
Article:
A.N. Yzelman & R.H. Bisseling, Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods, pre-print August 2008.

Input sparse
matrix.

1D column partitioning.
Green and blue squares
denote nonzeros in
different partitions.

We now colour red
the rows containing
nonzeros both in the blue
and green partitions.

The blue rows are
permuted to the top, and
the green ones to the
bottom.

We permute the blue
columns to the left, and the
green ones to the right.

We recurse on both
areas separately.

The Algorithm:

Stanford link matrix

Reordered Stanford link matrix

Output matrix after p iterations.
Ideally, p = n. On the left, p = 20.

Cache-oblivious sparse matrix-vector multiplication
by using sparse matrix partitioning methods

Albert-Jan Yzelman & Rob Bisseling,
Dept. of Mathematics, Utrecht University

The Problem:
When performing sparse matrix-vector
multiplications, irregular data access induces
many cache misses, wasting much CPU time. On
the right, we illustrate the above with respect to a
small sample matrix.

Ax = z Ax = z Ax = z

Blue blocks denote non-zero values. The arrows denote memory traversal during MV.

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

A matrix structure efficient in terms of cache use is the
Separated Block Diagonal (SBD) form. This structure
ensures some locality in the traversal of the x-vector,
when both rows and columns are processed in straight
passes, as is the case with Compressed Row Storage
(CRS).
So what happens if we combine a common sparse matrix
ordering like CRS together with a method permuting the
input matrix to SBD form so that cache performance is
improved when multiplying the resulting matrix?

We assume a k-way set-
associative, single-level cache
structure; see right. The cache
can be represented as a matrix
containing cache lines. Data with
an address from main memory is
modulo-mapped in a cache row,
while the column is selected by
the Least Recently Used (LRU)
policy.

Hypergraph partitioning:

No cache misses
1 cache miss per row

3 cache misses

1 cache miss

7 cache misses

15 cache misses

Suppose we traverse matri-

ces in SBD-form by a zig-zag

ordering. Denote the cache

size by S, the cache line size

by LS, the number of cache

lines by L = S
LS
, and the

number of data words per

cache line by w. If we parti-

tion the n columns of A into

p sets, with

p =
n

wL
,

and assuming k → ∞, the

number of cache misses on

each row is as shown for p =

16.

We use a hypergraph-based

partitioner. We denote columns

using vertices vj ∈ V, and

rows using nets ni ∈ N . This

is the row-net model. The

number of vertex sets over

which the net ni is distributed

is denoted by λi. Assum-

ing all coloured matrix ar-

eas are sufficiently dense, we

see that the number of cache

misses equals
�

i: ni∈N

λi − 1,

which is exactly the λ − 1

metric used in sparse matrix

partitioning for parallelism.

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Matrix number

Ru
n−

tim
e

ga
in

CRS
1
2
3
4
5
10
15
20
OSKI
Both

Experiments were performed using the Stanford,
Standford_Berkeley and wikipedia-20051105 link
matrices, as well as the cage14 matrix. Below are the
run-time gains from executing our method for various
p, as opposed to using plain CRS or the Optimised
Sparse Kernel Interface (OSKI) developed at Berkeley.

Experiments:

