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The sparse matrix–vector (SpMV) multiplication y = Ax, with A an m× n sparse matrix and x,y dense vectors of

appropriate sizes, is a widely used kernel. It performs two floating point operations on three data elements (x j,yi,ai j)

per nonzero, with additional index data requirements dependent on how A is stored. This results in a bandwidth-

limited algorithm, which, when parallelised, multiplies the bandwidth requirements even further.

Nonzeroes are accessed only once during multiplication, whereas elements from x and y are, in general, reused.

Optimisation thus focuses on optimising these reuse patterns. Techniques include adapting the nonzero structure of

sparse matrices or adapting the storage method of the matrix, while keeping bandwidth requirements in check.
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Extending the cache-oblivious algorithms

to shared-memory multicore architectures

means accounting for the possibility of

shared caches. Changing the regular or-

dering induced by the Hilbert curve to an

interleaved order yields a ‘core-oblivious’

scheme; compare the regular access (top)

and this interleaved access (bottom), and

their effect on parallelisation.

Problem: submatrices assigned to cores

have overlapping rows, the exact number

of which varies per matrix due to load-

balancing. To prevent data races, each

core allocates a local output vector of size

Θ(m), worst case. Postprocessing then

combines the local results into a global

output vector.
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This does not scale, however; in contrast

to the 1D and 2D distributed strategies

presented on the right.
Note how processors interchange between the start

and end of their curves, thus using the data brought

into shared caches by neighbouring processors.
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A parallel SpMV multiplication can be

derived from an efficient sequential cache-

oblivious scheme. An example of the lat-

ter is reordering the sparse matrix into the

Doubly Separated Block Diagonal (SBD)

form, followed by a standard multiply:

PAQ =







A1 S1

S2 S3 S4

S5 A2






.

Recursion and blockwise multiplication

are then visualised as follows:

These blocks are ordered according to a

cache-friendly curve. It is also possible to

use space-filling curves on the nonzeroes

of the original matrix; both the Hilbert

curve (top) and the Morton curve (bot-

tom) have been used this way.

Strategies based on space-filling curves

do not have to apply reordering on the

nonzero level. Instead, A can be subdi-

vided into disjoint blocks. A block-based

strategy can apply the Hilbert curve on

nonzeroes within these blocks, while pro-

cessing the blocks themselves in the stan-

dard Compressed Row Storage (CRS) or-

der. Assigning rows of blocks to proces-

sors implicitly yields a 1D strategy:

Alternatively, the Hilbert curve can de-

fine the order in which blocks are pro-

cessed, while nonzeroes within blocks are

stored in CRS format. An explicit row-

wise distribution yields the strategy illus-

trated below, for 2 × 2 blocks. Both of

these 1D strategies are fully scalable.
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Explicit rowwise distributions using lo-

cal output vectors help to attain good per-

formance on NUMA (e.g., multi-socket)

architectures, as writing to the output vec-

tor is done via the memory banks closest

to the executing core.

Explicitly distributing the input vector as

well, so that cores both have local input

and output vectors, brings us closer to dis-

tributed-memory partitioning techniques.

Combined with the cache-oblivious SBD

form, an efficient two-dimensional strat-

egy arises:

This does not scale, however; in contrast

to the 1D and 2D distributed strategies

presented on the right.
Experiments on the wikipedia ’06 matrix on an

8-socket 8-core machine. Speedups are relative to

a sequential CRS kernel.
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