
Cache-oblivious matrix reordering
based on data partitioning for parallelism

Albert-Jan Yzelman & Rob Bisseling,
Dept. of Mathematics, Utrecht University

The Problem:
When performing sparse matrix-
vector multiplications, a large
amount of CPU time is wasted on
moving data around in memory.

Ax = z Ax = z Ax = z

Let us consider sparse matrix-vec-
tor (MV) multiplications on ma-
trices stored in Compressed Row
Storage (CRS) format.
On the right, we display an exam-
ple MV run on a small matrix.

Jumping around in memory
takes CPU time. Note that in
any efficient MV algorithm,
non-zeros from A are accessed
precisely once.

Also note that memory access in
z is optimal (no jumps), while it
is horrible for x.

Blue blocks denote non-zero values. The arrows denote memory traversal during MV.

Where we are going: Matrix permutations
What if we combine a cache-friendly matrix ordering together with a
matrix column / row permutation algorithm to transform the matrix
structure such that cache performance is improved even more?

What are the similarities to matrix partitioning regarding parallel load
balancing? Instead of reducing communication, we here want to increase
data locality.

Where we are now: experimental results

The Triplet scheme requires 3nnz storage for any n times m sparse
matrix A consisting of nnz non-zeros. (I)CRS however, requires only
2nnz+m, worst case.
Combining this with the observation that elements from A need only be
accessed once, the Triplet scheme thus defaults to an obligatory number
of nnz-m extra cache misses when compared to (I)CRS.

Any Triplet-based ordering scheme will hence have a hard time
competing with a CRS-based scheme. Note that both the Random and
Hilbert orderings are stored in Triplet format.

Method of attack: Matrix orderings
Various ways of storing sparse
matrices result in different cache
hit or miss behaviour.

We investigated the Compressed
Row Storage (CRS) format,
Incremental CRS (ICRS), and
Hilbert-ordering.

Investigation entailed both wall-
clock measured experiments, as
well as running an MV through a
custom run-time cache simulator.

We used the simulator to obtain
cache statistics for MV runs on
L1 and L2 Intel Core 2 caches.

(I)CCS (I)CRS Zig-zag Hilbert

Preliminaries: the Cache Model

Main
memory

(RAM)
CPU Cache

We assume a simple single-level cache structure.
Our cache-oblivious aim will ensure efficiency
on multi-level cache architectures.

Main
memory

(RAM)

Cache

LRU−stack

Subcaches

Modulo mapping

Assumed is a k-way set-associa-
tive cache. This means the cache
is subdivided into k subcaches of
equal size.
Data from RAM is modulo-
mapped in a cache row, while the
column is selected by a Least Re-
cently Used (LRU) policy.

Matrix Market input

CRS, ICRS, Randomised order
data structures

Matrix Market to Hilbert
ordered binary file conversion

Wall-clock timings & cache simulation

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset ID

Tim
e (

rel
ati

ve
)

Total user and system time taken for datasets of increasing size
1: west0497.mtx, 2: fidap037.mtx, 3: s3rmt3m3.mtx, 4: memplus.mtx, 5: cavity17.mtx, 6: bcsstk17.mtx, 7: lhr34.mtx, 8: bcsstk32.mtx, 9: nug30.mtx, 10: s3dkt3m2.mtx, 11: tbdlinux.mtx

CRS
ICRS
Random
Hilbert

Applying
(I)CRS

Permutation

3-5-6-7-2-7-2-6 1-2-3-4-5-3-4-5

x-access

Applying
(I)CRS

Permutation

Permutation
x-access

