Parallel Sparse Matrix-Vector Multiplication (PSC §4.3)

Option 1: represent first, distribute later

First build a global data structure to represent the sparse matrix, then distribute it over the processors:

- A parallelising compiler would do this.
- Requires global collaboration between the processors.
- Simple operations become complicated: in a linked list, 3 processors must work together and communicate to insert a new nonzero.

Option 2: distribute first, represent later

Distribute the matrix first, and then let each processor represent the local nonzeros:

- This assigns subsets of nonzeros to processors.
- The subsets form a partitioning of the nonzero set: subsets are disjoint and together they contain all nonzeros.
- Sequential sparse data structures can be used.
- Simple operations remain simple: insertion and deletion are local operations without communication.
- This is the preferred approach.

Most general matrix distribution

- The most general scheme maps nonzeros to processors,

$$
a_{i j} \longmapsto P(\phi(i, j)), \text { for } 0 \leq i, j<n \text { and } a_{i j} \neq 0,
$$

where $0 \leq \phi(i, j)<p$.

- Zeros are not assigned to processors. For convenience, we define $\phi(i, j)=-1$ if $a_{i j}=0$.
- Here, we use a 1D processor numbering.

Distribution of matrix and vectors

Global view
Local view

\section*{| 2 | 1 | 1 | 4 | 3 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

(a)

(b)
$p=2, n=5, n z=13 . P(0)$ grey cells, $P(1)$ black cells.
Matrix distribution is non-Cartesian.

Where to compute $a_{i j} \cdot v_{j}$?

- Usually, there are many more nonzeros than vector components, $n z(A) \gg n$, so move the vector components v_{j} to the nonzeros $a_{i j}$, not vice versa.
- Add local products $a_{i j} v_{j}$ belonging to the same row i. Result on $P(s)$ is the local contribution $u_{i s}$ to u_{i}
- Result $u_{i s}$ is sent to the owner of u_{i}.
- Thus, we do not communicate elements of A, but only components of \mathbf{v} and contributions to components of \mathbf{u}.

How to distribute the vectors?

- In many iterative solvers, the same vector is repeatedly multiplied by a matrix A.
- Usually, a few vector operations are interspersed, such as DAXPYs $\mathbf{y}:=\alpha \mathbf{x}+\mathbf{y}$ or inner products $\alpha:=\mathbf{x}^{\top} \mathbf{y}$.
- All vectors should then be distributed in the same way: $\operatorname{distr}(\mathbf{u})=\operatorname{distr}(\mathbf{v})$ for the operation $\mathbf{u}:=A \mathbf{v}$.
- Sometimes, however, we compute $A^{T} A \mathbf{v}$. The output vector for A is then taken as the input vector for A^{T}.
- Now, we do not need to revert immediately to the input distribution. We allow $\operatorname{distr}(\mathbf{u}) \neq \operatorname{distr}(\mathbf{v})$.
- We map vector components to processors by

$$
u_{i} \longmapsto P\left(\phi_{\mathbf{u}}(i)\right), \text { for } 0 \leq i<n
$$

Deriving a parallel algorithm

- Once we have chosen the data distribution and decided to compute the products $a_{i j} v_{j}$ on the processor that owns $a_{i j}$, the parallel algorithm follows naturally.
- The main computation for processor $P(s)$ is multiplying each local nonzero element $a_{i j}$ by v_{j} and adding the result into a local partial sum,

$$
u_{i s}=\sum_{0 \leq j<n, \phi(i, j)=s} a_{i j} v_{j} .
$$

- Sparsity is exploited:
- only terms with $a_{i j} \neq 0$ are summed;
- only local partial sums $u_{i s}$ are computed for which

$$
\{j: 0 \leq j<n \wedge \phi(i, j)=s\} \neq \emptyset .
$$

Row index set

(a)

P(0)

$\mathbf{P}(1)$
(b)

- On $P(0)$, row 4 is empty. On $P(1)$, row 1 is empty.
- Index set I_{s} of rows that are locally nonempty in $P(s)$ is

$$
I_{s}=\{i: 0 \leq i<n \wedge(\exists j: 0 \leq j<n \wedge \phi(i, j)=s)\}
$$

- $I_{0}=\{0,1,2,3\}$ and $I_{1}=\{0,2,3,4\}$.

Local sparse matrix-vector multiplication

$$
I_{s}=\{i: 0 \leq i<n \wedge(\exists j: 0 \leq j<n \wedge \phi(i, j)=s)\}
$$

(1) \{ Local sparse matrix-vector multiplication \} for all $i \in I_{s}$ do

$$
\begin{aligned}
& u_{\text {is }}:=0 ; \\
& \text { for all } j: 0 \leq j<n \wedge \phi(i, j)=s \text { do } \\
& \qquad u_{i s}:=u_{i s}+a_{i j} v_{j} ;
\end{aligned}
$$

Data structure for local sparse matrix

- Compressed row storage (CRS) suits row-oriented local matrix-vector multiplication.
- CRS must be adapted to avoid overhead of many empty rows, which typically occurs if $c \ll p$.
- We number the nonempty local rows from 0 to $\left|I_{s}\right|-1$. The corresponding indices i are the local indices.
- The original global indices from the set I_{s} are stored in increasing order in an array rowindex of length $\left|I_{s}\right|$:

$$
i=\text { rowindex[i]. }
$$

- Address of first local nonzero of row i is start[i].

Column index set

- Index set J_{s} of columns that are locally nonempty in $P(s)$ is

$$
\begin{aligned}
& J_{s}=\{j: 0 \leq j<n \wedge(\exists i: 0 \leq i<n \wedge \phi(i, j)=s)\} \\
- & J_{0}=\{0,1,2\} \text { and } J_{1}=\{2,3,4\} .
\end{aligned}
$$

Fanout

$$
\begin{aligned}
& J_{s}=\{j: 0 \leq j<n \wedge(\exists i: 0 \leq i<n \wedge \phi(i, j)=s)\} \\
& \text { (0) } \quad\{\text { Fanout }\} \\
& \quad \text { for all } j \in J_{s} \text { do } \\
& \quad \text { get } v_{j} \text { from } P\left(\phi_{v}(j)\right) ;
\end{aligned}
$$

- The receiver knows (from its index set J_{s}) that it needs the vector component v_{j}. The sender is unaware of this. Thus, the receiver initiates the communication by using a 'get'.
- In dense algorithms, communication patterns are predictable and thus known to every processor, so that we only need 'put' primitives.
- In sparse algorithms, we also have to use 'get' primitives.

Fanin and final summation

(2) $\{$ Fanin $\}$

for all $i \in I_{s}$ do

 put $u_{i s}$ in $P\left(\phi_{\mathbf{u}}(i)\right)$;(3) $\{$ Summation of nonzero partial sums $\}$ for all $i: 0 \leq i<n \wedge \phi_{\mathbf{u}}(i)=s$ do
$u_{i}:=0$;
for all $t: 0 \leq t<p \wedge u_{i t} \neq 0$ do

$$
u_{i}:=u_{i}+u_{i t}
$$

Communication

- Vertical arrows: communication of components v_{j}.
- v_{0} is sent from $P(1)$ to $P(0)$, because of the nonzeros $a_{10}=4$ and $a_{30}=6$ owned by $P(0)$.
- v_{1}, v_{3}, v_{4} need not be sent.
- Horizontal arrows: communication of partial sums $u_{i s}$.

Cost analysis

Wat kost het? (Dutch for: How much does it cost?)

- Answer depends on matrix A and distributions $\phi, \phi_{\mathbf{v}}, \phi_{\mathbf{u}}$.
- We can obtain an upper bound on the BSP cost, assuming:
- the matrix nonzeros are evenly spread over the processors, each processor having $\frac{c n}{p}$ nonzeros;
- the vector components are also evenly spread, each processor having $\frac{n}{p}$ components.
- Bound may be far too pessimistic for particular distributions that are well-tailored to the matrix.

Cost of separate supersteps

(0): $P(s)$ must receive at most all n components v_{j}, but not the $\frac{n}{p}$ local components, so that $h_{\mathrm{r}}=n-\frac{n}{p}$. $h_{\mathrm{s}}=\frac{n}{p}(p-1)$, because the $\frac{n}{p}$ local components must be sent to all the other $p-1$ processors.

$$
T_{(0)}=\left(1-\frac{1}{p}\right) n g+l .
$$

(1): 2 flops are needed for each local nonzero.

$$
T_{(1)}=\frac{2 c n}{p}+l .
$$

Cost of separate supersteps (cont'd)

(2): Similar to (0).

$$
T_{(2)}=\left(1-\frac{1}{p}\right) n g+l
$$

(3): Each of the $\frac{n}{p}$ local vector components is computed by adding at most p partial sums.

$$
T_{(3)}=n+I .
$$

Total BSP cost is bounded by

$$
T_{\mathrm{MV}} \leq \frac{2 c n}{p}+n+2\left(1-\frac{1}{p}\right) n g+4 /
$$

Efficient computation

$$
T_{\mathrm{MV}} \leq \frac{2 c n}{p}+n+2\left(1-\frac{1}{p}\right) n g+4 /
$$

- Computation is efficient if $\frac{2 c n}{p}>2 n g$, i.e., $c>p g$. But this happens rarely: only for very dense matrices.
- The number of nonzeros per row c, and not the density d, determines the efficiency directly.
- To make the computation efficient for smaller c, we can:
- use a Cartesian distribution and exploit its 2D nature;
- refine the general distribution using an automatic procedure to detect the underlying matrix structure;
- exploit properties of specific matrix classes, such as random sparse matrices and Laplacian matrices.

Communication volume

- Communication volume V of an algorithm is the total number of data words sent. It depends on $\phi, \phi_{\mathbf{u}}, \phi_{\mathbf{v}}$.
- For a given ϕ, obtain a lower bound V_{ϕ} on V by counting:
- the number of processors p_{i} that have a nonzero $a_{i j}$ in matrix row i; at least $p_{i}-1$ processors must send a contribution $u_{i s}$.
- the number of processors q_{j} that has a nonzero $a_{i j}$ in matrix column j.

$$
V_{\phi}=\sum_{0 \leq i<n, p_{i} \geq 1}\left(p_{i}-1\right)+\sum_{0 \leq j<n, q_{j} \geq 1}\left(q_{j}-1\right) .
$$

- An upper bound is $V_{\phi}+2 n$, because in the worst case all n components u_{i} are owned by processors without a nonzero in row i, and similar for the components v_{j}.

Summary

- Distribute first, represent later.
- Most general mapping of nonzeros and vector components to processors:

$$
\begin{aligned}
a_{i j} & \longmapsto P(\phi(i, j)), \text { for } 0 \leq i, j<n \text { and } a_{i j} \neq 0, \\
u_{i} & \longmapsto P\left(\phi_{\mathbf{u}}(i)\right), \text { for } 0 \leq i<n .
\end{aligned}
$$

- We have derived a parallel algorithm with 4 supersteps: fanout, local matrix-vector multiplication, fanin, summation of partial sums.
- The row index set I_{s} and column index set J_{s} are used for exploiting the sparsity in the algorithm.
- We encountered the first absolutely necessary use of a 'get' primitive.

