Sparse Matrices and Their Data Structures (PSC §4.2)

Basic sparse technique: adding two vectors

- Problem: add a sparse vector \mathbf{y} of length n to a sparse vector \mathbf{x} of length n, overwriting \mathbf{x}, i.e.,

$$
\mathbf{x}:=\mathbf{x}+\mathbf{y} .
$$

- x is a sparse vector means that $x_{i}=0$ for most i.
- The number of nonzeros of \mathbf{x} is c_{x} and that of \mathbf{y} is c_{y}.

Example: storage as compressed vector

- Vectors \mathbf{x}, \mathbf{y} have length $n=8$.
- Their number of nonzeros is $c_{x}=3$ and $c_{y}=4$.
- A compressed vector data structure for \mathbf{x} and \mathbf{y} is:

$x[j] \cdot a=$	2	5	1
$x[j] \cdot i=$	5	3	7
$y[j] \cdot a=$	1	4	1

- Here, the j th nonzero in the array of \mathbf{x} has numerical value $x_{i}=x[j] . a$ and index $i=x[j] . i$.
- How to compute $\mathbf{x}+\mathbf{y}$?

Addition is easy for dense storage

- The dense vector data structure for \mathbf{x}, \mathbf{y}, and $\mathbf{x}+\mathbf{y}$ is:

0	0	0	5	0	2	0	1
0	0	4	4	0	1	1	0
0	0	4	9	0	3	1	1

- A compressed vector data structure for $\mathbf{z}=\mathbf{x}+\mathbf{y}$ is:

$z[j] \cdot a=$	3	9	1	1	4
$z[j] \cdot i=$	5	3	7	6	2

- Conclusion: use an auxiliary dense vector!

Location array

The array loc (initialised to -1) stores the location $j=\operatorname{loc}[i]$ where a nonzero vector component y_{i} is stored in the compressed array.

$y[j] \cdot a=$	1	4	1	4
$y[j] \cdot i=$	6	3	5	2
$j=$	0	1	2	3

$y_{i}=$	0	0	4	4	0	1	1	0
$\operatorname{loc}[i]=$	-1	-1	3	1	-1	2	0	-1
$i=$	0	1	2	3	4	5	6	7

Algorithm for sparse vector addition: pass 1

$$
\begin{array}{ll}
\text { input: } & \mathbf{x}: \text { sparse vector with } c_{x} \text { nonzeros, } \mathbf{x}=\mathbf{x}_{0}, \\
\mathbf{y}: \text { sparse vector with } c_{y} \text { nonzeros, } \\
& \text { loc: dense vector of length } n, \\
& \text { loc }[i]=-1, \text { for } 0 \leq i<n . \\
\text { output: } & \mathbf{x}=\mathbf{x}_{0}+\mathbf{y}, \\
& \operatorname{loc}[i]=-1, \text { for } 0 \leq i<n .
\end{array}
$$

\{ Register location of nonzeros of \mathbf{y} \} for $j:=0$ to $c_{y}-1$ do $\operatorname{loc}[y[j] . i]:=j ;$

Algorithm for sparse vector addition: passes 2, 3

\{ Add matching nonzeros of \mathbf{x} and \mathbf{y} into \mathbf{x} \} for $j:=0$ to $c_{x}-1$ do
$i:=x[j] . i$;
if $\operatorname{loc}[i] \neq-1$ then
$x[j] \cdot a:=x[j] \cdot a+y[/ o c[i]] \cdot a ;$ $\operatorname{loc}[i]:=-1$;

Algorithm for sparse vector addition: passes 2, 3

\{ Add matching nonzeros of \mathbf{x} and \mathbf{y} into \mathbf{x} \}

$$
\begin{aligned}
\text { for } j:=0 & \text { to } c_{x}-1 \text { do } \\
& i:=x[j] \cdot i ; \\
& \text { if } \operatorname{loc}[i] \neq-1 \text { then } \\
& x[j] \cdot a:=x[j] \cdot a+y[\operatorname{loc}[i]] \cdot a ; \\
& \operatorname{loc}[i]:=-1 ;
\end{aligned}
$$

\{ Append remaining nonzeros of \mathbf{y} to \mathbf{x} \} for $j:=0$ to $c_{y}-1$ do
$i:=y[j] . i ;$
if $\operatorname{loc}[i] \neq-1$ then
$x\left[c_{x}\right] . i:=i$;
$x\left[c_{x}\right] \cdot a:=y[j] \cdot a ;$
$c_{x}:=c_{x}+1$;
$\operatorname{loc}[i]:=-1$;

Analysis of sparse vector addition

- The total number of operations is $\mathcal{O}\left(c_{x}+c_{y}\right)$, since there are $c_{x}+2 c_{y}$ loop iterations, each with a small constant number of operations.
- The number of flops equals the number of nonzeros in the intersection of the sparsity patterns of \mathbf{x} and \mathbf{y}. 0 flops can happen!
- Initialisation of array loc costs n operations, which will dominate the total cost if only one vector addition has to be performed.
- loc can be reused in subsequent vector additions, because each modified element loc $[i]$ is reset to -1 .
- If we add two $n \times n$ matrices row by row, we can amortise the $\mathcal{O}(n)$ initialisation cost over n vector additions.

Accidental zero

$17,758 \times 17,758$ matrix memplus with 126,150 entries, including 27,003 accidental zeros.

- An accidental zero is a matrix element that is numerically zero but still occurs as a nonzero pair $(i, 0)$ in the data structure.
- Accidental zeros are created when a nonzero $y_{i}=-x_{i}$ is added to a nonzero x_{i} and the resulting zero is retained.
- Testing all operations in a sparse matrix algorithm for zero results is more expensive than computing with a few additional nonzeros.
- Therefore, accidental zeros are usually kept.

No abuse of numerics for symbolic purposes!

- Instead of using the symbolic location array, initialised at -1 , we could have used an auxiliary array storing numerical values, initialised at 0.0.
- We could then add \mathbf{y} into the numerical array, update \mathbf{x} accordingly, and reset the array.
- Unfortunately, this would make the resulting sparsity pattern of $\mathbf{x}+\mathbf{y}$ dependent on the numerical values of \mathbf{x} and \mathbf{y} : an accidental zero in \mathbf{y} would never lead to a new entry in the data structure of $\mathbf{x}+\mathbf{y}$.
- This dependence may prevent reuse of the sparsity pattern in case the same program is executed repeatedly for a matrix with different numerical values but the same sparsity pattern.
- Reuse often speeds up subsequent program runs.

Sparse matrix data structure: coordinate scheme

- In the coordinate scheme or triple scheme, every nonzero element $a_{i j}$ is represented by a triple $\left(i, j, a_{i j}\right)$, where i is the row index, j the column index, and $a_{i j}$ the numerical value.
- The triples are stored in arbitrary order in an array.
- This data structure is easiest to understand and is often used for input/output.
- It is suitable for input to a parallel computer, since all information about a nonzero is contained in its triple. The triples can be sent directly and independently to the responsible processors.
- Row-wise or column-wise operations on this data structure require a lot of searching.

Compressed Row Storage

- In the Compressed Row Storage (CRS) data structure, each matrix row i is stored as a compressed sparse vector consisting of pairs $\left(j, a_{i j}\right)$ representing nonzeros.
- In the data structure, $a[k]$ denotes the numerical value of the k th nonzero, and $j[k]$ its column index.
- Rows are stored consecutively, in order of increasing i.
- start $[i]$ is the address of the first nonzero of row i.
- The number of nonzeros of row i is start $[i+1]-\operatorname{start}[i]$, where by convention start $[n]=n z(A)$.

Example of CRS

$$
A=\left[\begin{array}{lllll}
0 & 3 & 0 & 0 & 1 \\
4 & 1 & 0 & 0 & 0 \\
0 & 5 & 9 & 2 & 0 \\
6 & 0 & 0 & 5 & 3 \\
0 & 0 & 5 & 8 & 9
\end{array}\right], n=5, n z(A)=13
$$

The CRS data structure for A is:

$a[k]=$	3	1	4	1	5	9	2	6	5	3	5	8	9
$j[k]=$	1	4	0	1	1	2	3	0	3	4	2	3	4
$k=$	0	1	2	3	4	5	6	7	8	9	10	11	12

$\operatorname{start}[i]=$	0	2	4	7	10	13
$i=$	0	1	2	3	4	5

Sparse matrix-vector multiplication using CRS

input: $\quad A$: sparse $n \times n$ matrix,
v : dense vector of length n.
output: $\quad \mathbf{u}$: dense vector of length $n, \mathbf{u}=A \mathbf{v}$.

$$
\begin{aligned}
& \text { for } i:=0 \text { to } n-1 \text { do } \\
& \quad u[i]:=0 ; \\
& \quad \text { for } k:=\operatorname{start}[i] \text { to } \operatorname{start}[i+1]-1 \text { do } \\
& \quad u[i]:=u[i]+a[k] \cdot v[j[k]] ;
\end{aligned}
$$

Incremental Compressed Row Storage

- Incremental Compressed Row Storage (ICRS) is a variant of CRS proposed by Joris Koster in 2002.
- In ICRS, the location (i, j) of a nonzero $a_{i j}$ is encoded as a 1D index $i \cdot n+j$.
- Instead of the 1D index itself, the difference with the 1D index of the previous nonzero is stored, as an increment in the array inc.
- The nonzeros within a row are ordered by increasing j, so that the 1D indices form a monotonically increasing sequence and the increments are positive.
- An extra dummy element $(n, 0)$ is added at the end.

Example of ICRS

$$
A=\left[\begin{array}{lllll}
0 & 3 & 0 & 0 & 1 \\
4 & 1 & 0 & 0 & 0 \\
0 & 5 & 9 & 2 & 0 \\
6 & 0 & 0 & 5 & 3 \\
0 & 0 & 5 & 8 & 9
\end{array}\right], n=5, n z(A)=13
$$

The ICRS data structure for A is:

$a[k]=$	3	1	4	1	5	9	2	\ldots	0
$j[k]=$	1	4	0	1	1	2	3	\ldots	0
$i[k] \cdot n+j[k]=$	1	4	5	6	11	12	13	\ldots	25
$i n c[k]=$	1	3	1	1	5	1	1	\ldots	1
$k=$	0	1	2	3	4	5	6	\ldots	13

Sparse matrix-vector multiplication using ICRS

$$
\begin{array}{ll}
\text { input: } & \text { A: sparse } n \times n \text { matrix, } \\
& \mathbf{v}: \text { dense vector of length } n . \\
\text { output: } & \mathbf{u}: \text { dense vector of length } n, \mathbf{u}=A \mathbf{v} . \\
k:=0 ; j:=\operatorname{inc}[0] ; \\
\text { for } i:=0 \text { to } n-1 \text { do } \\
& u[i]:=0 ; \\
& \text { while } j<n \text { do } \\
& u[i]:=u[i]+a[k] \cdot v[j] ; \\
& k:=k+1 ; \\
& j:=j+i n c[k] ; \\
& j:= \\
& j-n ;
\end{array}
$$

Slightly faster: increments translate well into pointer arithmetic of programming language C; no indirect addressing $v[j[k]]$.

A few other data structures

- Compressed column storage (CCS), similar to CRS.
- Gustavson's data structure: both CRS and CCS, but storing numerical values only once. Offers row-wise and column-wise access to the sparse matrix.
- The two-dimensional doubly linked list: each nonzero is represented by $i, j, a_{i j}$, and links to a next and a previous nonzero in the same row and column. Offers maximum flexibility: row-wise and column-wise access are easy and elements can be inserted and deleted in $\mathcal{O}(1)$ operations.
- Matrix-free storage: sometimes it may be too costly to store the matrix explicitly. Instead, each matrix element is recomputed when needed. Enables solution of huge problems.

Summary

- Sparse matrix algorithms are more complicated than their dense equivalents, as we saw for sparse vector addition.
- Sparse matrix computations have a larger integer overhead associated with each floating-point operation.
- Still, using sparsity can save large amounts of CPU time and also memory space.
- We learned an efficient way of adding two sparse vectors using a dense initialised auxiliary array. You will be surprised to see how often you can use this trick.
- Compressed row storage (CRS) and its variants are useful data structures for sparse matrices.
- CRS stores the nonzeros of each row together, but does not sort the nonzeros within a row. Sorting is a mixed blessing: it may help, but it also takes time.

