
Algebraic Programming

Algebraic Programming
Portable, high-performance, and high-productivity programming

Albert-Jan N. Yzelman

Computing Systems Laboratory
Zürich Research Center, Switzerland

NUMA, dept. CW, KU Leuven, 7th of September, 2023

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,

increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Humble and Hero Programming

• Hero programmers: achieve maximum efficiency;
- domain, lower bounds, algorithms, coding, and hardware experts
- increasingly complex: many-core, heterogeinity, deeper NUMA
effects, memory walls, and low memory capacity per core.

• Humble programmers: achieve maximum productivity.
- easy-to-use, “scalable” programming: MapReduce, Spark, ...
- 100% of peak performance not absolutely required
- typically sequential, data-centric, reliable, & automatic

Increasingly many hardware targets,
increasingly heterogeneous hardware:

a software productivity crisis is looming

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):

• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?

• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:

• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;

• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;

• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:

• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Compilers, libraries, and applications

New hardware, provide libraries with standard APIs (e.g., BLAS):
• if many hardware targets, how many heroes do we need?
• standard interfaces may not map well to all architectures.

Compile humble code to new architectures:
• compiler would need to ‘think’ about algorithms;
• best algorithms may depend on run-time conditions;
• user-driven compilation and DSLs: less humble, how many DSLs?

Rewrite applications using new framework(s) and/or DSL(s):
• rewrite software or use older/slower hardware?

Many existing software, many workload domains, many architectures:
• re-define compiler, library, and application boundaries!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus

• humble

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;
• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus
• humble

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;
• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus
• humble, yet also auto-parallelising and high performance.

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;
• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus
• humble, yet also auto-parallelising and high performance.

Principles:
• explicitly annotate computations with algebraic information;

• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;
• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus
• humble, yet also auto-parallelising and high performance.

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;

• automatically optimise code based on algebraic information;
• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus
• humble, yet also auto-parallelising and high performance.

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;

• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic Programming

Algebraic Programming, or ALP for short:
• sequential, data-centric, standard C++;
• similar to the Standard Template Library (STL), thus
• humble, yet also auto-parallelising and high performance.

Principles:
• explicitly annotate computations with algebraic information;
• allow compile-time introspection of algebraic information;
• automatically optimise code based on algebraic information;
• allow only scalable expressions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS

1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x (n) , y (n) , z (n) ;
grb : : Matr ix< double > A(n , n) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s (n) ;
grb : : Vector< bool > s (n , 1) ; // nz cap : one
grb : : Matr ix< void > L(n , n , nz) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID (s) << "\n" ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS
1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x (n) , y (n) , z (n) ;
grb : : Matr ix< double > A(n , n) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s (n) ;
grb : : Vector< bool > s (n , 1) ; // nz cap : one
grb : : Matr ix< void > L(n , n , nz) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID (s) << "\n" ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS
1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x (n) , y (n) , z (n) ;
grb : : Matr ix< double > A(n , n) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s (n) ;
grb : : Vector< bool > s (n , 1) ; // nz cap : one
grb : : Matr ix< void > L(n , n , nz) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID (s) << "\n" ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS
1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x (n) , y (n) , z (n) ;
grb : : Matr ix< double > A(n , n) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s (n) ;
grb : : Vector< bool > s (n , 1) ; // nz cap : one
grb : : Matr ix< void > L(n , n , nz) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID (s) << "\n" ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS
1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x (n) , y (n) , z (n) ;
grb : : Matr ix< double > A(n , n) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s (n) ;
grb : : Vector< bool > s (n , 1) ; // nz cap : one
grb : : Matr ix< void > L(n , n , nz) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID (s) << "\n" ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Three ALP concepts: algebraic containers, structures, and primitives.

Example: sparse linear algebra, ALP/GraphBLAS
1) containers: scalars, vectors, and matrices;
2) structures: binary operators, monoids, and semirings; and
3) primitives: eWiseApply, reduction into scalar or vector (fold), mxv.

Containers are similar to the standard template library (STL):
grb : : Vector< double > x (n) , y (n) , z (n) ;
grb : : Matr ix< double > A(n , n) ;

Elements may be any POD type, containers have capacities and IDs:
grb : : Vector< s td : : p a i r < int , double > > p a i r s (n) ;
grb : : Vector< bool > s (n , 1) ; // nz cap : one
grb : : Matr ix< void > L(n , n , nz) ; // nz cap : nz
s t d : : cout << " s ␣ has ␣ ID␣" << grb : : get ID (s) << "\n" ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic structures are types. E.g., min : D1 × D2 → D3 reads

grb : : o p e r a t o r s : : min< double , int , double > minOp ;

More complex structures may be composed:

grb : : Monoid<
grb : : o p e r a t o r s : : add< double >,
grb : : i d e n t i t i e s : : z e r o

> addMon ;

grb : : Semi r ing<
grb : : o p e r a t o r s : : add< double >,
grb : : o p e r a t o r s : : mul< double >,
grb : : i d e n t i t i e s : : ze ro ,
grb : : i d e n t i t i e s : : one

> mySemir ing ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic structures are types. E.g., min : D1 × D2 → D3 reads

grb : : o p e r a t o r s : : min< double , int , double > minOp ;

More complex structures may be composed:

grb : : Monoid<
grb : : o p e r a t o r s : : add< double >,
grb : : i d e n t i t i e s : : z e r o

> addMon ;

grb : : Semi r ing<
grb : : o p e r a t o r s : : add< double >,
grb : : o p e r a t o r s : : mul< double >,
grb : : i d e n t i t i e s : : ze ro ,
grb : : i d e n t i t i e s : : one

> mySemir ing ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic structures are types. E.g., min : D1 × D2 → D3 reads

grb : : o p e r a t o r s : : min< double , int , double > minOp ;

More complex structures may be composed:

grb : : Monoid<
grb : : o p e r a t o r s : : add< double >,
grb : : i d e n t i t i e s : : z e r o

> addMon ;

grb : : Semi r ing<
grb : : o p e r a t o r s : : add< double >,
grb : : o p e r a t o r s : : mul< double >,
grb : : i d e n t i t i e s : : ze ro ,
grb : : i d e n t i t i e s : : one

> mySemir ing ;

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set(x, 1.0); // xi = 1, ∀i
• grb :: setElement(y, 3.0, n/2); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply(z, x, y, minOp); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply(z, x, x, minOp); // zi = min{xi , yi}, ∀i
• grb :: eWiseApply(z, x, y, addMon);// zi = xi + yi , ∀i
• grb :: mxv(y, A, x, mySemiring); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:
• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set(x, 1.0); // xi = 1, ∀i
• grb :: setElement(y, 3.0, n/2); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply(z, x, y, minOp); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply(z, x, x, minOp); // zi = min{xi , yi}, ∀i

• grb :: eWiseApply(z, x, y, addMon);// zi = xi + yi , ∀i
• grb :: mxv(y, A, x, mySemiring); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:
• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set(x, 1.0); // xi = 1, ∀i
• grb :: setElement(y, 3.0, n/2); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply(z, x, y, minOp); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply(z, x, x, minOp); // zi = min{xi , yi}, ∀i
• grb :: eWiseApply(z, x, y, addMon);// zi = xi + yi , ∀i

• grb :: mxv(y, A, x, mySemiring); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:
• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set(x, 1.0); // xi = 1, ∀i
• grb :: setElement(y, 3.0, n/2); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply(z, x, y, minOp); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply(z, x, x, minOp); // zi = min{xi , yi}, ∀i
• grb :: eWiseApply(z, x, y, addMon);// zi = xi + yi , ∀i
• grb :: mxv(y, A, x, mySemiring); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:
• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set(x, 1.0); // xi = 1, ∀i
• grb :: setElement(y, 3.0, n/2); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply(z, x, y, minOp); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply(z, x, x, minOp); // zi = min{xi , yi}, ∀i
• grb :: eWiseApply(z, x, y, addMon);// zi = xi + yi , ∀i
• grb :: mxv(y, A, x, mySemiring); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:

• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

Algebraic primitives operate on algebraic containers:
• grb :: set(x, 1.0); // xi = 1, ∀i
• grb :: setElement(y, 3.0, n/2); // yn/2 = 3

Semantics may change based on required algebraic structures:
• grb :: eWiseApply(z, x, y, minOp); // zi = min{xi , yi}, for i = n/2
• grb :: eWiseApply(z, x, x, minOp); // zi = min{xi , yi}, ∀i
• grb :: eWiseApply(z, x, y, addMon);// zi = xi + yi , ∀i
• grb :: mxv(y, A, x, mySemiring); // y += Ax ; in-place

All primitives except ‘getters’ such as grb :: { size ,nrows,nnz, capacity}:
• allow output masks, descriptors, and phase arguments;
• return error codes such as for mismatching dimensions.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

Algebraic type traits: compile-time introspection of algebraic info
• grb :: is_associative < Operator >::value, true iff (a � b)� c = a � (b � c);

• grb :: is_idempotent< Operator >::value, true iff a � a = a;

• grb :: is_monoid< T >::value, true iff T is a monoid;

• ...

Algebraic type traits transfer to richer algebraic structures:
• grb :: is_commutative< grb::operators::add< double > >::value? 3,

therefore
i s_commutat ive< Monoid<

op e r a t o r s : : add< double >, i d e n t i t i e s : : z e r o >
>::value? 3

These are all compile-time constant (through C++11 constexpr):
• similar to the standard C++11 type traits.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

Algebraic type traits: compile-time introspection of algebraic info
• grb :: is_associative < Operator >::value, true iff (a � b)� c = a � (b � c);

• grb :: is_idempotent< Operator >::value, true iff a � a = a;

• grb :: is_monoid< T >::value, true iff T is a monoid;

• ...

Algebraic type traits transfer to richer algebraic structures:
• grb :: is_commutative< grb::operators::add< double > >::value? 3

,
therefore
i s_commutat ive< Monoid<

op e r a t o r s : : add< double >, i d e n t i t i e s : : z e r o >
>::value? 3

These are all compile-time constant (through C++11 constexpr):
• similar to the standard C++11 type traits.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

Algebraic type traits: compile-time introspection of algebraic info
• grb :: is_associative < Operator >::value, true iff (a � b)� c = a � (b � c);

• grb :: is_idempotent< Operator >::value, true iff a � a = a;

• grb :: is_monoid< T >::value, true iff T is a monoid;

• ...

Algebraic type traits transfer to richer algebraic structures:
• grb :: is_commutative< grb::operators::add< double > >::value? 3,

therefore
i s_commutat ive< Monoid<

op e r a t o r s : : add< double >, i d e n t i t i e s : : z e r o >
>::value? 3

These are all compile-time constant (through C++11 constexpr):
• similar to the standard C++11 type traits.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

Algebraic type traits: compile-time introspection of algebraic info
• grb :: is_associative < Operator >::value, true iff (a � b)� c = a � (b � c);

• grb :: is_idempotent< Operator >::value, true iff a � a = a;

• grb :: is_monoid< T >::value, true iff T is a monoid;

• ...

Algebraic type traits transfer to richer algebraic structures:
• grb :: is_commutative< grb::operators::add< double > >::value? 3,

therefore
i s_commutat ive< Monoid<

op e r a t o r s : : add< double >, i d e n t i t i e s : : z e r o >
>::value? 3

These are all compile-time constant (through C++11 constexpr):
• similar to the standard C++11 type traits.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

Algebraic type traits help
• detect programmer errors,
• decide which optimisations are applicable, and
• reject expressions without recipe for auto-parallelisation.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl (alpha, x, addOp);
- is_monoid< addOp >::value? 7, since
parallelisation requires identity and associativity!

foldl (alpha, x, addMon); 3

Above errors are all compile-time (through C++11 static_assert), with
clear error messages.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl (alpha, x, addOp);
- is_monoid< addOp >::value? 7, since
parallelisation requires identity and associativity!

foldl (alpha, x, addMon); 3

Above errors are all compile-time (through C++11 static_assert), with
clear error messages.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl (alpha, x, addOp);
- is_monoid< addOp >::value? 7

, since
parallelisation requires identity and associativity!

foldl (alpha, x, addMon); 3

Above errors are all compile-time (through C++11 static_assert), with
clear error messages.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl (alpha, x, addOp);
- is_monoid< addOp >::value? 7, since
parallelisation requires identity and associativity!

foldl (alpha, x, addMon); 3

Above errors are all compile-time (through C++11 static_assert), with
clear error messages.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl (alpha, x, addOp);
- is_monoid< addOp >::value? 7, since
parallelisation requires identity and associativity!

foldl (alpha, x, addMon); 3

Above errors are all compile-time (through C++11 static_assert), with

clear error messages.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

For example, algebraic type traits prevent
• creating a monoid from non-associative operator;

- Monoid< operators::divide<int>, identities :: one > myMonoid;
- is_associative < operators :: divide< int > >::value? 7

• composing a semiring using a non-commutative additive monoid;
- Semiring< operators :: right_assign<double>, ... > mySemiring;
- is_commutative< operators::right_assign<double> >::value? 7

• reducing a sparse vector to a scalar without a monoid structure.
- operators :: add< double > addOp;
- double alpha = 0; foldl (alpha, x, addOp);
- is_monoid< addOp >::value? 7, since
parallelisation requires identity and associativity!

foldl (alpha, x, addMon); 3

Above errors are all compile-time (through C++11 static_assert), with
clear error messages.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;

• reorder computation to improve cache hit rates
- if S is commutative;

• replace primitives with cheaper ones:
- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;

• replace primitives with cheaper ones:
- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;

- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min?

Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !

- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Algebraic type traits

E.g. (ct’d), algebraic type traits allow, for algebraic structure S, to
• split up and parallelise reduce operations

- if S is associative and has an identity;
• reorder computation to improve cache hit rates

- if S is commutative;
• replace primitives with cheaper ones:

- grb :: eWiseApply(z, x, x, S); sets zi = xi � xi ;
- � = min? Replace eWiseApply with grb :: set(z, x); !
- every time S is idempotent;

• ...

These optimisations are applied at compile-time,

without requiring programmer knowledge or intervention.
Ex.: Y & Bisseling ’10; Y & Roose ’14; Y, Bisseling, Roose, Meerbergen ’14; Y, Roose, Meerbergen ’14; ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Historical context

- The Design and Analysis of Computer Algorithms,
Aho, Hopcroft, Ullman (1974)

- Introduction to Algorithms (first edition only),
Cormen, Leiserson, Rivest (1990)

- Elements of Programming,
Alexander Stepanov & Paul McJones (2009)

- Graph Algorithms in the Language of Linear Algebra,
Jeremy Kepner & John Gilbert (2011)

- From Mathematics to Generic Programming,
Alexander Stepanov & Daniel Rose (2015)

- GraphBLAS.org, following work by Kepner & Gilbert,
Kepner, Gilbert, Buluç, Mattson, et alii (2016)

- A C++ GraphBLAS, Y. et al. (2017–2020)
- Algebraic Programming (2021 onwards)
- ...

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

GraphBLAS

GraphBLAS.org; Kepner, Gilbert, Buluç, Mattson, Moreira, ...
• for example, y = Akx , parametrised in a semiring:

t emp la te< typename Semi r ing , typename NonzeroT , typename VectorT >
grb : : RC mpv(

grb : : Vector< VectorT > &y ,
c on s t grb : : Matr ix< NonzeroT > &A, c on s t s i z e_ t k ,
c on s t grb : : Vector< VectorT > &x ,

grb : : Vector< VectorT > &bu f f e r ,
c on s t Semi r i ng &r i n g = Semi r i ng ()

) {
// e r r o r check i ng and e r r o r p r opaga t i on omi t ted
grb : : vxm(y , x , A, r i n g) ;
f o r (s i z e_ t i = 1 ; i < k ; ++i) {

s td : : swap (y , b u f f e r) ;
grb : : vxm(y , b u f f e r , A, r i n g) ;

}
}

Solve different problems with different semirings:
• plus-times: numerical linear algebra,

• Boolean: reachability / connectivity,

• min-plus: shortest paths,

• ...and more – see e.g. Aho, Hopcroft, and Ullman ’74; Kepner & Gilbert ’11.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

GraphBLAS.org

Algebraic Programming

GraphBLAS

GraphBLAS.org; Kepner, Gilbert, Buluç, Mattson, Moreira, ...
• for example, y = Akx , parametrised in a semiring:

t emp la te< typename Semi r ing , typename NonzeroT , typename VectorT >
grb : : RC mpv(

grb : : Vector< VectorT > &y ,
c on s t grb : : Matr ix< NonzeroT > &A, c on s t s i z e_ t k ,
c on s t grb : : Vector< VectorT > &x ,

grb : : Vector< VectorT > &bu f f e r ,
c on s t Semi r i ng &r i n g = Semi r i ng ()

) {
// e r r o r check i ng and e r r o r p r opaga t i on omi t ted
grb : : vxm(y , x , A, r i n g) ;
f o r (s i z e_ t i = 1 ; i < k ; ++i) {

s td : : swap (y , b u f f e r) ;
grb : : vxm(y , b u f f e r , A, r i n g) ;

}
}

Solve different problems with different semirings:
• plus-times: numerical linear algebra,

• Boolean: reachability / connectivity,

• min-plus: shortest paths,

• ...and more – see e.g. Aho, Hopcroft, and Ullman ’74; Kepner & Gilbert ’11.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

GraphBLAS.org

Algebraic Programming

GraphBLAS

GraphBLAS.org; Kepner, Gilbert, Buluç, Mattson, Moreira, ...
• for example, y = Akx , parametrised in a semiring:

t emp la te< typename Semi r ing , typename NonzeroT , typename VectorT >
grb : : RC mpv(

grb : : Vector< VectorT > &y ,
c on s t grb : : Matr ix< NonzeroT > &A, c on s t s i z e_ t k ,
c on s t grb : : Vector< VectorT > &x ,

grb : : Vector< VectorT > &bu f f e r ,
c on s t Semi r i ng &r i n g = Semi r i ng ()

) {
// e r r o r check i ng and e r r o r p r opaga t i on omi t ted
grb : : vxm(y , x , A, r i n g) ;
f o r (s i z e_ t i = 1 ; i < k ; ++i) {

s td : : swap (y , b u f f e r) ;
grb : : vxm(y , b u f f e r , A, r i n g) ;

}
}

Solve different problems with different semirings:
• plus-times: numerical linear algebra,

• Boolean: reachability / connectivity,

• min-plus: shortest paths,

• ...and more – see e.g. Aho, Hopcroft, and Ullman ’74; Kepner & Gilbert ’11.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

GraphBLAS.org

Algebraic Programming

GraphBLAS

GraphBLAS.org; Kepner, Gilbert, Buluç, Mattson, Moreira, ...
• for example, y = Akx , parametrised in a semiring:

t emp la te< typename Semi r ing , typename NonzeroT , typename VectorT >
grb : : RC mpv(

grb : : Vector< VectorT > &y ,
c on s t grb : : Matr ix< NonzeroT > &A, c on s t s i z e_ t k ,
c on s t grb : : Vector< VectorT > &x ,

grb : : Vector< VectorT > &bu f f e r ,
c on s t Semi r i ng &r i n g = Semi r i ng ()

) {
// e r r o r check i ng and e r r o r p r opaga t i on omi t ted
grb : : vxm(y , x , A, r i n g) ;
f o r (s i z e_ t i = 1 ; i < k ; ++i) {

s td : : swap (y , b u f f e r) ;
grb : : vxm(y , b u f f e r , A, r i n g) ;

}
}

Solve different problems with different semirings:
• plus-times: numerical linear algebra,

• Boolean: reachability / connectivity,

• min-plus: shortest paths,

• ...and more – see e.g. Aho, Hopcroft, and Ullman ’74; Kepner & Gilbert ’11.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

GraphBLAS.org

Algebraic Programming

GraphBLAS

GraphBLAS.org; Kepner, Gilbert, Buluç, Mattson, Moreira, ...
• for example, y = Akx , parametrised in a semiring:

t emp la te< typename Semi r ing , typename NonzeroT , typename VectorT >
grb : : RC mpv(

grb : : Vector< VectorT > &y ,
c on s t grb : : Matr ix< NonzeroT > &A, c on s t s i z e_ t k ,
c on s t grb : : Vector< VectorT > &x ,

grb : : Vector< VectorT > &bu f f e r ,
c on s t Semi r i ng &r i n g = Semi r i ng ()

) {
// e r r o r check i ng and e r r o r p r opaga t i on omi t ted
grb : : vxm(y , x , A, r i n g) ;
f o r (s i z e_ t i = 1 ; i < k ; ++i) {

s td : : swap (y , b u f f e r) ;
grb : : vxm(y , b u f f e r , A, r i n g) ;

}
}

Solve different problems with different semirings:
• plus-times: numerical linear algebra,

• Boolean: reachability / connectivity,

• min-plus: shortest paths,

• ...and more – see e.g. Aho, Hopcroft, and Ullman ’74; Kepner & Gilbert ’11.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

GraphBLAS.org

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):


0


︸ ︷︷ ︸

+=



x 7
7 x 8 7

8 x 5
5 9 x 15 6

7 5 x 8 9
8 x 11
9 11 x


︸ ︷︷ ︸

A


0


︸ ︷︷ ︸

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):


0


︸ ︷︷ ︸

+=



x 7
7 x 8 7

8 x 5
5 9 x 15 6

7 5 x 8 9
8 x 11
9 11 x


︸ ︷︷ ︸

A


0


︸ ︷︷ ︸

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):


0


︸ ︷︷ ︸
x+=Ax

+=



x 7 5
7 x 8 9 7

8 x 5
5 9 x 15 6

7 5 15 x 8 9
6 8 x 11

9 11 x


︸ ︷︷ ︸

A


0


︸ ︷︷ ︸

x

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

Ax : shortest distances within one hop:
• x contains one nonzero;

• compute sum with inputs, reduce into output using min.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):


0


︸ ︷︷ ︸
x+=Ax

+=



x 7 5
7 x 8 9 7

8 x 5
5 9 x 15 6

7 5 15 x 8 9
6 8 x 11

9 11 x


︸ ︷︷ ︸

A


0


︸ ︷︷ ︸

x

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

b

a

e

f

Ax : shortest distances within one hop:
• x contains one nonzero, select corresponding adjacent vertices;

• compute sum with inputs, reduce into output using min.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):



5
9

0
15
6


︸ ︷︷ ︸
x+=Ax

+=



x 7 5
7 x 8 9 7

8 x 5
5 9 x 15 6

7 5 15 x 8 9
6 8 x 11

9 11 x


︸ ︷︷ ︸

A


0


︸ ︷︷ ︸

x

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

b

a

e

f

Ax : shortest distances within one hop:
• x contains one nonzero, select corresponding adjacent vertices;
• compute sum with inputs, reduce into output using min.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):


0


︸ ︷︷ ︸
x+=A(Ax)

+=



x 7 5
7 x 8 9 7

8 x 5
5 9 x 15 6

7 5 15 x 8 9
6 8 x 11

9 11 x


︸ ︷︷ ︸

A



5
9

0
15
6


︸ ︷︷ ︸

Ax

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

b

a

e

f

c

g

A2x : shortest distances within two hops:
• swap input and output vectors, repeat procedure;

• multiple paths reach e.g. b: min{5 + 7 = 12, 9, 15 + 7 = 22} = 9.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):



5
9
17
0
14
6
17


︸ ︷︷ ︸
x+=A(Ax)

+=



x 7 5
7 x 8 9 7

8 x 5
5 9 x 15 6

7 5 15 x 8 9
6 8 x 11

9 11 x


︸ ︷︷ ︸

A



5
9

0
15
6


︸ ︷︷ ︸

Ax

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

b

a

e

A2x : shortest distances within two hops:
• swap input and output vectors, repeat procedure;
• multiple paths reach e.g. b: min{5 + 7 = 12, 9, 15 + 7 = 22} = 9.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Example

Single-source shortest-paths (SSSP) using a min-plus semiring:
• graph represented by its n × n adjacancy matrix A

• SSSP via Akx using the semiring (N0,min,+,∞, 0):



5
9
17
0
14
6
17


︸ ︷︷ ︸
Ax+=A3x

+=



x 7 5
7 x 8 9 7

8 x 5
9 x 15 6
7 5 15 x 8 9

6 8 x 11
9 11 x


︸ ︷︷ ︸

A



5
9
17
0
14
6
17


︸ ︷︷ ︸

A2x

a

b c

d e

f g

7

8
5

9
7

5
15

6
8

9

11

d

b

a

e

f

c

g

A3x : shortest distances within three hops:
• swap input and output vectors, repeat procedure;
• output equals input vector; SSSP solved, terminate.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

GraphBLAS

A non-exclusive list of graph algorithms expressed using GraphBLAS:
• strongly connected components,
• maximal independent set,
• betweenness centrality,
• k-core decomposition,
• graph contraction,
• depth-first search,
• triangle counting,
• graph generation,
• graph clustering,
• shortest paths,
• ...and more– see graphblas.org for an up-to-date overview.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

graphblas.org

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;

2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;

- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;

- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the backend
grbcxx datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the sequential auto-vectorising backend:
grbcxx -o myProgram myProgram.cpp
grbrun ./myProgram datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the shared-memory parallel auto-vectorising backend:
grbcxx --backend reference_omp -o myProgram myProgram.cpp
grbrun -b reference_omp ./myProgram datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the 1D distributed-memory parallel backend (4 nodes):
grbcxx -b bsp1d -o myProgram myProgram.cpp
grbrun -b bsp1d -np 4 ./myProgram datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Backends

Compile-time selected backends:
1) specific backend for specific architectures or systems;
2) specific backends for specific use cases.

Backends may be composed to
- support heterogeneous targets;
- combine shared-memory parallel with an auto-vectorising backend;
- combine shared-, distributed-memory backends into a hybrid one!

Use different backends without ever changing the ALP programs

Selecting the hybrid shared and dist. parallel backend (10 nodes):
grbcxx -b hybrid -o myProgram myProgram.cpp
grbrun -b hybrid -np 10 ./myProgram datasets/west0497.mtx

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;

• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;
• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;
• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;
• automatic choice of algorithms and backends.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;
• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;

• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;
• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;
• automatic choice of algorithms and backends.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;
• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;
• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;
• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;
• automatic choice of algorithms and backends.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;
• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;
• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;

• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;
• automatic choice of algorithms and backends.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;
• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;
• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;
• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;

• automatic choice of algorithms and backends.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP backend defines performance semantics:
• work;
• memory use;
• operator applications;
• inter-process synchronisation steps;
• data movement between user processes and within a single process;
• whether system calls such as (de-)allocations may be made.

Performance semantics help
• guide programmers to express the best possible algorithm;
• gauge scalability: compute resources vs. problem size;
• expose trade-off opportunities: e.g., speed vs. memory;
• automatic choice of algorithms and backends.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every ALP program can be systematically costed:
Primitive Work Ops Data movement Reductions

setElement(x, y, i) 1 - 1 no
set(x, y) min{n, nzx + nzy} - nzx + nzy or n + nzy no
clear(x) nzx - nzx no

apply(z, x, y,�/M) min{n, nzx + nzy} nzx∩y 2min{n, nzx + nzy} no
+ nzx∪y

foldl(y, x,�/M) nzx nzx∩y 2nzx nofoldr(x, y,�/M)

foldl(y, α,�/M)

nzy nzy nzy
nofoldr(α, y,�/M)

foldl(α, y,M) yesfoldr(y, α,M)

mul(z, x, y, R) min{nzx , nzy} nzx∩y 2min{nzx , nzy} + no
nzx∩y

dot(z, x, y, (M,�)) n 2n 2n yesdot(z, x, y, R) min{nzx , nzy} 2 · nzx∩y 2min{nzx , nzy}

Level-1 primitives and their costs, excluding masking. Similar tables exist for level-2 and level-3 primitives.

Ref.: A C++ GraphBLAS: specification, implementation, parallelisation, and evaluation by Y.,
D. Di Nardo, J. M. Nash, and W. J. Suijlen (2020).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Sparse vectors

Sparse vectors:
• ideal: O(1) query, assign, and iteration.
• sparse accumulators: nonzero index stack and boolean array;
• in parallel: synchronise, combine sparsity structures. Prefix-sum.

Gilbert, Moler, and Schreiber, Sparse matrices in MATLAB: Design and implementation. SIAM JMAA (1992);
Y et al., A C++ GraphBLAS (2020). Big-Oh bounds in the classical RAM model.

Alternative, tree-based map (std::map):
• O(log nz) query and assign;
• O(1) iteration.
• parallelisation: join, intersect (set algebra!)

Currently not implemented in ALP/GraphBLAS due to overhead.
Davis, SuiteSparse::GraphBLAS: Graph algorithms in the language of sparse linear algebra. ACM TOMS (’19).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Sparse vectors

Sparse vectors:
• ideal: O(1) query, assign, and iteration.
• sparse accumulators: nonzero index stack and boolean array;
• in parallel: synchronise, combine sparsity structures. Prefix-sum.

Gilbert, Moler, and Schreiber, Sparse matrices in MATLAB: Design and implementation. SIAM JMAA (1992);
Y et al., A C++ GraphBLAS (2020). Big-Oh bounds in the classical RAM model.

Alternative, tree-based map (std::map):
• O(log nz) query and assign;
• O(1) iteration.
• parallelisation: join, intersect (set algebra!)

Currently not implemented in ALP/GraphBLAS due to overhead.
Davis, SuiteSparse::GraphBLAS: Graph algorithms in the language of sparse linear algebra. ACM TOMS (’19).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Sparse matrices

Sparse matrices of size m × n, nz nonzeroes:
• use Θ(nz) storage, not Θ(mn),
• level-2 cost ∼ number of nonzeroes touched,
• level-3 cost ∼ number of operator applications required.

Many sparse matrix storages exist.

SotA storage cannot do much better than

∼ 2(wV + wI)nz + wA(m + 1) bytes,

unless (theoretically), bit-level compression.

We use Gustafson’s format (CRS+CCS).
Y. and Roose, High-level strategies for sparse matrix–vector multiplication, IEEE TPDS 2014.
Y et al., A C++ GraphBLAS, 2020.
Simecek, Langr, Tvrdik. Minimal quadtree format for compression of sparse matrices storage. SSNA (2012).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Sparse matrices

Sparse matrices of size m × n, nz nonzeroes:
• use Θ(nz) storage, not Θ(mn),
• level-2 cost ∼ number of nonzeroes touched,
• level-3 cost ∼ number of operator applications required.

Many sparse matrix storages exist.

SotA storage cannot do much better than

∼ 2(wV + wI)nz + wA(m + 1) bytes,

unless (theoretically), bit-level compression.

We use Gustafson’s format (CRS+CCS).
Y. and Roose, High-level strategies for sparse matrix–vector multiplication, IEEE TPDS 2014.
Y et al., A C++ GraphBLAS, 2020.
Simecek, Langr, Tvrdik. Minimal quadtree format for compression of sparse matrices storage. SSNA (2012).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Sparse matrices

Sparse matrices of size m × n, nz nonzeroes:
• use Θ(nz) storage, not Θ(mn),
• level-2 cost ∼ number of nonzeroes touched,
• level-3 cost ∼ number of operator applications required.

Many sparse matrix storages exist.

SotA storage cannot do much better than

∼ 2(wV + wI)nz + wA(m + 1) bytes,

unless (theoretically), bit-level compression.

We use Gustafson’s format (CRS+CCS).
Y. and Roose, High-level strategies for sparse matrix–vector multiplication, IEEE TPDS 2014.
Y et al., A C++ GraphBLAS, 2020.
Simecek, Langr, Tvrdik. Minimal quadtree format for compression of sparse matrices storage. SSNA (2012).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Sparse matrices

Sparse matrices of size m × n, nz nonzeroes:
• use Θ(nz) storage, not Θ(mn),
• level-2 cost ∼ number of nonzeroes touched,
• level-3 cost ∼ number of operator applications required.

Many sparse matrix storages exist.

SotA storage cannot do much better than

∼ 2(wV + wI)nz + wA(m + 1) bytes,

unless (theoretically), bit-level compression.

We use Gustafson’s format (CRS+CCS).
Y. and Roose, High-level strategies for sparse matrix–vector multiplication, IEEE TPDS 2014.
Y et al., A C++ GraphBLAS, 2020.
Simecek, Langr, Tvrdik. Minimal quadtree format for compression of sparse matrices storage. SSNA (2012).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Containers

Data structures are opaque; data representations are chosen

fully automatically, hidden from user.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice

; performance 7

Manual fusion (Y. et al., ’20): performance 3

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22):
• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22):
• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Ref.: A C++ GraphBLAS: specification, implementation, parallelisation, and evaluation by Y.,
D. Di Nardo, J. M. Nash, and W. J. Suijlen (2020).

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22):
• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Ref.: A C++ GraphBLAS: specification, implementation, parallelisation, and evaluation by Y.,
D. Di Nardo, J. M. Nash, and W. J. Suijlen (2020).

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3, not very humble 7

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22):
• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3, not very humble 7

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22):

• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3, not very humble 7

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22):
• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!

• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3, not very humble 7

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22): humble 3

• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!

• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Suppose we compute s = r + αv over a given semiring:

1) grb::set(s, r);

2) grb::eWiseMul(s, alpha, v, semiring);

Blocking execution: the vector s is accessed twice; performance 7

Manual fusion (Y. et al., ’20): performance 3, not very humble 7

grb : : eWiseLambda ([&s , &r , &alpha , &v , &r i n g] (c on s t s i z e_ t i) {
grb : : app l y (s [i] , a lpha , v [i] , r i n g . g e tMu l t i p l i c a t i v eO p e r a t o r ()) ;
grb : : f o l d l (s [i] , r [i] , r i n g . g e tAdd i t i v eOpe r a t o r ()) ;

} , s , r , v) ;

Automatic non-blocking mode (Mastoras et al., ’22): humble 3

• lazily evaluate ALP/GraphBLAS calls, no ALP program changes!
• dynamically trigger pipelines when required, automatically fuse.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Dynamic on-line dependence analysis:

Fused execution can cross control flow:
• e.g., lines 26, 39 cross an if-statement;
• elect chunk size s.t. all vectors cached;
• reduce #threads if vectors too small;
• analytic model automatically selects performance parameters: 3.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Dynamic on-line dependence analysis:

Fused execution can cross control flow:
• e.g., lines 26, 39 cross an if-statement;

• elect chunk size s.t. all vectors cached;
• reduce #threads if vectors too small;
• analytic model automatically selects performance parameters: 3.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Dynamic on-line dependence analysis:

Fused execution can cross control flow:
• e.g., lines 26, 39 cross an if-statement;
• elect chunk size s.t. all vectors cached;

• reduce #threads if vectors too small;
• analytic model automatically selects performance parameters: 3.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Dynamic on-line dependence analysis:

Fused execution can cross control flow:
• e.g., lines 26, 39 cross an if-statement;
• elect chunk size s.t. all vectors cached;
• reduce #threads if vectors too small;

• analytic model automatically selects performance parameters: 3.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The nonblocking backend

Dynamic on-line dependence analysis:

Fused execution can cross control flow:
• e.g., lines 26, 39 cross an if-statement;
• elect chunk size s.t. all vectors cached;
• reduce #threads if vectors too small;
• analytic model automatically selects performance parameters: 3.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Ref.: Mastoras, Anagnostidis, and Y., “Nonblocking execution in GraphBLAS”, IEEE IPDPSW 2022.
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Speedup relative to sequential ALP (v0.5), vs. state-of-the-art
• Conjugate Gradient solve, two-socket x86, 44 cores:

gyro_m G2_circuit bundle_adj ecology2 Queen_4147

GSL 0.84 0.95 0.89 0.91 0.92
blocking ALP 2.30 4.53 12.7 6.91 17.5

SuiteSparse:GraphBLAS 1.57 1.11 5.82 3.52 11.6
Eigen 5.21 2.57 1.61 1.94 9.20

non-blocking ALP 5.57 9.75 2.87 13.7 18.6

Our novel nonblocking backend:
• speedup up to pipeline depth if nz = Θ(n);
• up to 2.43× vs. blocking, 0.49–8.78× vs. SuiteSparse:GraphBLAS;
• 2.87–7.06× vs. Eigen– which also performs loop fusion.

Similar results for PageRank and sparse deep neural network inference.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Ref.: Mastoras, Anagnostidis, and Y., “Nonblocking execution in GraphBLAS”, IEEE IPDPSW 2022.
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Speedup relative to sequential ALP (v0.5), vs. state-of-the-art
• Conjugate Gradient solve, two-socket x86, 44 cores:

gyro_m G2_circuit bundle_adj ecology2 Queen_4147

GSL 0.84 0.95 0.89 0.91 0.92
blocking ALP 2.30 4.53 12.7 6.91 17.5

SuiteSparse:GraphBLAS 1.57 1.11 5.82 3.52 11.6
Eigen 5.21 2.57 1.61 1.94 9.20

non-blocking ALP 5.57 9.75 2.87 13.7 18.6

Our novel nonblocking backend:
• speedup up to pipeline depth if nz = Θ(n);

• up to 2.43× vs. blocking, 0.49–8.78× vs. SuiteSparse:GraphBLAS;
• 2.87–7.06× vs. Eigen– which also performs loop fusion.

Similar results for PageRank and sparse deep neural network inference.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Ref.: Mastoras, Anagnostidis, and Y., “Nonblocking execution in GraphBLAS”, IEEE IPDPSW 2022.
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Speedup relative to sequential ALP (v0.5), vs. state-of-the-art
• Conjugate Gradient solve, two-socket x86, 44 cores:

gyro_m G2_circuit bundle_adj ecology2 Queen_4147

GSL 0.84 0.95 0.89 0.91 0.92
blocking ALP 2.30 4.53 12.7 6.91 17.5

SuiteSparse:GraphBLAS 1.57 1.11 5.82 3.52 11.6
Eigen 5.21 2.57 1.61 1.94 9.20

non-blocking ALP 5.57 9.75 2.87 13.7 18.6

Our novel nonblocking backend:
• speedup up to pipeline depth if nz = Θ(n);
• up to 2.43× vs. blocking, 0.49–8.78× vs. SuiteSparse:GraphBLAS;

• 2.87–7.06× vs. Eigen– which also performs loop fusion.
Similar results for PageRank and sparse deep neural network inference.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Ref.: Mastoras, Anagnostidis, and Y., “Nonblocking execution in GraphBLAS”, IEEE IPDPSW 2022.
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Speedup relative to sequential ALP (v0.5), vs. state-of-the-art
• Conjugate Gradient solve, two-socket x86, 44 cores:

gyro_m G2_circuit bundle_adj ecology2 Queen_4147

GSL 0.84 0.95 0.89 0.91 0.92
blocking ALP 2.30 4.53 12.7 6.91 17.5

SuiteSparse:GraphBLAS 1.57 1.11 5.82 3.52 11.6
Eigen 5.21 2.57 1.61 1.94 9.20

non-blocking ALP 5.57 9.75 2.87 13.7 18.6

Our novel nonblocking backend:
• speedup up to pipeline depth if nz = Θ(n);
• up to 2.43× vs. blocking, 0.49–8.78× vs. SuiteSparse:GraphBLAS;
• 2.87–7.06× vs. Eigen– which also performs loop fusion.

Similar results for PageRank and sparse deep neural network inference.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Ref.: Mastoras, Anagnostidis, and Y., “Nonblocking execution in GraphBLAS”, IEEE IPDPSW 2022.
Ref.: —, “Design and implementation for nonblocking execution in GraphBLAS: tradeoffs and per-
formance”, ACM TACO, 2023.

Speedup relative to sequential ALP (v0.5), vs. state-of-the-art
• Conjugate Gradient solve, two-socket x86, 44 cores:

gyro_m G2_circuit bundle_adj ecology2 Queen_4147

GSL 0.84 0.95 0.89 0.91 0.92
blocking ALP 2.30 4.53 12.7 6.91 17.5

SuiteSparse:GraphBLAS 1.57 1.11 5.82 3.52 11.6
Eigen 5.21 2.57 1.61 1.94 9.20

non-blocking ALP 5.57 9.75 2.87 13.7 18.6

Our novel nonblocking backend:
• speedup up to pipeline depth if nz = Θ(n);
• up to 2.43× vs. blocking, 0.49–8.78× vs. SuiteSparse:GraphBLAS;
• 2.87–7.06× vs. Eigen– which also performs loop fusion.

Similar results for PageRank and sparse deep neural network inference.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

HPCG benchmark, dual-socket ARM, 96 cores, maximum problem size
• reference HPCG code modified to use Red-Black Gauss-Seidel,

- ALP cannot express GS; it would not scale.

Comparison, using the blocking ALP backend:

Ref. Scolari, Y.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS”, GrAPL at IPDPSW (to appear, 2023)

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

HPCG benchmark, dual-socket ARM, 96 cores, maximum problem size
• reference HPCG code modified to use Red-Black Gauss-Seidel,

- ALP cannot express GS; it would not scale.

Comparison, using the blocking ALP backend:

Ref. Scolari, Y.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS”, GrAPL at IPDPSW (to appear, 2023)

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×

; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×

; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.

- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n)

;
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3).

Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Scale-out performance of graph algorithms, using the hybrid backend:

Ref.: updated (ALP/GraphBLAS v0.4) results from “A C++ GraphBLAS: specification, implemen-
tation, parallelisation, and evaluation” by Y. et al. (2020)
Ref.: “Effective implementation of the High Performance Conjugate Gradient benchmark on
ALP/GraphBLAS” by Scolari & Y., GrAPL at IPDPSW (to appear, 2023)

• Clueweb12 link matrix, approx. 978M vertices and 42.5B edges
Ivy Bridge nodes

4 5 6 7 8 9 10
Input 1524 1271 1067 943 691 662 537

4-hop reachability BFS 48.8 110 54.8 99.6 83.0 74.2 23.3
20-hop reachability BFS 404 280 231 323 221 230 160

PageRank 13.3 10.3 9.68 8.00 21.0 22.9 21.6

The k-hop BFS and PageRank (PR) on Clueweb12, performance in seconds. Infiniband EDR interconnect.

Scalable, expected speedup from 4 to 10 nodes is 2.5×:
• parallel I/O: 2.83×; k-hop BFS: 2.09–2.53×; PR: 0.62–1.66×.

Distributed performance depends on data distribution.
- distributed-memory backend: row-wise block-cyclic, TO = Θ(n);
- 2.5D: O(n/p1/2), Ω(n/p2/3). Reference HPCG: Θ(n1/3/p1/2).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

ALP interoperability with existing (parallel) frameworks
• standard Spark/Scala interface, Spark is not modified;

• ALP/GraphBLAS algorithms (here, PageRank) are not modified;
• data exchange between Spark and ALP happens within-process.

Orders of magnitude improvements on 10 nodes (hybrid backend):
Spark Spark with ALP/GraphBLAS

GB Gnz nε n = 1 n = 10 n = nε s/it. n = 1 n = 10 n = nε s/it.

uk-2002 4.7 0.3 73 168.6 1373.8 >4 hrs 133.9 8.7 13.9 48.7 0.56
clueweb12 786 42.5 45 - - - - 658.8 963.2 1875.0 27.7

Pagerank performance in seconds using ten Ivy nodes with Infiniband EDR, Spark 2.3.1, and Hadoop 2.7.7.

• I/O: 19× faster, computation: 239× faster for uk-2002;
• Spark Clueweb: out of memory; Blogel (Ammar, Ozsu ’18): 128 nodes

- can handle 141× larger problems, 12× fewer resources
Ref.: Suijlen and Y., “Lightweight Parallel Foundations: a model-compliant communication layer”, (2019;
pre-v0.1 ALP. Results are being refreshed with latest ALP, Scala, Spark, LPF: see ALP/Spark @ GitHub).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

ALP interoperability with existing (parallel) frameworks
• standard Spark/Scala interface, Spark is not modified;
• ALP/GraphBLAS algorithms (here, PageRank) are not modified;

• data exchange between Spark and ALP happens within-process.

Orders of magnitude improvements on 10 nodes (hybrid backend):
Spark Spark with ALP/GraphBLAS

GB Gnz nε n = 1 n = 10 n = nε s/it. n = 1 n = 10 n = nε s/it.

uk-2002 4.7 0.3 73 168.6 1373.8 >4 hrs 133.9 8.7 13.9 48.7 0.56
clueweb12 786 42.5 45 - - - - 658.8 963.2 1875.0 27.7

Pagerank performance in seconds using ten Ivy nodes with Infiniband EDR, Spark 2.3.1, and Hadoop 2.7.7.

• I/O: 19× faster, computation: 239× faster for uk-2002;
• Spark Clueweb: out of memory; Blogel (Ammar, Ozsu ’18): 128 nodes

- can handle 141× larger problems, 12× fewer resources
Ref.: Suijlen and Y., “Lightweight Parallel Foundations: a model-compliant communication layer”, (2019;
pre-v0.1 ALP. Results are being refreshed with latest ALP, Scala, Spark, LPF: see ALP/Spark @ GitHub).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

ALP interoperability with existing (parallel) frameworks
• standard Spark/Scala interface, Spark is not modified;
• ALP/GraphBLAS algorithms (here, PageRank) are not modified;
• data exchange between Spark and ALP happens within-process.

Orders of magnitude improvements on 10 nodes (hybrid backend):
Spark Spark with ALP/GraphBLAS

GB Gnz nε n = 1 n = 10 n = nε s/it. n = 1 n = 10 n = nε s/it.

uk-2002 4.7 0.3 73 168.6 1373.8 >4 hrs 133.9 8.7 13.9 48.7 0.56
clueweb12 786 42.5 45 - - - - 658.8 963.2 1875.0 27.7

Pagerank performance in seconds using ten Ivy nodes with Infiniband EDR, Spark 2.3.1, and Hadoop 2.7.7.

• I/O: 19× faster, computation: 239× faster for uk-2002;
• Spark Clueweb: out of memory; Blogel (Ammar, Ozsu ’18): 128 nodes

- can handle 141× larger problems, 12× fewer resources
Ref.: Suijlen and Y., “Lightweight Parallel Foundations: a model-compliant communication layer”, (2019;
pre-v0.1 ALP. Results are being refreshed with latest ALP, Scala, Spark, LPF: see ALP/Spark @ GitHub).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

ALP interoperability with existing (parallel) frameworks
• standard Spark/Scala interface, Spark is not modified;
• ALP/GraphBLAS algorithms (here, PageRank) are not modified;
• data exchange between Spark and ALP happens within-process.

Orders of magnitude improvements on 10 nodes (hybrid backend):
Spark Spark with ALP/GraphBLAS

GB Gnz nε n = 1 n = 10 n = nε s/it. n = 1 n = 10 n = nε s/it.

uk-2002 4.7 0.3 73 168.6 1373.8 >4 hrs 133.9 8.7 13.9 48.7 0.56
clueweb12 786 42.5 45 - - - - 658.8 963.2 1875.0 27.7

Pagerank performance in seconds using ten Ivy nodes with Infiniband EDR, Spark 2.3.1, and Hadoop 2.7.7.

• I/O: 19× faster, computation: 239× faster for uk-2002;

• Spark Clueweb: out of memory; Blogel (Ammar, Ozsu ’18): 128 nodes
- can handle 141× larger problems, 12× fewer resources

Ref.: Suijlen and Y., “Lightweight Parallel Foundations: a model-compliant communication layer”, (2019;
pre-v0.1 ALP. Results are being refreshed with latest ALP, Scala, Spark, LPF: see ALP/Spark @ GitHub).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

ALP interoperability with existing (parallel) frameworks
• standard Spark/Scala interface, Spark is not modified;
• ALP/GraphBLAS algorithms (here, PageRank) are not modified;
• data exchange between Spark and ALP happens within-process.

Orders of magnitude improvements on 10 nodes (hybrid backend):
Spark Spark with ALP/GraphBLAS

GB Gnz nε n = 1 n = 10 n = nε s/it. n = 1 n = 10 n = nε s/it.

uk-2002 4.7 0.3 73 168.6 1373.8 >4 hrs 133.9 8.7 13.9 48.7 0.56
clueweb12 786 42.5 45 - - - - 658.8 963.2 1875.0 27.7

Pagerank performance in seconds using ten Ivy nodes with Infiniband EDR, Spark 2.3.1, and Hadoop 2.7.7.

• I/O: 19× faster, computation: 239× faster for uk-2002;
• Spark Clueweb: out of memory; Blogel (Ammar, Ozsu ’18): 128 nodes

- can handle 141× larger problems, 12× fewer resources
Ref.: Suijlen and Y., “Lightweight Parallel Foundations: a model-compliant communication layer”, (2019;
pre-v0.1 ALP. Results are being refreshed with latest ALP, Scala, Spark, LPF: see ALP/Spark @ GitHub).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Beyond ALP/GraphBLAS

How far can we take this type of programming?

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The Alps

The Alps:
• Monte Rosa,
• Matterhorn,
• Weisshorn,
• Jungfrau,
• Rothorn,
• Dom,
• ...

Image by Simo Räsänen, licensed under CC-by-2.5

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The ALPs

The ALPs:
• ALP/GraphBLAS,
• ALP/Dense,
• ALP/Pregel,
• ...

Interoperability with existing software:
• ALP/Spark;
• ALP/SparseBLAS, ALP/SpBLAS.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

The ALPs

The ALPs:
• ALP/GraphBLAS,
• ALP/Dense,
• ALP/Pregel,
• ...

Interoperability with existing software:
• ALP/Spark;
• ALP/SparseBLAS, ALP/SpBLAS.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel:

• Each vertex executes a round-based program;
• after each round, message exchange over edges.

Think like a vertex, Malewicz et al. ’10.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel:

• Each vertex executes a round-based program;
• after each round, message exchange over edges.

Think like a vertex, Malewicz et al. ’10.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel connected components over undirected graphs:
• start with assigning a unique ID;
• broadcast current ID;
• if received any incoming higher ID, replace ours

;
- if not, vote to halt program.

Pregel page ranking over directed graphs:
• start with equally-distributed local score;
• divide it over the number of neighbours and broadcast;
• new score is α + (1− α) times the sum over incoming scores.

- execute a fixed number of rounds, or
- use local convergence detection and vote-to-halt.

While “PageRank-like”, not mathematically equivalent!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel connected components over undirected graphs:
• start with assigning a unique ID;
• broadcast current ID;
• if received any incoming higher ID, replace ours;

- if not, vote to halt program.

Pregel page ranking over directed graphs:
• start with equally-distributed local score;
• divide it over the number of neighbours and broadcast;
• new score is α + (1− α) times the sum over incoming scores.

- execute a fixed number of rounds, or
- use local convergence detection and vote-to-halt.

While “PageRank-like”, not mathematically equivalent!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel connected components over undirected graphs:
• start with assigning a unique ID;
• broadcast current ID;
• if received any incoming higher ID, replace ours;

- if not, vote to halt program.

Pregel page ranking over directed graphs:
• start with equally-distributed local score;
• divide it over the number of neighbours and broadcast;
• new score is α + (1− α) times the sum over incoming scores.

- execute a fixed number of rounds, or
- use local convergence detection and vote-to-halt.

While “PageRank-like”, not mathematically equivalent!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel connected components over undirected graphs:
• start with assigning a unique ID;
• broadcast current ID;
• if received any incoming higher ID, replace ours;

- if not, vote to halt program.

Pregel page ranking over directed graphs:
• start with equally-distributed local score;
• divide it over the number of neighbours and broadcast;
• new score is α + (1− α) times the sum over incoming scores.

- execute a fixed number of rounds, or
- use local convergence detection and vote-to-halt.

While “PageRank-like”, not mathematically equivalent!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Pregel connected components over undirected graphs:
• start with assigning a unique ID;
• broadcast current ID;
• if received any incoming higher ID, replace ours;

- if not, vote to halt program.

Pregel page ranking over directed graphs:
• start with equally-distributed local score;
• divide it over the number of neighbours and broadcast;
• new score is α + (1− α) times the sum over incoming scores.

- execute a fixed number of rounds, or
- use local convergence detection and vote-to-halt.

While “PageRank-like”, not mathematically equivalent!

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;

• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;
• grb :: vxm orchestrates message exchange;

• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;
• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;

• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;
• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;
• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;
• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack

:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Expanding Pregel programs into ALP/GraphBLAS:
• grb :: eWiseLambda executes a vertex program;
• grb :: vxm orchestrates message exchange;
• grb ::Monoid performs reductions of incoming messages;
• grb :: fold reduces halting votes to termination condition.

The translation is automatic, using the standard ALP software stack:
• grbcxx -b hybrid myPregelAlgo pregelAlgo.cpp
• grbrun -b hybrid -np 4 ./myPregelAlgo

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

For the Pregel page ranking, two variants:
• terminate when all vertices are converged (global);
• disable locally converged vertices from any future rounds (local).

Using masking to not incur overhead from inactive vertices;
• the more deactivated vertices, the faster each compute round.

ALP/Pregel Sequential
Dataset Global Local GraphBLAS
gyro_m 34.8 (40) 24.7 (39) 31.4 (52)

G2_circuit 175 (38) 78.8 (36) 90.0 (48)
bundle_adj 3 070 (66) 2 070 (51) 2 330 (60)
G3_circuit 1 960 (38) 987 (36) 1 100 (48)
wiki-2007 40 500 (103) 11 400 (96) 18 100 (55)
uk-2002 153 000 (115) 46 100 (104) 72 100 (73)
road_usa 87 600 (78) 58 800 (72) 62 200 (78)

Sequential performance in ms. Compares different page ranking algorithms.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

For the Pregel page ranking, two variants:
• terminate when all vertices are converged (global);
• disable locally converged vertices from any future rounds (local).

Using masking to not incur overhead from inactive vertices;
• the more deactivated vertices, the faster each compute round.

ALP/Pregel Sequential
Dataset Global Local GraphBLAS
gyro_m 34.8 (40) 24.7 (39) 31.4 (52)

G2_circuit 175 (38) 78.8 (36) 90.0 (48)
bundle_adj 3 070 (66) 2 070 (51) 2 330 (60)
G3_circuit 1 960 (38) 987 (36) 1 100 (48)
wiki-2007 40 500 (103) 11 400 (96) 18 100 (55)
uk-2002 153 000 (115) 46 100 (104) 72 100 (73)
road_usa 87 600 (78) 58 800 (72) 62 200 (78)

Sequential performance in ms. Compares different page ranking algorithms.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

For the Pregel page ranking, two variants:
• terminate when all vertices are converged (global);
• disable locally converged vertices from any future rounds (local).

Using masking to not incur overhead from inactive vertices;
• the more deactivated vertices, the faster each compute round.

ALP/Pregel Sequential
Dataset Global Local GraphBLAS
gyro_m 34.8 (40) 24.7 (39) 31.4 (52)

G2_circuit 175 (38) 78.8 (36) 90.0 (48)
bundle_adj 3 070 (66) 2 070 (51) 2 330 (60)
G3_circuit 1 960 (38) 987 (36) 1 100 (48)
wiki-2007 40 500 (103) 11 400 (96) 18 100 (55)
uk-2002 153 000 (115) 46 100 (104) 72 100 (73)
road_usa 87 600 (78) 58 800 (72) 62 200 (78)

Sequential performance in ms. Compares different page ranking algorithms.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Ref.: Y., “Humble Heroes”, Communications of Huawei Research, to appear (2023).

Same table, using the blocking shared-memory parallel backend:

ALP/Pregel Blocking
Dataset Global Local GraphBLAS
gyro_m 31.1 (40) 29.2 (39) 37 .6 (52)

G2_circuit 58.8 (38) 38.9 (36) 29.0 (48)
bundle_adj 280 (66) 224 (51) 1 290 (60)
G3_circuit 367 (38) 243 (36) 87.8 (48)
wiki-2007 2 440 (103) 878 (96) 5 030 (55)
uk-2002 11 500 (115) 4 420 (104) 2 750 (73)
road_usa 9 800 (78) 7 560 (72) 2 680 (78)

• 0.84–13.0× speedup for the local Pregel page ranking

;
• fastest 3 out of 7 times (5 out of 13 in the full paper);
• 1.03–17.5× speedup for connected components algorithm.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Ref.: Y., “Humble Heroes”, Communications of Huawei Research, to appear (2023).

Same table, using the blocking shared-memory parallel backend:

ALP/Pregel Blocking
Dataset Global Local GraphBLAS
gyro_m 31.1 (40) 29.2 (39) 37 .6 (52)

G2_circuit 58.8 (38) 38.9 (36) 29.0 (48)
bundle_adj 280 (66) 224 (51) 1 290 (60)
G3_circuit 367 (38) 243 (36) 87.8 (48)
wiki-2007 2 440 (103) 878 (96) 5 030 (55)
uk-2002 11 500 (115) 4 420 (104) 2 750 (73)
road_usa 9 800 (78) 7 560 (72) 2 680 (78)

• 0.84–13.0× speedup for the local Pregel page ranking;
• fastest 3 out of 7 times (5 out of 13 in the full paper)

;
• 1.03–17.5× speedup for connected components algorithm.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Pregel

Ref.: Y., “Humble Heroes”, Communications of Huawei Research, to appear (2023).

Same table, using the blocking shared-memory parallel backend:

ALP/Pregel Blocking
Dataset Global Local GraphBLAS
gyro_m 31.1 (40) 29.2 (39) 37 .6 (52)

G2_circuit 58.8 (38) 38.9 (36) 29.0 (48)
bundle_adj 280 (66) 224 (51) 1 290 (60)
G3_circuit 367 (38) 243 (36) 87.8 (48)
wiki-2007 2 440 (103) 878 (96) 5 030 (55)
uk-2002 11 500 (115) 4 420 (104) 2 750 (73)
road_usa 9 800 (78) 7 560 (72) 2 680 (78)

• 0.84–13.0× speedup for the local Pregel page ranking;
• fastest 3 out of 7 times (5 out of 13 in the full paper);
• 1.03–17.5× speedup for connected components algorithm.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?

• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views

• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)
• opaqueness: ALP controls layout

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?
• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views

• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)
• opaqueness: ALP controls layout

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?
• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views
• structures: general, triangular, banded, ... requires ontology

• views: transpose, masks, permutation, submatrix selection,
- but also: outer products (two vectors), constant vectors (scalar)

• opaqueness: ALP controls layout

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?
• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views
• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)

• opaqueness: ALP controls layout

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?
• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views
• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)
• opaqueness: ALP controls layout

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: Spampinato, Jelovina, Zhuang, Y: Towards Structured Algebraic Programming, ARRAY (2023)

If generalised sparse linear algebra is so useful, what about dense?
• submatrix selection, permutations, random sampling, ...

Requires ALP extensions: structures and views
• structures: general, triangular, banded, ... requires ontology
• views: transpose, masks, permutation, submatrix selection,

- but also: outer products (two vectors), constant vectors (scalar)
• opaqueness: ALP controls layout, requires parametric xMFs

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)

2) when pipelines execute, instead first translate to MLIR;
- high-level MLIR dialect introducing, e.g., algebraic structures

3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:
- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures
3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:

- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures

3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:
- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures
3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:

- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures
3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:

- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures
3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:

- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures
3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:

- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation

,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP/Dense

Ref.: MOM: Matrix Operations in MLIR by L. Chelini, H. Barthels, P. Bientinesi, M. Copic, T.
Grosser, D. G. Spampinato, in IMPACT at HiPEAC Budapest, Hungary (2022).

Dense computations require careful tuning:
1) lazy-evaluate ALP primitives (alike to nonblocking)
2) when pipelines execute, instead first translate to MLIR;

- high-level MLIR dialect introducing, e.g., algebraic structures
3) BLIS-like approach to optimise MLIR, or dispatch to BLAS:

- use offline (auto-)tuning, once per new architecture 3

4) threads and/or processes execute compiled modules;
- data distribution and parallelisation controlled by ALP.

Between JIT and AOT: delayed compilation of ‘universal binaries’
• high-level MLIR as an architecture-agnostic representation,
• can be generated at run-time, following dynamic user control flow.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;

• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...

• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel

, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions

:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?

• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?

• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with

multiple humble interfaces,
achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces

,
achieving hero performance.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

ALP as a foundational programming model

ALP/Pregel is implemented on top of ALP, thus inheriting
• performance semantics, algebraic type checking, interoperability;
• automation: parallelisation, vectorisation, push/pull, ...
• ...and does so at neglible overheads.

ALP is a more foundational programming model than Pregel, while
• Pregel may be viewed as more humble than ALP.

This observations inspires questions:
• what other humble APIs can ALP efficiently simulate?
• what other algebras to support for widened applicability?
• what are fundamental limitations, how to overcome them?

One software stack with
multiple humble interfaces,

achieving hero performance.
Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

It’s open!

Open source, Apache 2.0, welcome to try, use, and collaborate!

• https://github.com/Algebraic-Programming

• https://algebraic-programming.github.io

Publications:
• Suijlen, Y.: Lightweight Parallel Foundations: a model-compliant communication layer (2019);
• Y., Di Nardo, Nash, Suijlen: A C++ GraphBLAS: specification, implementation, parallelisation, and

evaluation (2020);
• Mastoras, Anagnostidis, Y.: Nonblocking execution in GraphBLAS, IPDPSW (2022);
• Chelini, Barthels, Bientinesi, Copic, Grosser, Spampinato: MOM: Matrix Operations in MLIR, HiPEAC

IMPACT workshop (2022);
• Y.: Humble Heroes, Communications of Huawei Research (2023, to appear);
• Mastoras, Anagnostidis, Y.: Design and implementation for nonblocking execution in GraphBLAS:

tradeoffs and performance, ACM TACO (2023);
• Scolari, Y.: Effective implementation of the High Performance Conjugate Gradient benchmark on

ALP/GraphBLAS, GrAPL at IPDPSW (2023, to appear);
• Spampinato, Jelovina, Zhuang, Y.: Towards Structured Algebraic Programming, ACM ARRAY (2023);
• Papp, Anegg, Y.: Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications, ACM

SPAA (2023);
• Papp, Anegg, Y.: DAG scheduling in the BSP model (preprint, 2023);
• Pasadakis, et al., Nonlinear spectral clustering with C++ GraphBLAS, extended abstract, IEEE HPEC

(2023, outstanding short paper);
• Papp, Anegg, Karanasiou, Y.: Efficient Multi-Processor Scheduling in Increasingly Realistic Models

(under preparation, 2023).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

https://github.com/Algebraic-Programming
https://algebraic-programming.github.io

Algebraic Programming

Backup slides

Backup slides

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Sparse Deep Neural Network inference, vs. sequential ALP
• GraphChallenge model & data

#layers #neurons GSL Eigen SS:GrB non-blocking ALP
1920 64k 0.81× 7.91× 3.98× 10.8×
1920 1k 0.64× 0.86× 0.73× 1.39×

Jointly partition sparse layers, then tile across layers:
• work by Filip Pawłowski with Uçar and Bisseling

• 5 layers, 64k n.: 1.94× speedup vs. data-parallel
• 2020 MIT/IEEE GraphChallenge innovation award
• combine with non-blocking ALP/GraphBLAS?

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: Combinatorial Tiling for Sparse Neural Networks by F. Pawłowski, R. H. Bisseling, B. Uçar, Y.
in 2020 IEEE High Performance Extreme Computing Conference (IEEE HPEC)

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Sparse Deep Neural Network inference, vs. sequential ALP
• GraphChallenge model & data

#layers #neurons GSL Eigen SS:GrB non-blocking ALP
1920 64k 0.81× 7.91× 3.98× 10.8×
1920 1k 0.64× 0.86× 0.73× 1.39×

Jointly partition sparse layers, then tile across layers:
• work by Filip Pawłowski with Uçar and Bisseling

• 5 layers, 64k n.: 1.94× speedup vs. data-parallel
• 2020 MIT/IEEE GraphChallenge innovation award
• combine with non-blocking ALP/GraphBLAS?

Ref.: Nonblocking execution in GraphBLAS by Aristeidis Mastoras, Sotiris Anagnostidis, and Y. in
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Ref.: Combinatorial Tiling for Sparse Neural Networks by F. Pawłowski, R. H. Bisseling, B. Uçar, Y.
in 2020 IEEE High Performance Extreme Computing Conference (IEEE HPEC)

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every container has memory use semantics:
• “static” costs proportional to container sizes;
• “dynamic” costs proportional to container capacities.

Capacities are optional during container construction:

grb : : Vector< bool > s (n , 1) ;
grb : : Matr ix< void > L(n , n , nz) ;

Out of memory errors throw exceptions; primitives return error codes.

Capacities:
• are lower bounds; grb :: capacity (s) ≥ 1;
• may increase through grb :: resize , updates memory use semantics;
• Any request to decrease capacity thus may be ignored.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every container has memory use semantics:
• “static” costs proportional to container sizes;
• “dynamic” costs proportional to container capacities.

Capacities are optional during container construction:

grb : : Vector< bool > s (n , 1) ;
grb : : Matr ix< void > L(n , n , nz) ;

Out of memory errors throw exceptions; primitives return error codes.

Capacities:
• are lower bounds; grb :: capacity (s) ≥ 1;
• may increase through grb :: resize , updates memory use semantics;
• Any request to decrease capacity thus may be ignored.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance semantics

Every container has memory use semantics:
• “static” costs proportional to container sizes;
• “dynamic” costs proportional to container capacities.

Capacities are optional during container construction:

grb : : Vector< bool > s (n , 1) ;
grb : : Matr ix< void > L(n , n , nz) ;

Out of memory errors throw exceptions; primitives return error codes.

Capacities:
• are lower bounds; grb :: capacity (s) ≥ 1;
• may increase through grb :: resize , updates memory use semantics;
• Any request to decrease capacity thus may be ignored.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

User I/O:

bu i l dMa t r i xUn i que (A, b e g i n_ i t e r a t o r , end_ i t e r a to r ,
SEQUENTIAL) ;

bu i l dMa t r i xUn i que (L , i_begin , i_end , j_begin , j_end ,
PARALLEL) ;

s t d : : cout << " s ␣ has ␣" << grb : : nnz (s) << "␣ v a l u e s : \ n" ;
f o r (auto &element : s){ s td : : cout << element << "\n" ; }

I/O through STL iterators:
• input forward iterators (at minimum) over AoS or SoA containers;
• random access input iterators can be shared-memory parallelised(!)

User processes: each iterator pair on different processes point to
• the same, complete collection C , leading to sequential I/O;
• mutually disjoint collections Ci s.t. C = ∪iCi : parallel I/O.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

User I/O:

bu i l dMa t r i xUn i que (A, b e g i n_ i t e r a t o r , end_ i t e r a to r ,
SEQUENTIAL) ;

bu i l dMa t r i xUn i que (L , i_begin , i_end , j_begin , j_end ,
PARALLEL) ;

s t d : : cout << " s ␣ has ␣" << grb : : nnz (s) << "␣ v a l u e s : \ n" ;
f o r (auto &element : s){ s td : : cout << element << "\n" ; }

I/O through STL iterators:
• input forward iterators (at minimum) over AoS or SoA containers;
• random access input iterators can be shared-memory parallelised(!)

User processes: each iterator pair on different processes point to
• the same, complete collection C , leading to sequential I/O;
• mutually disjoint collections Ci s.t. C = ∪iCi : parallel I/O.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Basics

User I/O:

bu i l dMa t r i xUn i que (A, b e g i n_ i t e r a t o r , end_ i t e r a to r ,
SEQUENTIAL) ;

bu i l dMa t r i xUn i que (L , i_begin , i_end , j_begin , j_end ,
PARALLEL) ;

s t d : : cout << " s ␣ has ␣" << grb : : nnz (s) << "␣ v a l u e s : \ n" ;
f o r (auto &element : s){ s td : : cout << element << "\n" ; }

I/O through STL iterators:
• input forward iterators (at minimum) over AoS or SoA containers;
• random access input iterators can be shared-memory parallelised(!)

User processes: each iterator pair on different processes point to
• the same, complete collection C , leading to sequential I/O;
• mutually disjoint collections Ci s.t. C = ∪iCi : parallel I/O.

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

Algebraic Programming

Performance

Auto-vectorisation versus hand-written code, sequential backend
• dot product, dot(alpha, x, y, semiring)

• reduce, foldl < dense >(alpha, x, associativeOp)

• FMA, eWiseMulAdd< dense >(z, alpha, x, y, semiring)

Ivy Bridge Cascade Lake
Dot product Reduction FMA Dot product Reduction FMA

Hand-coded 120 (12.4) 106 (7.03) 199 (11.2) 227 (6.56) 221 (3.37) 216 (10.3)
ALP/GraphBLAS 120 (12.4) 106 (7.03) 204 (11.0) 226 (6.59) 220 (3.39) 217 (10.3)

eWiseLambda 125 (12.0) 131 (5.69) 205 (10.9) 228 (6.54) 226 (3.30) 217 (10.3)

Microbenchmarks evaluating ALP/GraphBLAS auto-vectorsation. Figures are in milliseconds (and Gbyte/s).

Theoretical (peak) throughput and approximate throughput per core:

• 190.7 GByte/s; 10 cores per CPU, two CPUs, 9.54 Gbyte/s/core (Ivy);

• 262.2 GByte/s; 22 cores / CPU, 2 CPUs, 5.96 Gbyte/s/core (Cascade).

Computing Systems Laboratory, Huawei Zürich A. N. Yzelman

