# Two-Phase Broadcasting (PSC §2.4)

# Optimising a parallel algorithm

- ► Computation: well-balanced, little redundancy. Hence no room for improvement.
- ► Communication: every bit of communication is one bit too much. We can always try harder.

#### Communication volume and balance

► The communication volume of an *h*-relation is the total number of data words communicated,

$$V = \sum_{s=0}^{p-1} h_{s}(s) = \sum_{s=0}^{p-1} h_{r}(s).$$

- ▶  $h_s(s)$  is the number of data words sent by processor P(s) and  $h_r(s)$  is the number received.
- Note that

$$V \leq \sum_{s=0}^{p-1} h = ph.$$

► An h-relation is balanced if

$$h=\frac{V}{p}$$
.

#### Communication imbalance

▶ The communication imbalance of an h-relation is

$$h-rac{V}{p}$$
.

▶ If an h-relation is balanced, so that

$$V=\sum_{s=0}^{p-1}h_{\mathrm{s}}(s)=ph,$$

then  $h_s(s) = h$  for all s. (Because  $h_s(s) \le h$ .) Similarly,  $h_r(s) = h$  for all s.

- ▶ The reverse is also true: if  $h_s(s) = h$  for all s, then V = ph.
- ► Therefore, a balanced *h*-relation and a full *h*-relation are the same.

# $h_{\rm s} \neq h_{\rm r}$ implies communication imbalance

- ▶ If an h-relation is balanced, we have  $h_s = h_r$ , where  $h_s = \max_s h_s(s)$  and  $h_r = \max_s h_r(s)$ .
- ▶ The reverse is not true: sending and receiving can have an equally overloaded processor, so that  $h_s = h_r$ , while the h-relation is still unbalanced, with  $h \gg V/p$ .
- $h_{\rm s} \neq h_{\rm r}$  implies that the communication is unbalanced.

#### Communication imbalance in LU decomposition

▶ Send cost in superstep (10), the row/column broadcast, assuming  $M = N = \sqrt{p}$ :

$$h_{s} = R_{k+1}(N-1) + C_{k+1}(M-1) = 2R_{k+1}(\sqrt{p}-1).$$

► Receive cost in superstep (10):

$$h_{\rm r} = R_{k+1} + C_{k+1} = 2R_{k+1}.$$

▶ Large discrepancy:  $h_{\rm s} \gg h_{\rm r}$ . Balance for senders must be improved to reduce the communication cost.

#### Cause of the communication imbalance

(10a) if 
$$\phi_1(k) = t$$
 then for all  $i : k < i < n \land \phi_0(i) = s$  do put  $a_{ik}$  in  $P(s,*)$ ;

- ▶ The sending part of the broadcast of column k is unbalanced: only the  $\sqrt{p}$  processors in  $P(*, \phi_1(k))$  send.
- ▶ The senders send  $R_{k+1}(\sqrt{p}-1) \approx n-k-1$  elements.
- ▶ The receiving part is balanced: all processors receive  $R_{k+1} \approx (n-k-1)/\sqrt{p}$  elements, except the senders.
- Total contribution of (10) to LU cost is about

$$\sum_{k=0}^{n-1} 2(n-k-1)g = 2g \sum_{k=0}^{n-1} k = 2g(n-1)n/2 \approx n^2g.$$

▶ This is a bottleneck vs. the computation cost  $2n^3/3p$ .

Lecture 2.4 Two-phase broadcasting

## One-phase broadcast of a vector

```
input: \mathbf{x}: vector of length n, repl(\mathbf{x}) = P(0).

output: \mathbf{x}: vector of length n, repl(\mathbf{x}) = P(*).

call: broadcast(\mathbf{x}, P(0), P(*)).

{ Broadcast the vector. }

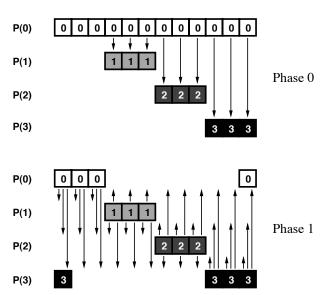
(0) if s = 0 then for t := 0 to p - 1 do

for i := 0 to n - 1 do

put x_i in P(t);
```

Note:  $repl(\mathbf{x}) = P(*)$  means that  $\mathbf{x}$  is replicated such that each processor has a copy.

#### Two-phase broadcast in blocks



#### The two-phase idea

- First spread the data, then broadcast them. This lets every processor participate.
- ▶ This method is also used in the BitTorrent protocol, which splits a file to be distributed into small pieces and spreads these pieces among downloaders, who in turn make the pieces available for further distribution.
- ▶ Idea is similar to two-phase randomised routing (Valiant 1982): first send data to a randomly chosen intermediate location, then route them to their final destination. This avoids congestion.
- We don't need randomness here: in our regular problem, we can choose the intermediate location optimally and deterministically.

#### Two-phase broadcast of a vector

```
input: \mathbf{x}: vector of length n, repl(\mathbf{x}) = P(0).
output: \mathbf{x}: vector of length n, repl(\mathbf{x}) = P(*).
call:
             broadcast(\mathbf{x}, P(0), P(*)).
b := \lceil n/p \rceil;
{ Spread the vector. }
(0) if s = 0 then for t := 0 to p - 1 do
             for i := tb to min\{(t+1)b, n\} - 1 do
                   put x_i in P(t);
{ Broadcast the subvectors. }
(1) for i := sb to min\{(s+1)b, n\} - 1 do
             put x_i in P(*):
```

# Cost analysis of two-phase broadcast



- ▶ Phase 0 costs (n-b)g, where  $b = \lceil n/p \rceil$  is the block size.
- ▶ Phase 1 costs (p-1)bg.
- ▶ Total cost of two-phase broadcast of a vector of length n to p processors is

$$T_{\mathrm{broadcast}} = \left(n + (p-2)\left\lceil\frac{n}{p}\right\rceil\right)g + 2I \approx 2ng + 2I.$$

Much less than the cost (p-1)ng + l of a one-phase broadcast, except for large l.

#### Two-phase broadcast in LU decomposition

- ▶ Phase 0 of the row broadcast and Phase 0 of the column broadcast are done together in superstep (6).
- ▶ Phases 1 are done together in (7).
- Less modular, but more efficient.

# Optimisation: pivot value is already known

(8) **if** 
$$\phi_0(k) = s \land \phi_1(k) = t$$
 **then** put  $a_{kk}$  in  $P(*, t)$ ;

▶ Delete old superstep (8), because

$$a_{kk}$$
 (after swap) =  $a_{rk}$  (before swap).

Pivot value  $a_{rk}$  is already known locally.

▶ Divide immediately by  $a_{rk}$  in new superstep (2) of Algorithm 2.8:

(2) if 
$$k \mod N = t$$
 then
$$s_{\max} := \operatorname{argmax}(|a_{r_q,k}| : 0 \le q < M);$$

$$r := r_{s_{\max}};$$
for all  $i : k \le i < n \land i \mod M = s \land i \ne r$  do
$$a_{ik} := a_{ik}/a_{rk};$$

# Optimisation: combine index and row swaps

```
(4) if k \mod M = s then

if t = 0 then put \pi_k as \hat{\pi}_k in P(r \mod M, 0);

for all j : 0 \le j < n \land j \mod N = t do

put a_{kj} as \hat{a}_{kj} in P(r \mod M, t);

if r \mod M = s then

if t = 0 then put \pi_r as \hat{\pi}_r in P(k \mod M, 0);

for all j : 0 \le j < n \land j \mod N = t do

put a_{rj} as \hat{a}_{rj} in P(k \mod M, t);
```

Combining communication supersteps saves synchronisations.

## Optimisation: combine first and last superstep

**for** k := 0 **to** n - 1 **do** 

(0) if  $k \mod N = t$  then  $r_s := \operatorname{argmax}(|a_{ik}| : k \le i < n \land i \mod M = s);$ 

(0') for all 
$$i: k < i < n \land i \mod M = s$$
 do  
for all  $j: k < j < n \land j \mod N = t$  do  
 $a_{ij} := a_{ij} - a_{ik}a_{kj};$ 

- Combining the first and last superstep of the loop saves a synchronisation.
- ► In an implementation: no unnecessary bsp\_sync at the end of the main loop.

  Lecture 2.4 Two-phase broadcasting

# Optimal aspect ratio M/N

- ▶ Two-phase broadcast reduces cost. Is M = N still optimal?
- ▶ The cost of (6)/(7) is about  $2(R_{k+1} + C_{k+1})g$ . A bound is

$$R_{k+1} + C_{k+1} < \left(\frac{n-k-1}{M} + 1\right) + \left(\frac{n-k-1}{N} + 1\right)$$
  
=  $(n-k-1)\frac{M+N}{p} + 2$ ,

which is indeed minimal for  $M = N = \sqrt{p}$ .

- ▶ The row and index swap in superstep (4) costs  $(C_0 + 1)g$ , where  $C_0 = \lceil n/N \rceil$ , so that larger values N are preferred. Swap cost for M = N is of same order as broadcast cost.
- Overall: M = N close to optimal, but slight preference for M < N.</p>

#### Exact cost analysis

We need to compute sums of the form

$$\sum_{k=0}^{n-1} R_k = \sum_{k=0}^{n-1} \left\lceil \frac{n-k}{\sqrt{p}} \right\rceil = \sum_{k=1}^{n} \left\lceil \frac{k}{\sqrt{p}} \right\rceil.$$

Lemma 2.9. Let  $n, q \ge 1$  be integers with  $n \mod q = 0$ . Then

$$\sum_{k=0}^{n} \left\lceil \frac{k}{q} \right\rceil = \frac{n(n+q)}{2q}, \qquad \sum_{k=0}^{n} \left\lceil \frac{k}{q} \right\rceil^2 = \frac{n(n+q)(2n+q)}{6q^2}.$$

# Proof Lemma 2.9 (first part)

$$\sum_{k=0}^{n} \left\lceil \frac{k}{q} \right\rceil = \left\lceil \frac{0}{q} \right\rceil + \left( \left\lceil \frac{1}{q} \right\rceil + \dots + \left\lceil \frac{q}{q} \right\rceil \right) + \dots$$

$$+ \left( \left\lceil \frac{n-q+1}{q} \right\rceil + \dots + \left\lceil \frac{n}{q} \right\rceil \right)$$

$$= q \cdot 1 + q \cdot 2 + \dots + q \cdot \frac{n}{q}$$

$$= q \sum_{k=1}^{n/q} k$$

$$= q \frac{n}{2q} \left( \frac{n}{q} + 1 \right)$$

$$= \frac{n(n+q)}{2q}.$$

## Total cost of LU decomposition

$$\begin{split} T_{\rm LU} &= \frac{2n^3}{3p} + \left(\frac{3}{2\sqrt{p}} - \frac{2}{p}\right)n^2 + \frac{5n}{6} \\ &+ \left(\left(\frac{3}{\sqrt{p}} - \frac{2}{p}\right)n^2 + \left(4\sqrt{p} - \frac{4}{\sqrt{p}} + \frac{4}{p} - 3\right)n\right)g \\ &\approx \frac{2n^3}{3p} + \frac{3n^2}{2\sqrt{p}} + \frac{3n^2g}{\sqrt{p}} + 8nI. \end{split}$$

#### Summary

- We have optimised our basic parallel LU decomposition algorithm by
  - performing two-phase broadcasting to spread the communication load evenly;
  - exploiting local information on the pivot value to avoid unnecessary communication;
  - reorganising the algorithm to combine supersteps, thus saving synchronisations.
- lacktriangle Cost analysis gives a diagnosis, such as  $h_{
  m s}\gg h_{
  m r}.$
- The resulting LU decomposition is efficient if

$$\frac{2n^3}{3p} \ge \frac{3n^2g}{\sqrt{p}} \quad \text{and} \quad \frac{2n^3}{3p} \ge 8nI.$$

• Equivalent to  $n \ge \max\{4.5g, 2\sqrt{3I}\} \cdot \sqrt{p}$ .