Cartesian Distribution (PSC §4.4)

Identifying 1D and 2D processor numbering

- Natural column-wise identification for $p=M N$ processors:

$$
P(s, t) \equiv P(s+t M), \text { for } 0 \leq s<M \text { and } 0 \leq t<N .
$$

- This can also be written as

$$
P(s) \equiv P(s \bmod M, s \operatorname{div} M), \text { for } 0 \leq s<p
$$

- For a Cartesian distribution $\left(\phi_{0}, \phi_{1}\right)$, we map nonzeros $a_{i j}$ to processors $P(\phi(i, j))$ by

$$
\phi(i, j)=\phi_{0}(i)+\phi_{1}(j) M, \text { for } 0 \leq i, j<n \text { and } a_{i j} \neq 0
$$

- We use 1D or 2D numbering, whichever is most convenient in the context.

A Cartesian distribution of cage6

$$
n=93, n z=785, p=4, M=N=2
$$

- The processor row of a matrix element $a_{i j}$ is $s=\phi_{0}(i)$; the processor column is $t=\phi_{1}(j)$.
- Matrix diagonal assigned in blocks to processors

$$
\begin{aligned}
& P(0) \equiv P(0,0), P(1) \equiv P(1,0), P(2) \equiv P(0,1) \\
& P(3) \equiv P(1,1)
\end{aligned}
$$

Advantages of a Cartesian distribution

Advantages:

- Main advantage for sparse matrices is the same as for dense matrices: row-wise operations require communication only within processor rows. (Similar for columns.)
- Vector component v_{j} has to be sent to at most M processors, and vector component u_{i} is computed using contributions received from at most N processors.
- Simplicity: Cartesian distributions partition the matrix orthogonally into rectangular submatrices. Non-Cartesian distributions create arbitrarily shaped matrix parts.
Disadvantage:
- Less general, so may not offer the optimal solution.

Matching matrix and vector distribution

- Vector component v_{j} is needed only by processors that possess an $a_{i j} \neq 0$, and these processors are contained in processor column $P\left(*, \phi_{1}(j)\right)$.
- Assigning vector component v_{j} to one of the processors in $P\left(*, \phi_{1}(j)\right)$ implies that v_{j} has to be sent to at most $M-1$ processors, instead of M.
- If we are lucky (or clever), we may even avoid communication of v_{j} altogether.
- If v_{j} were assigned to a different processor column, it would always have to be communicated.
- Assigning u_{i} to a processor in processor row $P\left(\phi_{0}(i), *\right)$ reduces the number of contributions sent for u_{i} to at most $N-1$.

A trivial but powerful theorem

Theorem 4.4 Let A be a sparse $n \times n$ matrix and \mathbf{u}, \mathbf{v} vectors of length n. Assume that:

1. distribution of A is Cartesian, $\operatorname{distr}(A)=\left(\phi_{0}, \phi_{1}\right)$;
2. distribution of \mathbf{u} is such that u_{i} resides in $P\left(\phi_{0}(i), *\right)$;
3. distribution of \mathbf{v} is such that v_{j} resides in $P\left(*, \phi_{1}(j)\right)$.

Then: if u_{i} and v_{j} are assigned to the same processor, $a_{i j}$ is also assigned to that processor and does not cause communication.

Proof Component u_{i} is assigned to $P\left(\phi_{0}(i), t\right)$. Component v_{j} to $P\left(s, \phi_{1}(j)\right)$. Since this is the same processor, we have $(s, t)=\left(\phi_{0}(i), \phi_{1}(j)\right)$, so that this processor also owns $a_{i j}$.

Special case $\operatorname{distr}(\mathbf{u})=\operatorname{distr}(\mathbf{v})$

The conditions

1. distribution of A is Cartesian, $\operatorname{distr}(A)=\left(\phi_{0}, \phi_{1}\right)$;
2. distribution of \mathbf{u} is such that u_{i} resides in $P\left(\phi_{0}(i), *\right)$;
3. distribution of \mathbf{v} is such that v_{j} resides in $P\left(*, \phi_{1}(j)\right)$;
4. $\operatorname{distr}(\mathbf{u})=\operatorname{distr}(\mathbf{v})$;
imply that u_{i} and v_{i} are assigned to $P\left(\phi_{0}(i), \phi_{1}(i)\right)$, which is the owner of the diagonal element $a_{i j}$.

- For a fixed M and N, the choice of a Cartesian matrix distribution determines the vector distribution.
- The reverse is also true.

Example: 1D Laplacian matrix

$$
A=\left[\begin{array}{rrrrrrr}
-2 & 1 & & & & & \\
1 & -2 & 1 & & & & \\
& 1 & -2 & 1 & & & \\
& & & \ddots & & & \\
& & & 1 & -2 & 1 & \\
& & & & 1 & -2 & 1 \\
& & & & & 1 & -2
\end{array}\right]
$$

- This tridiagonal matrix represents a Laplacian operator on a 1D grid of n points.
- $a_{i j} \neq 0$ if and only if $i-j=0, \pm 1$.

Vector distribution for tridiagonal matrix

- $a_{i j} \neq 0$ if and only if $i-j=0, \pm 1$.
- Assume we require $\operatorname{distr}(\mathbf{u})=\operatorname{distr}(\mathbf{v})$. Theorem 4.4 says that it is best to assign u_{i} and v_{j} (and hence u_{j}) to the same processor if $i=j \pm 1$.
- Therefore, a suitable vector distribution over p processors is the block distribution,

$$
u_{i} \longmapsto P\left(i \operatorname{div}\left\lceil\frac{n}{p}\right\rceil\right), \text { for } 0 \leq i<n .
$$

Example: 12×12 1D Laplacian matrix

Distribution matrix for $n=12$ and $M=N=2$:

$$
\operatorname{distr}(A)=\left[\begin{array}{llllllllllll}
0 & 0 & & & & & & & & & & \\
0 & 0 & \\
0 & 0 & 0 & & & & & & & & & \\
& 0 & 0 & 0 & & & & & & & & \\
\\
& & 1 & 1 & 1 & & & & & & & \\
& & & 1 & 1 & 1 & & & & & & \\
& & & & 1 & 1 & 3 & & & & & \\
& & & & & 0 & 2 & 2 & & & & \\
& & & & & & & 2 & 2 & 2 & & \\
& & \\
& & & & & & & & 2 & 2 & 2 & \\
& & & & & & & & & 3 & 3 & 3 \\
& & & & & & & & & & 3 & 3
\end{array}\right]
$$

Example: 12×12 1D Laplacian matrix (cont'd)

Position (i, j) of $\operatorname{distr}(A)$ gives 1D identity of the processor that owns matrix element $a_{i j} ; \operatorname{distr}(A)$ is obtained by:

- distributing the vectors by the 1D block distribution
- distributing the matrix diagonal in the same way as the vectors
- translating the 1D processor numbers into 2D numbers by $P(0) \equiv P(0,0), P(1) \equiv P(1,0), P(2) \equiv P(0,1)$, $P(3) \equiv P(1,1)$.
- determining the owners of the off-diagonal nonzeros: a_{56} is in the same processor row as a_{55}, owned by $P(1)=P(1,0)$; it is in the same processor column as a_{66}, owned by $P(2)=P(0,1)$. Thus, a56 is owned by $P(1,1)=P(3)$.

Cost analysis

Assuming a good spread of nonzeros and vector components over processors, matrix rows over processor rows, matrix columns over processor columns:

$$
\begin{gathered}
T_{(0)}=(M-1) \frac{n g}{p}+I, \\
T_{(1)}=\frac{2 c n}{p}+I \\
T_{(2)}=(N-1) \frac{n g}{p}+I, \\
T_{(3)}=\frac{N n}{p}+I \\
T_{\mathrm{MV}, M \times N} \leq \frac{2 c n}{p}+\frac{n}{M}+\frac{M+N-2}{p} n g+4 I .
\end{gathered}
$$

Efficient computation for $M=N=\sqrt{p}$

$$
T_{\mathrm{MV}, \sqrt{p} \times \sqrt{p}} \leq \frac{2 c n}{p}+\frac{n}{\sqrt{p}}+2\left(\frac{1}{\sqrt{p}}-\frac{1}{p}\right) n g+4 /
$$

- Computation is efficient if $\frac{2 c n}{p}>\frac{2 n g}{\sqrt{p}}$, i.e., $c>\sqrt{p} g$.
- Improvement of factor \sqrt{p} compared to previous general efficiency criterion.

Dense matrices

- Dense matrices are the limit of sparse matrices for $c \rightarrow n$.
- Analysing the dense case is easier and it can give us insight into the sparse case as well.
- Substituting $c=n$ in previous cost formula gives

$$
T_{\mathrm{MV}, \text { dense }} \leq \frac{2 n^{2}}{p}+\frac{n}{\sqrt{p}}+2\left(\frac{1}{\sqrt{p}}-\frac{1}{p}\right) n g+4 /
$$

- All spreading assumptions must hold.
- Which distribution will yield this cost?

Square cyclic distribution? No!

- Previously, we have extolled the virtues of the square cyclic distribution for LU decomposition and all parallel linear algebra.
- Diagonal element $a_{i i}$ is assigned to $P(i \bmod \sqrt{p}, i \bmod \sqrt{p})$, so that the matrix diagonal is assigned to the diagonal processors $P(s, s), 0 \leq s<\sqrt{p}$.
- Only \sqrt{p} processors have part of the matrix diagonal and the vectors. The vector spreading assumption fails.
- The trouble is that diagonal processors must send $\sqrt{p}-1$ copies of $\frac{n}{\sqrt{p}}$ vector components: $h_{\mathrm{s}}=n-\frac{n}{\sqrt{p}}$ in (0).
- The total cost for the square cyclic distribution is
$T_{\mathrm{MV}, \text { dense, } \sqrt{p} \times \sqrt{p} \text { cyclic }}=\frac{2 n^{2}}{p}+n+2\left(1-\frac{1}{\sqrt{p}}\right) n g+4 /$.

Cyclic row distribution? No!

- Communication balance can be improved by choosing a distribution that spreads the matrix diagonal evenly, $\phi_{\mathbf{u}}(i)=\phi_{\mathbf{v}}(i)=i \bmod p$, and translating from 1D to 2D.
- We still have the freedom to choose M and N, where $M N=p$. For the choice $M=p$ and $N=1$, this gives the cyclic row distribution $\phi_{0}(i)=i \bmod p$ and $\phi_{1}(j)=0$.
- The total cost for the cyclic row distribution is

$$
T_{\mathrm{MV}, \text { dense, } p \times 1 \text { cyclic }}=\frac{2 n^{2}}{p}+\left(1-\frac{1}{p}\right) n g+2 /
$$

- This distribution skips supersteps (2) and (3), since each matrix row is completely contained in one processor.
- The trouble is that the fanout is very expensive: each processor has to send $\frac{n}{p}$ vector components to all others.

Square Cartesian distribution? Yes!

$n=8, p=4, M=N=2$. Square Cartesian distribution based on a cyclic distribution of the matrix diagonal.

- We take the same distribution method, $\phi_{\mathbf{u}}(i)=\phi_{\mathbf{v}}(i)=i \bmod p$, but now we choose $M=N=\sqrt{p}$ when translating from 1D to 2D.
- Et voilà! We achieve the optimal BSP cost.

Summary

- For Cartesian distributions, we use both 1D and 2D processor numberings to our advantage, with the identification $P(s, t) \equiv P(s+t M)$.
- We have seen the example of a tridiagonal matrix, where we obtained a 2D matrix distribution, slightly different from a 1D block row distribution. For band matrices with a wider band, this may be advantageous.
- A square Cartesian matrix distribution based on a cyclic distribution of the matrix diagonal and the input and output vectors is an optimal data distribution for dense matrices and for sparse matrices that are relatively dense.
- There exist other optimal data distributions, e.g. based on a block distribution of the matrix diagonal.

