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The modulo mapped, or naive, cache (k = 1):

Divide the main memory (RAM) in stripes of size LS .

The ith line in RAM is mapped to the cache line i mod L:

Main
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The ‘ideal’ cache (k = L):

Instead of a naive modulo mapping, new lines are assigned according
to pre-defined policy.

For instance, the ‘Least Recently Used (LRU)’ policy:
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Dense matrix–vector multiplication
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Realistic caches (1 < k < L):

1 < k < L, combining modulo-mapping and the LRU policy

Main
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Modulo mapping
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Realistic cache architectures employ multi-level caching:
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Cache Cache
(L1) (L2)CPU

Intel Core2 (Q6600) AMD Phenom II (945e)
L1: 32kB k = 8
L2: 4MB k = 16
L3: - -

S = 64kB k = 2
S = 512kB k = 8
S = 6MB k = 48
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Most architectures employ shared caches:
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System interface

6MB shared L3 cache

BSP: (4, 3GHz, l , g)
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Most architectures employ shared caches:
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BSP: (4, 2.4GHz, l , g); but Non-Uniform Memory Access (NUMA)!
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Some g , l values for different architectures (in ms.):

Processor (p) l g

AMD 945e (2) 0.036 0.0004
Intel Q6600 (2) 0.013 0.0003
Intel Q6600 (4) 0.048 0.0005
AMD 945e (4) 0.050 0.0014
Cray T3E (64) 0.052 0.0022

See:

Rob H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University
Press, 2004

Yzelman and Bisseling, An Object-Oriented BSP Library for Multicore Programming, Concurrency and
Computation: Practice and Experience 24(5), pp. 533–553 (2012)
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MulticoreBSP is a programming language which explicitly uses the
BSP model, but applied to shared-memory computers.

It is based on the distributed-memory Oxford BSP library (BSPlib).
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BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(dest_t, source, dest, dest_offset, length)
bsp_get(src_t, source, source_offset, dest, length)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()
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In the case of the inner-product kernel:

1 P = bsp nprocs()
t = new double[P]
α = 0
for i = 0 to x .length do

add xi · yi to α
for s = 0 to P

bsp put(s, α, t,bsp pid())
bsp sync()

2 α = 0
for s = 0 to P

add ts to α
return α
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MulticoreBSP defines a new function:

bsp_direct_get, a blocking variant of the normal bsp get.

This primitive can potentially save a superstep, as no explicit
synchronisation is necessary after a BSP get.
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The shared-memory direct-get variant of the inner-product becomes:

1 P = bsp nprocs()
α̃ = 0
for i = 0 to x .length do

add xi · yi to α̃
bsp sync()

2 α = 0
for s = 0 to P

add bsp direct get(s, α̃) to α
return α

Not that much effect:

Tinprod = 1/r(2p + n/p) + l + gp
Tinprod sh = 1/r(p + n/p) + l + gp
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There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads),
OpenMP, or Cilk.

One common difference of BSP (and MPI) with dedicated
shared-memory libraries,

is the existence of a shared memory.

BSP ignores this (except for the direct-get); other systems may
explicitly model a shared memory.

However, this opens up the way for some pitfalls.
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Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α = 0.0

for i = s to n step p

α += xiyi

return α

Data race!
()
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Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α = 0.0

for i = s to n step p

α += xiyi

return α

Data race!
(For n = p = 2, output can be x0y0, x1y1, or x0y0 + x1y1)
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Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[p]

for i = s to n step p

αs += xiyi

return
∑p−1

i=0 αi

!
()

Albert-Jan Yzelman



Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[p]

for i = s to n step p

αs += xiyi

return
∑p−1

i=0 αi

False sharing!
(Various processors access and update the same cache lines)
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Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s to n step p

α8s += xiyi

return
∑p

i=0 α8i

Inefficient cache use!
(All threads access virtually all cache lines associated with x , y)
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Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s to n step p

α8s += xiyi

return
∑p

i=0 α8i

Inefficient cache use!
(All threads access virtually all cache lines; Θ(pn) data movement)
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Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s · dn/pe to (s + 1) · dn/pe
α8s += xiyi

return
∑p

i=0 α8i

Solution: block distribution
(Now inefficiency only at boundaries; O(n + p − 1) data movement)
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Another problem is non-uniform memory access (NUMA). Consider for
instance a multiple-socket machine:
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If each processor moves data from and to the same memory element,
the effective bandwidth is shared.

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies with the number of available
elements.
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Solution (?): interleaved allocation

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies with the number of available
elements.
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Scalable solution: local allocation with thread pinning

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies with the number of available
elements.
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Data races,

false sharing,

inefficient caching.

inefficiencies due to NUMA;

using BSP you almost automatically avoid these issues.
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MulticoreBSP for C is a library and depends only on the POSIX
threads extensions and the POSIX real-time extensions, which are
available on most modern systems. Hence only the MulticoreBSP
header has to be included to enable BSP programming:

#include "mcbsp.h"
int main( int argc, char **argv ) {

bsp_begin( bsp_nprocs() );
printf( "Hello world from thread %ld!\n", bsp_pid() );
bsp_end();

}

Linking should include the library and dependencies:

gcc hello_world.c libmcbsp1.0.0.a -pthread -lrt

(This is different from BSPlib or BSPonMPI)
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Conclusion

MulticoreBSP for C (and Java) are freely available:

http://www.multicorebsp.com
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