input and output vectors, repeat procedure;
• output equals input vector; SSSP solved, terminate.
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Algebraic Programming

GraphBLAS

A non-exclusive list of graph algorithms expressed using GraphBLAS:
• strongly connected components,
• maximal independent set,
• betweenness centrality,
• k-core decomposition,
• graph contraction,
• depth-first search,
• triangle counting,
• graph generation,
• graph clustering,
• shortest paths,
• ...and more– see graphblas.org for an up-to-date overview.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

graphblas.org


Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;

2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx
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Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the sequential auto-vectorising backend:
grbcxx -o myProgram myProgram.cpp
grbrun ./myProgram datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman



Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the shared-memory parallel auto-vectorising backend:
grbcxx --backend reference_omp -o myProgram myProgram.cpp
grbrun -b reference_omp ./myProgram datasets/west0497.mtx
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Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the 1D distributed-memory parallel backend (4 nodes):
grbcxx -b bsp1d -o myProgram myProgram.cpp
grbrun -b bsp1d -np 4 ./myProgram datasets/west0497.mtx
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Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the hybrid shared and dist. parallel backend (10 nodes):
grbcxx -b hybrid -o myProgram myProgram.cpp
grbrun -b hybrid -np 10 ./myProgram datasets/west0497.mtx
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Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;

• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;
• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;
• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;
• automatic choice of algorithms and backends.
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Algebraic Programming

Performance semantics

Every ALP program can be systematically costed:
Primitive Work Ops Data movement Reductions

setElement(x, y, i) 1 - 1 no
set(x, y) min{n, nzx + nzy} - nzx + nzy or n + nzy no
clear(x) nzx - nzx no

apply(z, x, y,�/M) min{n, nzx + nzy} nzx∩y 2min{n, nzx + nzy} no
+ nzx∪y

foldl(y, x,�/M) nzx nzx∩y 2nzx nofoldr(x, y,�/M)

foldl(y, α,�/M)

nzy nzy nzy
nofoldr(α, y,�/M)

foldl(α, y,M) yesfoldr(y, α,M)

mul(z, x, y, R) min{nzx , nzy} nzx∩y 2min{nzx , nzy} + no
nzx∩y

dot(z, x, y, (M,�)) n 2n 2n yesdot(z, x, y, R) min{nzx , nzy} 2 · nzx∩y 2min{nzx , nzy}

Level-1 primitives and their costs, excluding masking. Similar tables exist for level-2 and level-3 primitives.

Ref.: A C++ GraphBLAS: specification, implementation, parallelisation, and evaluation by Y.,
D. Di Nardo, J. M. Nash, and W. J. Suijlen (2020).
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Sparse vectors

Sparse vectors:
• ideal: O(1) query, assign, and iteration.
• sparse accumulators: nonzero index stack and boolean array;
• in parallel: synchronise, combine sparsity structures. Prefix-sum.

Gilbert, Moler, and Schreiber, Sparse matrices in MATLAB: Design and implementation. SIAM JMAA (1992);
Y et al., A C++ GraphBLAS (2020). Big-Oh bounds in the classical RAM model.

Alternative, tree-based map (std::map):
• O(log nz) query and assign;
• O(1) iteration.
• parallelisation: join, intersect (set algebra!)

Currently not implemented in ALP/GraphBLAS due to overhead.
Davis, SuiteSparse::GraphBLAS: Graph algorithms in the language of sparse linear algebra. ACM TOMS (’19).
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Algebraic Programming

Sparse matrices

Sparse matrices of size m × n, nz nonzeroes:
• use Θ(nz) storage, not Θ(mn),
• level-2 cost ∼ number of nonzeroes touched,
• level-3 cost ∼ number of operator applications required.

Many sparse matrix storages exist.

SotA storage cannot do much better than

∼ 2(wV + wI )nz + wA(m + 1) bytes,

unless (theoretically), bit-level compression.

We use Gustafson’s format (CRS+CCS).
Y. and Roose, High-level strategies for sparse matrix–vector multiplication, IEEE TPDS 2014.
Y et al., A C++ GraphBLAS, 2020.
Simecek, Langr, Tvrdik. Minimal quadtree format for compression of sparse matrices storage. SSNA (2012).
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Containers

Data structures are opaque; data representations are chosen

fully automatically, hidden from user.
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Algebraic Programming

The nonblocking backend

Suppose we compute s = r + αv over a given semiring:

1) grb::set( s, r );

2) grb::eWiseMul( s, alpha, v, semiring );

Blocking execution: the vector s is accessed twice

; performance 7

Manual fusion (Y. et al., ’20): performance 3

grb : : eWiseLambda ( [ &s , &r , &alpha , &v , &r i n g ] ( c on s t s i z e_ t i ) {
grb : : app l y ( s [ i ] , a lpha , v [ i ] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ( ) ) ;
grb : : f o l d l ( s [ i ] , r [ i ] , r i n g . g e tAdd i t i v eOpe r a t o r ( ) ) ;

} , s , r , v ) ;

Automatic non-blocking mode (Mastoras et al., ’22):
• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.
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Algebraic Programming

The nonblocking backend

Dynamic on-line dependence analysis:

Fused execution can cross control flow:
• e.g., lines 26, 39 cross an if-statement;
• elect chunk size s.t. all vectors cached;
• reduce #threads if vectors too small;
• analytic model automatically selects performance parameters: 3.
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Algebraic Programming

Performance

Ref.: Mastoras, Anagnostidis, and Y., “Nonblocking execution in GraphBLAS”, IEEE IPDPSW 2022.
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Speedup relative to sequential ALP (v0.5), vs. state-of-the-art
• Conjugate Gradient solve, two-socket x86, 44 cores:

gyro_m G2_circuit bundle_adj ecology2 Queen_4147

GSL 0.84 0.95 0.89 0.91 0.92
blocking ALP 2.30 4.53 12.7 6.91 17.5

SuiteSparse:GraphBLAS 1.57 1.11 5.82 3.52 11.6
Eigen 5.21 2.57 1.61 1.94 9.20

non-blocking ALP 5.57 9.75 2.87 13.7 18.6

Our novel nonblocking backend:
• speedup up to pipeline depth if nz = Θ(n);
• up to 2.43× vs. blocking, 0.49–8.78× vs. SuiteSparse:GraphBLAS;
• 2.87–7.06× vs. Eigen– which also performs loop fusion.

Similar results for PageRank and sparse deep neural network inference.
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Algebraic Programming

Performance

HPCG benchmark, dual-socket ARM, 96 cores, maximum problem size
• reference HPCG code modified to use Red-Black Gauss-Seidel,

- ALP cannot express GS; it would not scale.

Comparison, using the blocking ALP backend:

Ref. Scolari, Y.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS”, GrAPL at IPDPSW (to appear, 2023)
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Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).
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Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n)

;
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).
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Algebraic Programming
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Algebraic Programming

Performance

ALP interoperability with existing (parallel) frameworks
• standard Spark/Scala interface, Spark is not modified;

• ALP/GraphBLAS algorithms (here, PageRank) are not modified;
• data exchange between Spark and ALP happens within-process.

Orders of magnitude improvements on 10 nodes (hybrid backend):
Spark Spark with ALP/GraphBLAS

GB Gnz nε n = 1 n = 10 n = nε s/it. n = 1 n = 10 n = nε s/it.

uk-2002 4.7 0.3 73 168.6 1373.8 >4 hrs 133.9 8.7 13.9 48.7 0.56
clueweb12 786 42.5 45 - - - - 658.8 963.2 1875.0 27.7

Pagerank performance in seconds using ten Ivy nodes with Infiniband EDR, Spark 2.3.1, and Hadoop 2.7.7.

• I/O: 19× faster, computation: 239× faster for uk-2002;
• Spark Clueweb: out of memory; Blogel (Ammar, Ozsu ’18): 128 nodes

- can handle 141× larger problems, 12× fewer resources
Ref.: Suijlen and Y., “Lightweight Parallel Foundations: a model-compliant communication layer”, (2019;
pre-v0.1 ALP. Results are being refreshed with latest ALP, Scala, Spark, LPF: see ALP/Spark @ GitHub).
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Algebraic Programming

Beyond ALP/GraphBLAS

How far can we take this type of programming?
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Algebraic Programming

The Alps

The Alps:
• Monte Rosa,
• Matterhorn,
• Weisshorn,
• Jungfrau,
• Rothorn,
• Dom,
• ...

Image by Simo Räsänen, licensed under CC-by-2.5
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Algebraic Programming

The ALPs

The ALPs:
• ALP/GraphBLAS,
• ALP/Dense,
• ALP/Pregel,
• ...

Interoperability with existing software:
• ALP/Spark;
• ALP/SparseBLAS, ALP/SpBLAS.
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Algebraic Programming

ALP/Pregel

Pregel:

• Each vertex executes a round-based program;
• after each round, message exchange over edges.

Think like a vertex, Malewicz et al. ’10.
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Algebraic Programming

ALP/Pregel

Pregel connected components over undirected graphs:
• start with assigning a unique ID;
• broadcast current ID;
• if received any incoming higher ID, replace ours

;
- if not, vote to halt program.

Pregel page ranking over directed graphs:
• start with equally-distributed local score;
• divide it over the number of neighbours and broadcast;
• new score is α + (1− α) times the sum over incoming scores.

- execute a fixed number of rounds, or
- use local convergence detection and vote-to-halt.

While “PageRank-like”, not mathematically equivalent!
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Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;

• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo
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Algebraic Programming

ALP/Pregel

For the Pregel page ranking, two variants:
• terminate when all vertices are converged (global);
• disable locally converged vertices from any future rounds (local).

Using masking to not incur overhead from inactive vertices;
• the more deactivated vertices, the faster each compute round.

ALP/Pregel Sequential
Dataset Global Local GraphBLAS
gyro_m 34.8 ( 40 ) 24.7 ( 39 ) 31.4 (52)

G2_circuit 175 ( 38 ) 78.8 ( 36 ) 90.0 (48)
bundle_adj 3 070 ( 66 ) 2 070 ( 51 ) 2 330 (60)
G3_circuit 1 960 ( 38 ) 987 ( 36 ) 1 100 (48)
wiki-2007 40 500 (103) 11 400 ( 96 ) 18 100 (55)
uk-2002 153 000 (115) 46 100 (104) 72 100 (73)
road_usa 87 600 ( 78 ) 58 800 ( 72 ) 62 200 (78)

Sequential performance in ms. Compares different page ranking algorithms.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman



Algebraic Programming

ALP/Pregel

For the Pregel page ranking, two variants:
• terminate when all vertices are converged (global);
• disable locally converged vertices from any future rounds (local).

Using masking to not incur overhead from inactive vertices;
• the more deactivated vertices, the faster each compute round.

ALP/Pregel Sequential
Dataset Global Local GraphBLAS
gyro_m 34.8 ( 40 ) 24.7 ( 39 ) 31.4 (52)

G2_circuit 175 ( 38 ) 78.8 ( 36 ) 90.0 (48)
bundle_adj 3 070 ( 66 ) 2 070 ( 51 ) 2 330 (60)
G3_circuit 1 960 ( 38 ) 987 ( 36 ) 1 100 (48)
wiki-2007 40 500 (103) 11 400 ( 96 ) 18 100 (55)
uk-2002 153 000 (115) 46 100 (104) 72 100 (73)
road_usa 87 600 ( 78 ) 58 800 ( 72 ) 62 200 (78)

Sequential performance in ms. Compares different page ranking algorithms.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman



Algebraic Programming

ALP/Pregel

For the Pregel page ranking, two variants:
• terminate when all vertices are converged (global);
• disable locally converged vertices from any future rounds (local).

Using masking to not incur overhead from inactive vertices;
• the more deactivated vertices, the faster each compute round.

ALP/Pregel Sequential
Dataset Global Local GraphBLAS
gyro_m 34.8 ( 40 ) 24.7 ( 39 ) 31.4 (52)

G2_circuit 175 ( 38 ) 78.8 ( 36 ) 90.0 (48)
bundle_adj 3 070 ( 66 ) 2 070 ( 51 ) 2 330 (60)
G3_circuit 1 960 ( 38 ) 987 ( 36 ) 1 100 (48)
wiki-2007 40 500 (103) 11 400 ( 96 ) 18 100 (55)
uk-2002 153 000 (115) 46 100 (104) 72 100 (73)
road_usa 87 600 ( 78 ) 58 800 ( 72 ) 62 200 (78)

Sequential performance in ms. Compares different page ranking algorithms.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman



Algebraic Programming

ALP/Pregel

Ref.: Y., “Humble Heroes”, Communications of Huawei Research, to appear (2023).

Same table, using the blocking shared-memory parallel backend:

ALP/Pregel Blocking
Dataset Global Local GraphBLAS
gyro_m 31.1 ( 40 ) 29.2 ( 39 ) 37 .6 (52)

G2_circuit 58.8 ( 38 ) 38.9 ( 36 ) 29.0 (48)
bundle_adj 280 ( 66 ) 224 ( 51 ) 1 290 (60)
G3_circuit 367 ( 38 ) 243 ( 36 ) 87.8 (48)
wiki-2007 2 440 (103) 878 ( 96 ) 5 030 (55)
uk-2002 11 500 (115) 4 420 (104) 2 750 (73)
road_usa 9 800 ( 78 ) 7 560 ( 72 ) 2 680 (78)

• 0.84–13.0× speedup for the local Pregel page ranking

;
• fastest 3 out of 7 times (5 out of 13 in the full paper);
• 1.03–17.5× speedup for connected components algorithm.
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Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?

• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views

• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)
• opaqueness: ALP controls layout
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Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?
• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views
• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)
• opaqueness: ALP controls layout, requires parametric xMFs
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Algebraic Programming

ALP/Dense

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)

2) when pipelines execute, instead first translate to MLIR;
- high-level MLIR dialect introducing, e.g., algebraic structures

3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:
- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.
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Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).
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Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;

• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.
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Algebraic Programming

It’s open!

Open source, Apache 2.0, welcome to try, use, and collaborate!

• https://github.com/Algebraic-Programming

• https://algebraic-programming.github.io

Publications:
• Suijlen, Y.: Lightweight Parallel Foundations: a model-compliant communication layer (2019);
• Y., Di Nardo, Nash, Suijlen: A C++ GraphBLAS: specification, implementation, parallelisation, and

evaluation (2020);
• Mastoras, Anagnostidis, Y.: Nonblocking execution in GraphBLAS, IPDPSW (2022);
• Chelini, Barthels, Bientinesi, Copic, Grosser, Spampinato: MOM: Matrix Operations in MLIR, HiPEAC

IMPACT workshop (2022);
• Y.: Humble Heroes, Communications of Huawei Research (2023, to appear);
• Mastoras, Anagnostidis, Y.: Design and implementation for nonblocking execution in GraphBLAS:

tradeoffs and performance, ACM TACO (2023);
• Scolari, Y.: Effective implementation of the High Performance Conjugate Gradient benchmark on

ALP/GraphBLAS, GrAPL at IPDPSW (2023, to appear);
• Spampinato, Jelovina, Zhuang, Y.: Towards Structured Algebraic Programming, ACM ARRAY (2023);
• Papp, Anegg, Y.: Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications, ACM

SPAA (2023);
• Papp, Anegg, Y.: DAG scheduling in the BSP model (preprint, 2023);
• Pasadakis, et al., Nonlinear spectral clustering with C++ GraphBLAS, extended abstract, IEEE HPEC

(2023, outstanding short paper);
• Papp, Anegg, Karanasiou, Y.: Efficient Multi-Processor Scheduling in Increasingly Realistic Models

(under preparation, 2023).
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Algebraic Programming

Backup slides
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Algebraic Programming

Performance

Sparse Deep Neural Network inference, vs. sequential ALP
• GraphChallenge model & data

#layers #neurons GSL Eigen SS:GrB non-blocking ALP
1920 64k 0.81× 7.91× 3.98× 10.8×
1920 1k 0.64× 0.86× 0.73× 1.39×

Jointly partition sparse layers, then tile across layers:
• work by Filip Pawłowski with Uçar and Bisseling

• 5 layers, 64k n.: 1.94× speedup vs. data-parallel
• 2020 MIT/IEEE GraphChallenge innovation award
• combine with non-blocking ALP/GraphBLAS?

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: Combinatorial Tiling for Sparse Neural Networks by F. Pawłowski, R. H. Bisseling, B. Uçar, Y.
in 2020 IEEE High Performance Extreme Computing Conference (IEEE HPEC)
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Algebraic Programming

Performance semantics

Every container has memory use semantics:
• “static” costs proportional to container sizes;
• “dynamic” costs proportional to container capacities.

Capacities are optional during container construction:

grb : : Vector< bool > s ( n , 1 ) ;
grb : : Matr ix< void > L( n , n , nz ) ;

Out of memory errors throw exceptions; primitives return error codes.

Capacities:
• are lower bounds; grb :: capacity ( s ) ≥ 1;
• may increase through grb :: resize , updates memory use semantics;
• Any request to decrease capacity thus may be ignored.
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Algebraic Programming

Basics

User I/O:

bu i l dMa t r i xUn i que ( A, b e g i n_ i t e r a t o r , end_ i t e r a to r ,
SEQUENTIAL ) ;

bu i l dMa t r i xUn i que ( L , i_begin , i_end , j_begin , j_end ,
PARALLEL ) ;

s t d : : cout << " s ␣ has ␣" << grb : : nnz ( s ) << "␣ v a l u e s : \ n" ;
f o r ( auto &element : s ){ s td : : cout << element << "\n" ; }

I/O through STL iterators:
• input forward iterators (at minimum) over AoS or SoA containers;
• random access input iterators can be shared-memory parallelised(!)

User processes: each iterator pair on different processes point to
• the same, complete collection C , leading to sequential I/O;
• mutually disjoint collections Ci s.t. C = ∪iCi : parallel I/O.
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Algebraic Programming

Performance

Auto-vectorisation versus hand-written code, sequential backend
• dot product, dot( alpha, x, y, semiring )

• reduce, foldl < dense >( alpha, x, associativeOp )

• FMA, eWiseMulAdd< dense >( z, alpha, x, y, semiring )

Ivy Bridge Cascade Lake
Dot product Reduction FMA Dot product Reduction FMA

Hand-coded 120 (12.4) 106 (7.03) 199 (11.2) 227 (6.56) 221 (3.37) 216 (10.3)
ALP/GraphBLAS 120 (12.4) 106 (7.03) 204 (11.0) 226 (6.59) 220 (3.39) 217 (10.3)

eWiseLambda 125 (12.0) 131 (5.69) 205 (10.9) 228 (6.54) 226 (3.30) 217 (10.3)

Microbenchmarks evaluating ALP/GraphBLAS auto-vectorsation. Figures are in milliseconds (and Gbyte/s).

Theoretical (peak) throughput and approximate throughput per core:

• 190.7 GByte/s; 10 cores per CPU, two CPUs, 9.54 Gbyte/s/core (Ivy);

• 262.2 GByte/s; 22 cores / CPU, 2 CPUs, 5.96 Gbyte/s/core (Cascade).
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