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The Problem:
When performing sparse matrix-
vector multiplications, a large 
amount of CPU time is wasted on 
moving data around in memory.
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Let us consider sparse matrix-vec-
tor (MV) multiplications on ma-
trices stored in Compressed Row 
Storage (CRS) format.
On the right, we display an exam-
ple MV run on a small matrix.

Jumping around in memory 
takes CPU time. Note that in 
any efficient MV algorithm, 
non-zeros from A are accessed 
precisely once.

Also note that memory access in 
z is optimal (no jumps), while it 
is horrible for x.

Blue blocks denote non-zero values. The arrows denote memory traversal during MV.

Where we are going: Matrix permutations
What if we combine a cache-friendly matrix ordering together with a 
matrix column / row permutation algorithm to transform the matrix 
structure such that cache performance is improved even more?

What are the similarities to matrix partitioning regarding parallel load 
balancing? Instead of reducing communication, we here want to increase 
data locality.

Where we are now: experimental results

The Triplet scheme requires 3nnz storage for any n times m sparse 
matrix A consisting of nnz non-zeros. (I)CRS however, requires only 
2nnz+m, worst case.
Combining this with the observation that elements from A need only be 
accessed once, the Triplet scheme thus defaults to an obligatory number 
of nnz-m extra cache misses when compared to (I)CRS.

Any Triplet-based ordering scheme will hence have a hard time 
competing with a CRS-based scheme. Note that both the Random and 
Hilbert orderings are stored in Triplet format.

Method of attack: Matrix orderings
Various ways of storing sparse 
matrices result in different cache 
hit or miss behaviour.

We investigated the Compressed 
Row Storage (CRS) format, 
Incremental CRS (ICRS), and 
Hilbert-ordering.

Investigation entailed both wall-
clock measured experiments, as 
well as running an MV through a 
custom run-time cache simulator.

We used the simulator to obtain 
cache statistics for MV runs on  
L1 and L2 Intel Core 2 caches.
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Preliminaries: the Cache Model
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We assume a simple single-level cache structure. 
Our cache-oblivious aim will ensure efficiency 
on multi-level cache architectures.
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Modulo mapping

Assumed is a k-way set-associa-
tive cache. This means the cache 
is subdivided into k subcaches of 
equal size.
Data from RAM is modulo-
mapped in a cache row, while the 
column is selected by a Least Re-
cently Used (LRU) policy.

Matrix Market input

CRS, ICRS, Randomised order
data structures

Matrix Market to Hilbert
ordered binary file conversion

Wall-clock timings & cache simulation
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Total user and system time taken for datasets of increasing size
1: west0497.mtx, 2: fidap037.mtx, 3: s3rmt3m3.mtx, 4: memplus.mtx, 5: cavity17.mtx, 6: bcsstk17.mtx, 7: lhr34.mtx, 8: bcsstk32.mtx, 9: nug30.mtx, 10: s3dkt3m2.mtx, 11: tbdlinux.mtx
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