Cache-oblivious sparse matrix-vector multiplication
by using sparse matrix partitioning methods

h b 1 . Blue blocks denote non-zero values. The arrows denote memory traversal during MV.
The Problem:

1= |

When performing sparse matrix-vector
multiplications, irregular data access 1nduces
many cache misses, wasting much CPU time. On
the right, we 1llustrate the above with respect to a
small sample matrix.

We assume a k-way set- | A matrix structure efficient in terms of cache use 1s the

associlative, single-level cache veomene 5 Separated Block Diagonal (SBD) form. This structure

structure; see right. The cache S L» d ensures some locality 1n the traversal of the x-vector,

can be represented as a matrix — when both rows and columns are processed in straight E
.. . . LRU-stack ——— | Main . .

containing cache lines. Data with | memory passes, as 1s the case with Compressed Row Storage

an address from main memoryis 0 @——= | ®an (CRS).

modulo-mapped 1n a cache row, So what happens 1f we combine a common sparse matrix

while the column 1s selected by T * * ordering like CRS together with a method permuting the

the Least Recently Used (LRU) Subcaches input matrix to SBD form so that cache performance 1s

policy. improved when multiplying the resulting matrix?

N

The Algorithm:

1D column partitioning.
Green and blue squares
denote nonzeros 1n
different partitions.

We permute the blue
columns to the left, and the
green ones to the right.

o
.

AN

?
Z
== =
Stanford link matrix . I é; é
= =z
=
ol
- 7
ol
Input sparse %
matrix. . %: =
The blue rows are
permuted to the top, and
the green ones to the
bottom.
Reordered Stanford link matrix
We recurse on both !_ \}Ye now colour red
areas separately. __ the rows containing
= nonzeros both inthe blue
and green partitions.
2=
. ‘ S —— f:.-"" -
Output matrix after p iterations. __
]
Ideally, p = n. On the left, p = 20. =
= =
= Z

Article:
A.N. Yzelman & R.H. Bisseling, Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods, pre-print August 2008.

Hypergraph partitioning: Experiments:

Suppose we traverse matri- We use a hypergraph-based Experiments were performed using the Stanford,
ces in SBD-form by a Zig-zag partitioner. We denote columns Standford_Berkeley and Wlklpedla-20051105 link
ordering. Denote the cache using vertices v; € V, and matrloces, as.W611 as the cag§14 matrix. Bglow are .the
size by S, the cache line size rows using nets n; € N. This run-time gains frorp executing our method fpr various
by Lg, the number of cache is the row-net model. The p, as opposed to using plain CRS or the qu_atlmlsed |
: ’ g number of vertex sets over Sparse Kernel Interface (OSKI) developed at Berkeley.
lines by L = 7o, and the which the net n; is distributed _
number of data words per is denoted by \;. Assum- —)
cache line by w. If we parti- ing all coloured matrix ar- T M=
tion the n columns of A into eas are sufficiently dense, we 1 1 =5
p sets, with see that the number of cache =
n misses equals S 0.8 —
P=—"7: =
wL Z Aj — 1, S 06
and assuming k£ — oo, the it n;€N :
number of cache misses on which is exactly the A — 1 04
each row is as shown for p = metric used in sparse matrix o
16. partitioning for parallelism.

1 2 3 4
Matrix number

R

= b %z: Universiteit Utrecht

S Albert-Jan Yzelman & Rob Bisseling,
EINN Dept. of Mathematics, Utrecht University
AN

