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Input sparse 
matrix.

1D column partitioning. 
Green and blue squares 
denote nonzeros in 
different partitions.

We now colour red 
the rows containing 
nonzeros both in the blue 
and green partitions.

The blue rows are 
permuted to the top, and 
the green ones to the 
bottom. 

We permute the blue 
columns to the left, and the 
green ones to the right.

We recurse on both 
areas separately.

The Algorithm:

Stanford link matrix

Reordered Stanford link matrix

Output matrix after p iterations. 
Ideally, p = n. On the left, p = 20.
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The Problem:
When performing sparse matrix-vector 
multiplications, irregular data access induces 
many cache misses, wasting much CPU time. On 
the right, we illustrate the above  with respect to a 
small sample matrix.
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Blue blocks denote non-zero values. The arrows denote memory traversal during MV.
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A matrix structure efficient in terms of cache use is the 
Separated Block Diagonal (SBD) form. This structure 
ensures some locality in the traversal of the x-vector, 
when both rows and columns are processed in straight 
passes, as is the case with Compressed Row Storage 
(CRS).
So what happens if we combine a common sparse matrix 
ordering like CRS together with a method permuting the 
input matrix to SBD form so that cache performance is 
improved when multiplying the resulting matrix?

We assume a  k-way set-
associative, single-level cache 
structure; see right. The cache 
can be represented as a matrix 
containing cache lines. Data with 
an address from main memory is 
modulo-mapped in a cache row, 
while the column is selected by 
the Least Recently Used (LRU) 
policy. 

Hypergraph partitioning:

No cache misses
1 cache miss per row

3 cache misses

1 cache miss

7 cache misses

15 cache misses

Suppose we traverse matri-

ces in SBD-form by a zig-zag

ordering. Denote the cache

size by S, the cache line size

by LS, the number of cache

lines by L = S
LS
, and the

number of data words per

cache line by w. If we parti-

tion the n columns of A into

p sets, with

p =
n

wL
,

and assuming k → ∞, the

number of cache misses on

each row is as shown for p =

16.

We use a hypergraph-based

partitioner. We denote columns

using vertices vj ∈ V, and

rows using nets ni ∈ N . This

is the row-net model. The

number of vertex sets over

which the net ni is distributed

is denoted by λi. Assum-

ing all coloured matrix ar-

eas are sufficiently dense, we

see that the number of cache

misses equals
�

i: ni∈N

λi − 1,

which is exactly the λ − 1

metric used in sparse matrix

partitioning for parallelism.
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Experiments were performed using the Stanford, 
Standford_Berkeley and wikipedia-20051105 link 
matrices, as well as the cage14 matrix. Below are the 
run-time gains from executing our method for various 
p, as opposed to using plain CRS or the Optimised 
Sparse Kernel Interface (OSKI) developed at Berkeley.

Experiments:


