
Shared-memory computing

Shared-memory computing

Albert-Jan Yzelman

19 September 2012

Albert-Jan Yzelman

Shared-memory computing > Caching

Caching

1 Caching

2 Bulk Synchronous Parallel

3 Alternative programming libraries

Albert-Jan Yzelman

Shared-memory computing > Caching

The modulo mapped, or naive, cache (k = 1):

Divide the main memory (RAM) in stripes of size LS .

The ith line in RAM is mapped to the cache line i mod L:

Main
memory

(RAM)

Albert-Jan Yzelman

Shared-memory computing > Caching

The ‘ideal’ cache (k = L):

Instead of a naive modulo mapping, new lines are assigned according
to pre-defined policy.

For instance, the ‘Least Recently Used (LRU)’ policy:

x1

⇒

Req. x1, . . . , x4

x4

x3

x2

x1

⇒

Req. x2

x2

x4

x3

x1

⇒

Req. x5

x5

x2

x4

x3

Albert-Jan Yzelman

Shared-memory computing > Caching

Dense matrix–vector multiplication

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·

x0

x1

x2

x3

 =

y0

y1

y2

y3

Example with k = L = 4:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory computing > Caching

Dense matrix–vector multiplication

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·

x0

x1

x2

x3

 =

y0

y1

y2

y3

Example with k = L = 4:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory computing > Caching

Dense matrix–vector multiplication

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·

x0

x1

x2

x3

 =

y0

y1

y2

y3

Example with k = L = 4:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory computing > Caching

Dense matrix–vector multiplication

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·

x0

x1

x2

x3

 =

y0

y1

y2

y3

Example with k = L = 4:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory computing > Caching

Dense matrix–vector multiplication

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·

x0

x1

x2

x3

 =

y0

y1

y2

y3

Example with k = L = 4:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory computing > Caching

Dense matrix–vector multiplication

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·

x0

x1

x2

x3

 =

y0

y1

y2

y3

Example with k = L = 4:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory computing > Caching

Realistic caches (1 < k < L):

1 < k < L, combining modulo-mapping and the LRU policy

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

Albert-Jan Yzelman

Shared-memory computing > Caching

Realistic cache architectures employ multi-level caching:

Main
memory

(RAM)����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Cache Cache
(L1) (L2)CPU

Intel Core2 (Q6600) AMD Phenom II (945e)
L1: 32kB k = 8
L2: 4MB k = 16
L3: - -

S = 64kB k = 2
S = 512kB k = 8
S = 6MB k = 48

Albert-Jan Yzelman

Shared-memory computing > Caching

Most architectures employ shared caches:

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

64kB L1 64kB L1 64kB L1 64kB L1

Core 1 Core 2 Core 3 Core 4

512kB L2512kB L2512kB L2512kB L2

System interface

6MB shared L3 cache

BSP: (4, 3GHz, l , g)

Albert-Jan Yzelman

Shared-memory computing > Caching

Most architectures employ shared caches:

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

32kB L1 32kB L1 32kB L1 32kB L1

Core 1 Core 2 Core 3 Core 4

4MB L2

System interface

4MB L2

BSP: (4, 2.4GHz, l , g); but Non-Uniform Memory Access (NUMA)!

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

Bulk Synchronous Parallel

1 Caching

2 Bulk Synchronous Parallel

3 Alternative programming libraries

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

Some g , l values for different architectures (in ms.):

Processor (p) l g

AMD 945e (2) 0.036 0.0004
Intel Q6600 (2) 0.013 0.0003
Intel Q6600 (4) 0.048 0.0005
AMD 945e (4) 0.050 0.0014
Cray T3E (64) 0.052 0.0022

See:

Rob H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University
Press, 2004

Yzelman and Bisseling, An Object-Oriented BSP Library for Multicore Programming, Concurrency and
Computation: Practice and Experience 24(5), pp. 533–553 (2012)

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

MulticoreBSP is a programming language which explicitly uses the
BSP model, but applied to shared-memory computers.

It is based on the distributed-memory Oxford BSP library (BSPlib).

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(dest_t, source, dest, dest_offset, length)
bsp_get(src_t, source, source_offset, dest, length)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(dest_t, source, dest, dest_offset, length)
bsp_get(src_t, source, source_offset, dest, length)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(dest_t, source, dest, dest_offset, length)
bsp_get(src_t, source, source_offset, dest, length)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(dest_t, source, dest, dest_offset, length)
bsp_get(src_t, source, source_offset, dest, length)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(dest_t, source, dest, dest_offset, length)
bsp_get(src_t, source, source_offset, dest, length)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

In the case of the inner-product kernel:

1 P = bsp nprocs()
t = new double[P]
α = 0
for i = 0 to x .length do

add xi · yi to α
for s = 0 to P

bsp put(s, α, t,bsp pid())
bsp sync()

2 α = 0
for s = 0 to P

add ts to α
return α

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

MulticoreBSP defines a new function:

bsp_direct_get, a blocking variant of the normal bsp get.

This primitive can potentially save a superstep, as no explicit
synchronisation is necessary after a BSP get.

Albert-Jan Yzelman

Shared-memory computing > Bulk Synchronous Parallel

The shared-memory direct-get variant of the inner-product becomes:

1 P = bsp nprocs()
α̃ = 0
for i = 0 to x .length do

add xi · yi to α̃
bsp sync()

2 α = 0
for s = 0 to P

add bsp direct get(s, α̃) to α
return α

Not that much effect:

Tinprod = 1/r(2p + n/p) + l + gp
Tinprod sh = 1/r(p + n/p) + l + gp

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Alternative programming libraries

1 Caching

2 Bulk Synchronous Parallel

3 Alternative programming libraries

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads),
OpenMP, or Cilk.

One common difference of BSP (and MPI) with dedicated
shared-memory libraries,

is the existence of a shared memory.

BSP ignores this (except for the direct-get); other systems may
explicitly model a shared memory.

However, this opens up the way for some pitfalls.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads),
OpenMP, or Cilk.

One common difference of BSP (and MPI) with dedicated
shared-memory libraries, is the existence of a shared memory.

BSP ignores this (except for the direct-get); other systems may
explicitly model a shared memory.

However, this opens up the way for some pitfalls.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads),
OpenMP, or Cilk.

One common difference of BSP (and MPI) with dedicated
shared-memory libraries, is the existence of a shared memory.

BSP ignores this (except for the direct-get);

other systems may
explicitly model a shared memory.

However, this opens up the way for some pitfalls.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads),
OpenMP, or Cilk.

One common difference of BSP (and MPI) with dedicated
shared-memory libraries, is the existence of a shared memory.

BSP ignores this (except for the direct-get); other systems may
explicitly model a shared memory.

However, this opens up the way for some pitfalls.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α = 0.0

for i = s to n step p

α += xiyi

return α

Data race!
()

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α = 0.0

for i = s to n step p

α += xiyi

return α

Data race!
(For n = p = 2, output can be x0y0, x1y1, or x0y0 + x1y1)

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[p]

for i = s to n step p

αs += xiyi

return
∑p−1

i=0 αi

!
()

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[p]

for i = s to n step p

αs += xiyi

return
∑p−1

i=0 αi

False sharing!
(Various processors access and update the same cache lines)

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s to n step p

α8s += xiyi

return
∑p

i=0 α8i

Inefficient cache use!
(All threads access virtually all cache lines associated with x , y)

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s to n step p

α8s += xiyi

return
∑p

i=0 α8i

Inefficient cache use!
(All threads access virtually all cache lines; Θ(pn) data movement)

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s · dn/pe to (s + 1) · dn/pe
α8s += xiyi

return
∑p

i=0 α8i

Solution: block distribution
(Now inefficiency only at boundaries; O(n + p − 1) data movement)

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Another problem is non-uniform memory access (NUMA). Consider for
instance a multiple-socket machine:

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

32kB L1 32kB L1 32kB L1 32kB L1

Core 1 Core 2 Core 3 Core 4

4MB L2

System interface

4MB L2

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

32kB L1 32kB L1 32kB L1 32kB L1

Core 1 Core 2 Core 3 Core 4

4MB L2

System interface

4MB L2

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

If each processor moves data from and to the same memory element,
the effective bandwidth is shared.

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies with the number of available
elements.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Solution (?): interleaved allocation

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies with the number of available
elements.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Scalable solution: local allocation with thread pinning

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies with the number of available
elements.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Data races,

false sharing,

inefficient caching.

inefficiencies due to NUMA;

using BSP you almost automatically avoid these issues.

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

MulticoreBSP for C is a library and depends only on the POSIX
threads extensions and the POSIX real-time extensions, which are
available on most modern systems. Hence only the MulticoreBSP
header has to be included to enable BSP programming:

#include "mcbsp.h"
int main(int argc, char **argv) {

bsp_begin(bsp_nprocs());
printf("Hello world from thread %ld!\n", bsp_pid());
bsp_end();

}

Linking should include the library and dependencies:

gcc hello_world.c libmcbsp1.0.0.a -pthread -lrt

(This is different from BSPlib or BSPonMPI)

Albert-Jan Yzelman

Shared-memory computing > Alternative programming libraries

Conclusion

MulticoreBSP for C (and Java) are freely available:

http://www.multicorebsp.com

Albert-Jan Yzelman

http://www.multicorebsp.com

	Caching
	Bulk Synchronous Parallel
	Alternative programming libraries

