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An abstract Multi-BSP computer. Each node in the tree is a BSP computer 
with local memory. Only the leaf nodes contain compute elements.

The Multi-BSP FFT applies the flat BSP 
FFT algorithm recursively by splitting the 
computations Ln and Rn as well. Note only the 
leaves of the Multi-BSP tree can compute. An 
illustration for L=2, p0=2, p1=2, and n=8:

Local comm.

A Multi-BSP algorithm operating on the various levels of a Multi-BSP com-
puter hierarchy. Successive communication phases are useful when each op-

erates on a different level of the communication network.

Writing L for the number of levels in the Multi-BSP 
computer hierarchy, N for the number of computa-
tion phases, and Me for the number of communication 
phases at the eth level of the Multi-BSP tree. Then:

This directly leads to the Multi-BSP cost model:

Results on the highly NUMA (8-sockets) HP DL980

Structure of the butterfly matrices involved for n=8
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Butterfly matrix weights
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Butterfly matrix (left), even-odd sort matrix (right)
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Bit-reversal matrix
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For parallelisation, the computation is split in two. For integer m, 
q we assume n=2m and p=2q. The default value for t is m-q.

Modern and future supercomputers consist of nodes 
with shared-memory parallel capabilities, intercon-
nected by increasingly hierarchical networks.
This gives rise to Non-Uniform Memory Access 
(NUMA) effects on various levels of the compute hi-
erarchy. Valiant updated BSP to account for this situa-
tion, resulting in the Multi-BSP model (2008):

The Multi-BSP model
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If L=1 and M0=N, this reduces to the flat BSP model:

Fast Fourier transform (FFT)
Consider the FFT on complex vectors x, y of 
power-of-two length n, which computes              ,
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Let the matrix B be the butterfly matrix contain-
ing the weights W, and let V be the bit-reversal 
matrix. Then the FFT can succinctly be written 
as follows (see also the illustration on the right).
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Towards a highly scalable Multi-BSP fast Fourier transform
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Valiant introduced the BSP model in 1990. The model 
consists of (1) an abstract parallel computer, (2) an 
imposed structure on parallel algorithms, and (3) the 
resulting cost function.

A BSP computer executes p processes concurrently, 
and does so at a homogeneous speed r. Each pro-
cess has access to its own local memory. Inter-process 
communication happens through a full-duplex black-
box network.
Preparing this network for all-to-all communication 
and synchronisation costs l units, while a simultane-
ous send and receive of one data word costs g units. In 
illustration, an abstract BSP computer (p,r,g,l):

Bulk Synchronous Parallel (BSP)

The BSP FFT splits the computation in 
two phases, and in-between switches from 
a block distribution to a cyclic one so that 
communication is minimised:

A block distribution on the last (left) and first stages 
(right). Purple blocks indicate non-local computations.

Cyclic distribution on the last and first FFT stages
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If in the ith communication phase process s transmits 
t words and receives r words, the h-relation gives us 
the linear part of the communication cost in g. Add-
ing the constant latency cost l yields:
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The cost of the ith computation phase depends on the 
BSP process s which was assigned the most work w:

A BSP algorithm separates local computation phases 
from communication phases. There is no computation 
while communicating, and vice versa. In illustration:

The network is coloured green, memory is coloured blue, 
and units that execute the BSP processes are in black.

Implementation of the (Multi-BSP) FFT uses 
MulticoreBSP for C, and is freely available at:

www.multicorebsp.com
Ref.: A. N. Yzelman, R.H. Bisseling, D. Roose, K. Meerbergen, “MulticoreBSP for C: 
a high-performance library for shared-memory parallel programming”, International 
Journal of Parallel Programming, in press (2013).
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