Cache-oblivious matrix reordering
based on data partitioning for parallelism

Albert-Jan Yzelman & Rob Bisseling,
Dept. of Mathematics, Utrecht University

Blue blocks denote non-zero values. The arrows denote memory traversal during MV. Jumping around 1n memory
The Problem: | | takes CPU time. Note that in
Let us con51der.sp.arse. matrix-vec- any efficient MV algorithm,
When performing sparse matrix- Lo (MV) mu}ﬂphcaﬂons UL 00 non-zeros from A are accessed
vector multiplications, a large trices stored in Compressed Row _ —_——— _ precisely once.
amount of CPU time is wasted on Storage fCRS) forrpat. - -
moving data around in memory. On the right, we display an exam- Also note that memory access in
ple MV run on a small matrix. zis optimal (no jumps), while it

1s horrible for x.

Preliminaries: the Cache Model Where we are now: experimental results Where we are going: Matrix permutations
We assume a simple single-level cache structure. » Matrix Market input What if we combine a cache-friendly matrix ordering together with a
Our cache-oblivious aim will ensure efficiency ij) /\ matrix column / row permutation algorithm to transform the matrix
on multi-level cache architectures. . . ; structure such that cache performance 1s improved even more?
CRS, ICRS, Randomised order Matrix Market to Hilbert P P
Modulo mapping data structures ordered binary file conversion C . . .
‘ ; \ / Y What are the similarities to matrix partitioning regarding parallel load
Cache [Assumed 1s a k-way set-associa- balancing? Instead of reducing communication, we here want to increase
| tive cache. This means the cache Wall-clock timings & cache simulation data locality.
| | i
= | Main | 1s subdivided into & subcaches of A AT B T Tt O A TS e
LRU-stack ------ A equal SiZ@. |
é RAM - Data from RAM is modulo-) i =
* * * mapped ina cache row, while the - B | Permutation L
| | column is selected by a Least Re- B
Subeaches cently Used (LRU) policy.) _ = : =
Method of attack: Matrix orderings)] L I = i h
Various ways of storing sparse Investigation entailed both wall- | _ Applying Applying
matrices result in different cache clock measured experiments, as i (DCRS v v (DCRS
hit or miss behaviour. well as running an MV through a y
custom run-time cache simulator. /BN RO RUR BN BN RN RN NR R R =
We investigated the Compressed |
Row Storage (CRS) format, We used the.simulator to obtain The Triplet scheme requires 3nnz storage for any n times m sparse Permutation
Incremental CRS (ICRS), and cache statistics for MV runs on matrix A consisting of nnz non-zeros. (I)CRS however, requires only =
Hilbert-ordering. L1 and L2 Intel Core 2 caches. 2nnz+m, worst case. 1.
Combining this with the observation that elements from A need only be H L -
ST RE AR R I o s s e 3 1. o I accessed once, the Triplet scheme thus defaults to an obligatory number
T e o e o o i HEAHRENEE of nnz-m extra cache misses when compared to (I)CRS.
T e ot et g o e e ot X-access X-access
i el O B Sl I el A Bl W Any Triplet-based ordering scheme will hence have a hard time Y : Y
;|3 e e e 5 il O W s s i o Y ek Wl B B : : Permutation
JHHEHME e e I e e competing with a CRS-based scheme. Note that both the Random and
(DCCS (I)CRS /1g-zag Hilbert Hilbert orderings are stored in Triplet format. 3-5-6-7-2-7-2-6 > 1-2-3-4-5-3-4-5

AW

= b

KN

A

N

Universiteit Utrecht

U

