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Sparse and dense matrices

I Sparse matrices are sparsely populated by nonzero elements.

I Dense matrices have mostly nonzeros.

I Sparse matrix computations save time: operations with zeros
can be skipped or simplified; only the nonzeros must be
handled.

I Sparse matrix computations also save memory: only the
nonzero elements need to be stored (together with their
location).
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Sparse matrix cage6

n = 93, nz = 785 nonzeros, c = 8.4 nonzeros per row,
d = 9.1% density
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Matrix statistics

I Number of nonzeros is

nz = nz(A) = |{aij : 0 ≤ i , j < n ∧ aij 6= 0}|.

I Average number of nonzeros per row or column is

c = c(A) =
nz(A)

n
.

I Density is

d = d(A) =
nz(A)

n2
.

I Matrix is sparse if nz(A) � n2, or c(A) � n, or d(A) � 1.
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Application: cage model for DNA electrophoresis

(A. van Heukelum, G. T. Barkema, R. H. Bisseling,
Journal of Computational Physics 180 (2002) pp. 313–326.)
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I 3D cubic lattice models a gel

I DNA polymer reptates (moves like a snake):
kinks and end points move

I DNA sequencing machines: electric field E .
Aim: study drift velocity v(E ).
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Transition matrix for cage model

I Matrix element aij is the probability that a polymer in state j
moves to a state i . Hence, 0 ≤ aij ≤ 1.

I Polymer has 6 monomers for cage6. We can move only one
monomer at a time. Hence, each state has only a few
connected states and the matrix is sparse.
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Sparsity structure of cage6

I Each move can be reversed, hence aij 6= 0 ⇐⇒ aji 6= 0, i.e.,
the matrix is structurally symmetric.

I Move against the electric field has different probability than
move with the field. Hence aij 6= aji , so that the matrix is
unsymmetric.
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Power method

I Let x be the vector of state frequencies: component xi

represents the relative frequency of state i , with 0 ≤ xi ≤ 1
and

∑
i xi = 1.

I The power method computes Ax,A2x,A3x, . . ., until
convergence.

I Final component xi represents the frequency of state i in the
steady-state situation, where Ax = x.

I Main operation: multiplication of sparse matrix A and dense
vector x.
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Sparse matrix–vector multiplication

I Let A be a sparse n × n matrix and v a dense input vector of
length n.

I We consider the problem of computing the dense output
vector u,

u := Av.

I The components of u are

ui =
n−1∑
j=0

aijvj , for 0 ≤ i < n.
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Sparse matrix–vector multiplication algorithm

input: A: sparse n × n matrix,
v : dense vector of length n.

output: u : dense vector of length n, u = Av.

for i := 0 to n − 1 do
ui := 0;

for all (i , j) : 0 ≤ i , j < n ∧ aij 6= 0 do
ui := ui + aijvj ;

The sparsity of A is expressed by the test aij 6= 0. Such a test is
never executed in practice, and instead a sparse data structure is
used.
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Iterative solution methods

I Sparse matrix–vector multiplication is the main computation
step in iterative solution methods for linear systems or
eigensystems.

I Iterative methods start with an initial guess x0 and then
successively improve the solution by finding better
approximations xk , k = 1, 2, . . ., until the error is tolerable.

I Examples:
I Linear systems Ax = b, solved by the conjugate gradient (CG)

method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR,
SOR, FOM, ...

I Eigensystems Ax=λx solved by the Lanczos method,
Jacobi–Davidson, ...
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Web searching: which page ranks first?
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The link matrix A

I Given n web pages with links between them.
We can define the sparse n × n link matrix A by

aij =

{
1 if there is a link from page j to page i
0 otherwise.

I Let e = (1, 1, . . . , 1)T , representing an initial uniform
importance (rank) of all web pages. Then

(Ae)i =
∑

j

aijej =
∑

j

aij

is the total number of links pointing to page i .

I The vector Ae represents the importance of the pages; A2e
takes the importance of the pointing pages into account as
well; and so on.
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The Google matrix

I A web surfer chooses each of the outgoing Nj links from page
j with equal probability. Define the n × n diagonal matrix D
with djj = 1/Nj .

I Let α be the probability that a surfer follows an outlink of the
current page. Typically α = 0.85. The surfer jumps to a
random page with probability 1− α.

I The Google matrix is defined by (Brin and Page 1998)

G = αAD + (1− α)eeT/n.

I The PageRank of a set of web pages is obtained by repeated
multiplication by G , involving sparse matrix–vector
multiplication by A, and some vector operations.
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Insight into other applications
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I (a) A 2D molecular dynamics domain of size 1.0× 1.0 with 10
particles.

I The cut-off radius for the interaction between particles is
rc = 0.2. The circles shown have radius rc/2 = 0.1.

I (b) The corresponding sparse 10× 10 force matrix F . If the
circles of radius rc/2 of particles i and j overlap, then i and j
interact, so that nonzero forces fij and fji appear in F .
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Summary

I Sparse matrices are the rule, rather than the exception. In
many applications, variables are connected to only a few
others, leading to sparse matrices.

I Sparse matrices occur in various application areas:
I transition matrices in Markov models;
I finite-element matrices in engineering;
I linear programming matrices in optimisation;
I weblink matrices in Google PageRank computation.

I We often express computation costs in the matrix size n and
the average number of nonzeros per row c .

I Sparse matrix–vector multiplication is important for iterative
solvers. It can also capture other applications such as
molecular dynamics.

I The sequential computation is simple, but its parallelisation is
a big challenge.
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