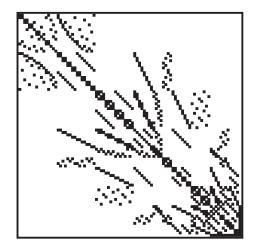
Sequential sparse matrix–vector multiplication (PSC $\S4.1$)

Sparse and dense matrices

- Sparse matrices are sparsely populated by nonzero elements.
- Dense matrices have mostly nonzeros.
- Sparse matrix computations save time: operations with zeros can be skipped or simplified; only the nonzeros must be handled.
- Sparse matrix computations also save memory: only the nonzero elements need to be stored (together with their location).

Sparse matrix cage6



n = 93, nz = 785 nonzeros, c = 8.4 nonzeros per row, d = 9.1% density

Matrix statistics

Number of nonzeros is

$$nz = nz(A) = |\{a_{ij} : 0 \le i, j < n \land a_{ij} \ne 0\}|.$$

Average number of nonzeros per row or column is

$$c=c(A)=\frac{nz(A)}{n}.$$

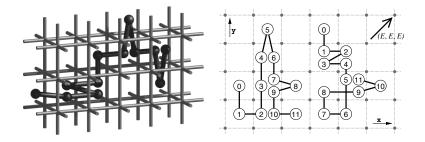
Density is

$$d=d(A)=\frac{nz(A)}{n^2}.$$

• Matrix is sparse if $nz(A) \ll n^2$, or $c(A) \ll n$, or $d(A) \ll 1$.

Application: cage model for DNA electrophoresis

(A. van Heukelum, G. T. Barkema, R. H. Bisseling, Journal of Computational Physics **180** (2002) pp. 313–326.)



- 3D cubic lattice models a gel
- DNA polymer reptates (moves like a snake): kinks and end points move
- ► DNA sequencing machines: electric field *E*. Aim: study drift velocity v(E). Sequential sparse matrix-vector multiplication

Transition matrix for cage model

- ► Matrix element a_{ij} is the probability that a polymer in state j moves to a state i. Hence, 0 ≤ a_{ij} ≤ 1.
- Polymer has 6 monomers for cage6. We can move only one monomer at a time. Hence, each state has only a few connected states and the matrix is sparse.

Sequential sparse matrix-vector multiplicatio

Sparsity structure of cage6

- ► Each move can be reversed, hence a_{ij} ≠ 0 ⇔ a_{ji} ≠ 0, i.e., the matrix is structurally symmetric.
- ► Move against the electric field has different probability than move with the field. Hence a_{ij} ≠ a_{ji}, so that the matrix is unsymmetric.

Sequential sparse matrix-vector multiplication $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle = \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Power method

- Let x be the vector of state frequencies: component x_i represents the relative frequency of state i, with 0 ≤ x_i ≤ 1 and ∑_i x_i = 1.
- ► The power method computes Ax, A²x, A³x,..., until convergence.
- Final component x_i represents the frequency of state i in the steady-state situation, where Ax = x.
- Main operation: multiplication of sparse matrix A and dense vector x.

Sparse matrix-vector multiplication

- Let A be a sparse $n \times n$ matrix and **v** a dense input vector of length n.
- We consider the problem of computing the dense output vector **u**,

$$\mathbf{u} := A\mathbf{v}.$$

► The components of **u** are

$$u_i = \sum_{j=0}^{n-1} a_{ij} v_j, \quad \text{for } 0 \le i < n.$$

Sparse matrix-vector multiplication algorithm

input: A: sparse $n \times n$ matrix, \mathbf{v} : dense vector of length *n*. *output:* **u** : dense vector of length n, $\mathbf{u} = A\mathbf{v}$. for i := 0 to n - 1 do $u_i := 0$: for all $(i,j) : 0 \le i, j < n \land a_{ii} \ne 0$ do $u_i := u_i + a_{ii}v_i;$

The sparsity of A is expressed by the test $a_{ii} \neq 0$. Such a test is never executed in practice, and instead a sparse data structure is used.

Iterative solution methods

- Sparse matrix-vector multiplication is the main computation step in iterative solution methods for linear systems or eigensystems.
- \blacktriangleright Iterative methods start with an initial guess \mathbf{x}^0 and then successively improve the solution by finding better approximations \mathbf{x}^k , $k = 1, 2, \dots$, until the error is tolerable.
- Examples:
 - Linear systems $A\mathbf{x} = \mathbf{b}$, solved by the conjugate gradient (CG) method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR, SOR, FOM, ...
 - Eigensystems $A\mathbf{x} = \lambda \mathbf{x}$ solved by the Lanczos method, Jacobi-Davidson, ...

Web searching: which page ranks first?

000	parallel scientific computation – Google Search	
4 🕨 🕂 😫 htt	tp://www.google.co.uk/#hl=en&sclient=psy-ab&q=parallel+scientific+ © Q* parallel	scienti
Google	parallel scientific computation	
Search	About 53,900,000 results (0.32 seconds)	
Web	Scholarly articles for parallel scientific computation Parallel scientific computation - Bisselina - Cited by 214	
Images	Parallel scientific computation - Hills - Cited by 30 : A parallel workstation for scientific computation - Becker - Cited by 764	
Марв	A parallel workstation for scientific computation - becker - Gree by 764	
Videos	Parallel Scientific Computation - Oxford University Press ukcatalogue.oup.com/product/9780198529392.do	
News	This is the first text explaining how to use the bulk synchronous parallel (BSP) model	
Shopping	and the freely available BSPlib communication library in parallel algorithm	
	18.337 Parallel Scientific Computing	
More	web.mit.edu/18.337/	
	8 Feb 1996 – 18.337 Parallel Scientific Computing. Spring, 1996. Tuesday/Thursday 3:00–4:30. 1-390. Prof. Alan Edelman. This is an old page. Go to the	
Search near		
Enter location	Parallel Scientific Computing	
	www.sandia.gov/~bahendr/parallel.html With a number of different collaborators, I have devised new parallel algorithms for a	
The web	variety of problems in scientific computing. These include many-body	
Pages from the UK	Parallel Scientific Computing and Optimization	
More search tools	www.springer.com/mathematics/applications//978-0-387-09706-0	
More search tools	Parallel Scientific Computing and Optimization introduces new developments in the construction, analysis, and implementation of parallel computing algorithms.	
	Parallel Scientific Computation: A Structured Approach using BSP	
	books.google.co.uk)) Distributed Systems & Computing Based on the author's extensive development, this is the first text explaining how to use	
	BSPlib, the bulk synchronous parallel library, which is freely available for	
	Parallel Scientific Computing in C++ and MPI: A Amazon.co.uk	
	www.amazon.co.uk > > Infinite Series	
	Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation: Amazon.co.uk; George Em Kamiadakis	
	Agonomis and their imperientation. Ama201.00.0K: George Em Kamladakis,	
))40

Sequential sparse matrix-vector multiplication

イロン イヨン イヨン イヨン 三連

The link matrix A

Given n web pages with links between them. We can define the sparse $n \times n$ link matrix A by

 $a_{ij} = \begin{cases} 1 & \text{if there is a link from page } j \text{ to page } i \\ 0 & \text{otherwise.} \end{cases}$

• Let $\mathbf{e} = (1, 1, \dots, 1)^T$, representing an initial uniform importance (rank) of all web pages. Then

$$(\mathbf{A}\mathbf{e})_i = \sum_j a_{ij} e_j = \sum_j a_{ij}$$

is the total number of links pointing to page *i*.

• The vector Ae represents the importance of the pages; $A^2 e$ takes the importance of the pointing pages into account as well; and so on.

The Google matrix

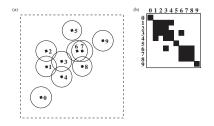
- A web surfer chooses each of the outgoing N_j links from page j with equal probability. Define the n × n diagonal matrix D with d_{jj} = 1/N_j.
- Let α be the probability that a surfer follows an outlink of the current page. Typically α = 0.85. The surfer jumps to a random page with probability 1 − α.
- The Google matrix is defined by (Brin and Page 1998)

$$G = \alpha A D + (1 - \alpha) \mathbf{e} \mathbf{e}^T / n.$$

The PageRank of a set of web pages is obtained by repeated multiplication by G, involving sparse matrix-vector multiplication by A, and some vector operations.

Sequential sparse matrix-vector multiplication

Insight into other applications



- ► (a) A 2D molecular dynamics domain of size 1.0 × 1.0 with 10 particles.
- ► The cut-off radius for the interaction between particles is $r_c = 0.2$. The circles shown have radius $r_c/2 = 0.1$.
- ▶ (b) The corresponding sparse 10 × 10 force matrix *F*. If the circles of radius r_c/2 of particles *i* and *j* overlap, then *i* and *j* interact, so that nonzero forces f_{ij} and f_{ji} appear in *F*.
 Sequential sparse matrix-vector multiplication

(a)

Summary

- Sparse matrices are the rule, rather than the exception. In many applications, variables are connected to only a few others, leading to sparse matrices.
- Sparse matrices occur in various application areas:
 - transition matrices in Markov models;
 - finite-element matrices in engineering;
 - linear programming matrices in optimisation;
 - weblink matrices in Google PageRank computation.
- ▶ We often express computation costs in the matrix size *n* and the average number of nonzeros per row *c*.
- Sparse matrix-vector multiplication is important for iterative solvers. It can also capture other applications such as molecular dynamics.
- The sequential computation is simple, but its parallelisation is a big challenge.
 Sequential source multiplication

16/16