Cartesian Distribution (PSC §4.4)

Identifying 1D and 2D processor numbering

▶ Natural column-wise identification for p = MN processors:

$$P(s,t) \equiv P(s+tM)$$
, for $0 \le s < M$ and $0 \le t < N$.

This can also be written as

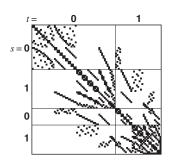
$$P(s) \equiv P(s \mod M, s \operatorname{div} M), \text{ for } 0 \le s < p.$$

▶ For a Cartesian distribution (ϕ_0, ϕ_1) , we map nonzeros a_{ij} to processors $P(\phi(i,j))$ by

$$\phi(i,j) = \phi_0(i) + \phi_1(j)M$$
, for $0 \le i,j < n$ and $a_{ij} \ne 0$.

▶ We use 1D or 2D numbering, whichever is most convenient in the context.

A Cartesian distribution of cage6



$$n = 93$$
, $nz = 785$, $p = 4$, $M = N = 2$.

- ▶ The processor row of a matrix element a_{ij} is $s = \phi_0(i)$; the processor column is $t = \phi_1(j)$.
- Matrix diagonal assigned in blocks to processors $P(0) \equiv P(0,0), P(1) \equiv P(1,0), P(2) \equiv P(0,1), P(3) \equiv P(1,1).$

Advantages of a Cartesian distribution

Advantages:

- Main advantage for sparse matrices is the same as for dense matrices: row-wise operations require communication only within processor rows. (Similar for columns.)
- ▶ Vector component v_j has to be sent to at most M processors, and vector component u_i is computed using contributions received from at most N processors.
- ► Simplicity: Cartesian distributions partition the matrix orthogonally into rectangular submatrices. Non-Cartesian distributions create arbitrarily shaped matrix parts.

Disadvantage:

Less general, so may not offer the optimal solution.

Matching matrix and vector distribution

- ▶ Vector component v_j is needed only by processors that possess an $a_{ij} \neq 0$, and these processors are contained in processor column $P(*, \phi_1(j))$.
- Assigning vector component v_j to one of the processors in $P(*, \phi_1(j))$ implies that v_j has to be sent to at most M-1 processors, instead of M.
- ▶ If we are lucky (or clever), we may even avoid communication of v_j altogether.
- ▶ If v_j were assigned to a different processor column, it would always have to be communicated.
- Assigning u_i to a processor in processor row $P(\phi_0(i), *)$ reduces the number of contributions sent for u_i to at most N-1.

A trivial but powerful theorem

Theorem 4.4 Let A be a sparse $n \times n$ matrix and \mathbf{u}, \mathbf{v} vectors of length n. Assume that:

- 1. distribution of A is Cartesian, $\operatorname{distr}(A) = (\phi_0, \phi_1)$;
- 2. distribution of **u** is such that u_i resides in $P(\phi_0(i), *)$;
- 3. distribution of **v** is such that v_j resides in $P(*, \phi_1(j))$.

Then: if u_i and v_j are assigned to the same processor, a_{ij} is also assigned to that processor and does not cause communication.

Proof Component u_i is assigned to $P(\phi_0(i), t)$. Component v_j to $P(s, \phi_1(j))$. Since this is the same processor, we have $(s, t) = (\phi_0(i), \phi_1(j))$, so that this processor also owns a_{ij} .

Special case $distr(\mathbf{u}) = distr(\mathbf{v})$

The conditions

- 1. distribution of A is Cartesian, $\operatorname{distr}(A) = (\phi_0, \phi_1)$;
- 2. distribution of **u** is such that u_i resides in $P(\phi_0(i), *)$;
- 3. distribution of **v** is such that v_j resides in $P(*, \phi_1(j))$;
- 4. $\operatorname{distr}(\mathbf{u}) = \operatorname{distr}(\mathbf{v});$

imply that u_i and v_i are assigned to $P(\phi_0(i), \phi_1(i))$, which is the owner of the diagonal element a_{ii} .

- ► For a fixed *M* and *N*, the choice of a Cartesian matrix distribution determines the vector distribution.
- ▶ The reverse is also true.

Example: 1D Laplacian matrix

$$A = \begin{bmatrix} -2 & 1 & & & & & \\ 1 & -2 & 1 & & & & \\ & 1 & -2 & 1 & & & \\ & & & \ddots & & & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix}.$$

- ► This tridiagonal matrix represents a Laplacian operator on a 1D grid of *n* points.
- ▶ $a_{ij} \neq 0$ if and only if $i j = 0, \pm 1$.

Vector distribution for tridiagonal matrix

- ▶ $a_{ij} \neq 0$ if and only if $i j = 0, \pm 1$.
- Assume we require $\operatorname{distr}(\mathbf{u}) = \operatorname{distr}(\mathbf{v})$. Theorem 4.4 says that it is best to assign u_i and v_j (and hence u_j) to the same processor if $i = j \pm 1$.
- ► Therefore, a suitable vector distribution over *p* processors is the block distribution,

$$u_i \longmapsto P(i \text{ div } \left\lceil \frac{n}{p} \right\rceil), \text{ for } 0 \leq i < n.$$

Example: 12×12 1D Laplacian matrix

Distribution matrix for n = 12 and M = N = 2:

Example: 12×12 1D Laplacian matrix (cont'd)

Position (i,j) of distr(A) gives 1D identity of the processor that owns matrix element a_{ij} ; distr(A) is obtained by:

- distributing the vectors by the 1D block distribution
- distributing the matrix diagonal in the same way as the vectors
- ▶ translating the 1D processor numbers into 2D numbers by $P(0) \equiv P(0,0)$, $P(1) \equiv P(1,0)$, $P(2) \equiv P(0,1)$, $P(3) \equiv P(1,1)$.
- ▶ determining the owners of the off-diagonal nonzeros: a_{56} is in the same processor row as a_{55} , owned by P(1) = P(1,0); it is in the same processor column as a_{66} , owned by P(2) = P(0,1). Thus, a_{56} is owned by P(1,1) = P(3).

Cost analysis

Assuming a good spread of nonzeros and vector components over processors, matrix rows over processor rows, matrix columns over processor columns:

$$T_{(0)} = (M-1)\frac{ng}{p} + I,$$

$$T_{(1)} = \frac{2cn}{p} + I,$$

$$T_{(2)} = (N-1)\frac{ng}{p} + I,$$

$$T_{(3)} = \frac{Nn}{p} + I.$$

$$T_{\text{MV}, M \times N} \le \frac{2cn}{p} + \frac{n}{M} + \frac{M+N-2}{p}ng + 4I.$$

Efficient computation for $M = N = \sqrt{p}$

$$T_{\mathrm{MV}, \sqrt{p} \times \sqrt{p}} \leq \frac{2cn}{p} + \frac{n}{\sqrt{p}} + 2\left(\frac{1}{\sqrt{p}} - \frac{1}{p}\right) ng + 4I.$$

- ► Computation is efficient if $\frac{2cn}{p} > \frac{2ng}{\sqrt{p}}$, i.e., $c > \sqrt{p}g$.
- ▶ Improvement of factor \sqrt{p} compared to previous general efficiency criterion.

Dense matrices

- ▶ Dense matrices are the limit of sparse matrices for $c \rightarrow n$.
- Analysing the dense case is easier and it can give us insight into the sparse case as well.
- ▶ Substituting c = n in previous cost formula gives

$$T_{\mathrm{MV,\ dense}} \leq \frac{2n^2}{p} + \frac{n}{\sqrt{p}} + 2\left(\frac{1}{\sqrt{p}} - \frac{1}{p}\right) ng + 4I.$$

- All spreading assumptions must hold.
- ▶ Which distribution will yield this cost?

Square cyclic distribution? No!

- Previously, we have extolled the virtues of the square cyclic distribution for LU decomposition and all parallel linear algebra.
- ▶ Diagonal element a_{ii} is assigned to $P(i \mod \sqrt{p}, i \mod \sqrt{p})$, so that the matrix diagonal is assigned to the diagonal processors P(s, s), $0 \le s < \sqrt{p}$.
- ▶ Only \sqrt{p} processors have part of the matrix diagonal and the vectors. The vector spreading assumption fails.
- ▶ The trouble is that diagonal processors must send $\sqrt{p}-1$ copies of $\frac{n}{\sqrt{p}}$ vector components: $h_{\rm s}=n-\frac{n}{\sqrt{p}}$ in (0).
- ▶ The total cost for the square cyclic distribution is

$$T_{\mathrm{MV,\ dense,\ }\sqrt{p} imes\sqrt{p}\ \mathrm{cyclic}} = rac{2n^2}{p} + n + 2\left(1 - rac{1}{\sqrt{p}}
ight) ng + 4I.$$

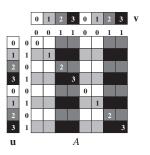
Cyclic row distribution? No!

- ► Communication balance can be improved by choosing a distribution that spreads the matrix diagonal evenly, $\phi_{\mathbf{u}}(i) = \phi_{\mathbf{v}}(i) = i \mod p$, and translating from 1D to 2D.
- ▶ We still have the freedom to choose M and N, where MN = p. For the choice M = p and N = 1, this gives the cyclic row distribution $\phi_0(i) = i \mod p$ and $\phi_1(j) = 0$.
- The total cost for the cyclic row distribution is

$$T_{\text{MV, dense, } p \times 1 \text{ cyclic}} = \frac{2n^2}{p} + \left(1 - \frac{1}{p}\right) ng + 2I.$$

- ► This distribution skips supersteps (2) and (3), since each matrix row is completely contained in one processor.
- ▶ The trouble is that the fanout is very expensive: each processor has to send $\frac{n}{p}$ vector components to all others.

Square Cartesian distribution? Yes!



n = 8, p = 4, M = N = 2. Square Cartesian distribution based on a cyclic distribution of the matrix diagonal.

- ▶ We take the same distribution method, $\phi_{\mathbf{u}}(i) = \phi_{\mathbf{v}}(i) = i \mod p$, but now we choose $M = N = \sqrt{p}$ when translating from 1D to 2D.
- Et voilà! We achieve the optimal BSP cost.

Summary

- ▶ For Cartesian distributions, we use both 1D and 2D processor numberings to our advantage, with the identification $P(s,t) \equiv P(s+tM)$.
- ▶ We have seen the example of a tridiagonal matrix, where we obtained a 2D matrix distribution, slightly different from a 1D block row distribution. For band matrices with a wider band, this may be advantageous.
- A square Cartesian matrix distribution based on a cyclic distribution of the matrix diagonal and the input and output vectors is an optimal data distribution for dense matrices and for sparse matrices that are relatively dense.
- ► There exist other optimal data distributions, e.g. based on a block distribution of the matrix diagonal.