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Topic Overview  

•  Issues in Sorting on Parallel Computers "
•  Bubble Sort and its Variants "
•  Quicksort "
•  Sorting Networks "
•  Bucket and Sample Sort "
•  Other Sorting Algorithms "
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Sorting: Overview  

•  One of the most commonly used and well-studied kernels. "
•  Sorting can be comparison-based or non-comparison-based. "
•  The fundamental operation of comparison-based sorting is 

compare-exchange. "
•  The lower bound on any comparison-based sort of n 

numbers is O(n log n). "
•  We focus here on comparison-based sorting algorithms. "
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Sorting: Basics  

"What is a parallel sorted sequence?  
Where are the input and output lists stored? "

"

•  We assume that the input and output lists are distributed. "
•  The sorted list is partitioned with the property that each 

partitioned list is sorted and each element in processor Pi's 
list is less than that in Pj's list if i < j. "
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Sorting: Parallel Compare Exchange Operation 

A parallel compare-exchange operation.  
Processes Pi  and Pj send their elements to each other. 
Process Pi   keeps min{ai,aj } and  Pj  keeps max{ai,aj }. "
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Sorting: Basics  

•  If each processor has one element, the compare-exchange 
operation stores the smaller element at the processor with 
smaller id. "

•  If we have more than one element per processor, we call this 
operation a compare-split. Assume each of two processors 
have n/p elements. "

•  After the compare-split operation, the smaller n/p elements 
are at processor Pi and the larger n/p elements at Pj, where  
i < j. "
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Sorting: Parallel Compare Split Operation  

    A compare-split operation. Each process sends its block of size   
n/p to the other process. Each process merges the received 
block with its own block and retains only the appropriate half of 
the merged block. In this example, process Pi retains the 
smaller elements and process Pi retains the larger elements. "
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Bubble Sort and its Variants  

The sequential bubble sort algorithm compares and exchanges 
adjacent elements in the sequence to be sorted: "

"
"
"
"
"
"
"

Sequential bubble sort algorithm."
"
"
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Bubble Sort and its Variants  

•  The complexity of bubble sort is O(n2). "
•  Bubble sort is difficult to parallelize since the algorithm 

has no concurrency. "
•  A simple variant, though, uncovers the concurrency. "
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Odd-Even Transposition  
 

Sequential odd-even transposition sort algorithm. "
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Odd-Even Transposition  

    Sorting n = 8 elements,  
using the odd-even transposition sort algorithm. "
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Odd-Even Transposition  

•  After n phases of odd-even exchanges, the sequence is 
sorted. "

•  Each phase of the algorithm (either odd or even) 
requires O(n) comparisons. "

•  Serial complexity is O(n2). "



13


Parallel Odd-Even Transposition  

•  Consider the one item per processor case. "
•  There are n iterations, in each iteration, each processor 

does one compare-exchange (CE). "
•  The parallel run time of this formulation in the BSP model 

is O(n) = O(p):"
–  TCE = 1 + l +1.g + l!
–  Tp

(1) = nTCE = n(1 + 1.g + 2l)!
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Parallel Odd-Even Transposition  

Parallel formulation of odd-even transposition. "
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Parallel Odd-Even Transposition  

•  Consider a block of n/p elements per processor. "
•  The first step is a local sort. "
•  In each subsequent step, the compare-exchange 

operation is replaced by the compare-split operation. "

•  What is the parallel run time ?"
•  Derive an expression for the parallel efficiency E that 

clearly shows how E depends on p and n."
•  How should the problem size n grow with the number of 

processors p to have iso-efficient behaviour?"

Parallel Odd-Even Transposition  
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Parallel run time:   (assume n is multiple of p)"
•  TCS = n/p + l + (n/p)g + l = (n/p)(1 + g) +2l  

      CS = Compare-Split; "
•  Tlocal_sort = cs n/p log(n/p))!

•  Tp
(n/p) = Tlocal_sort  + p TCS  =  cs n/p log(n/p) + n (1+g) + 2pl!

•  E = S/p = Ts / (p Tp
(n/p))  !

•  To show how E depends on p and n we can write E as follows"
 " E = csn logn

csn logn − csn log p + pn(1+ g)+ 2p
2l

E = 1
1−O( log plogn )+O( p

logn )+O( p2
n logn )



Iso-efficiency & scalability 

•  Which term is dominant in Toverhead depends on n, p, g, l!
•  Assume that for n = n1 and p = p1 the parallel code runs 

with a parallel efficiency E.  Suppose you want to use p2 
processors and you want to achieve the same efficiency."

•  If term              is dominant:  
Then the size of the array to be sorted n2 must satisfy"

                                                                        "
"
•  If term              is dominant:  

Then n2 must satisfy "
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E = 1
1−O( log plogn )+O( p

logn )+O( p2
n logn )

= 1
1+Toverhead

O( p
logn )

p2
logn2 =

p1
logn1 ⇒ logn2 =

p2
p1 logn1 ⇒ n2 = n1

p2
p1

O( p2
n logn )

N fast growing 
function of p !"

n2 logn2 = (
p2
p1 )

2n1 logn1

Iso-efficiency & scalability 

•  Analogously:"
•  Assume that for n = n1 and p = p1 the parallel code runs 

with a parallel efficiency E.  Suppose you want to sort an 
array of size n2 and you want to achieve the same 
efficiency."

•  If term              is dominant:  
Then p2 must satisfy"

                                                                        "
"
•  If term              is dominant:  

Then n2 must satisfy "
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E = 1
1−O( log plogn )+O( p

logn )+O( p2
n logn )

= 1
1+Toverhead

O( p
logn )

p2
logn2 =

p1
logn1 ⇒ p2 =

logn2
logn1 p1

O( p2
n logn )

p slowly growing function of n => more work per proc & 
larger parallel execution time !"

p2 =
n2 logn2
n1 logn1 p1
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Quicksort  

•  Quicksort is one of the most common sorting algorithms 
for sequential computers because of its simplicity, low 
overhead, and optimal average complexity. "

•  Quicksort selects one of the entries in the sequence to 
be the pivot and divides the sequence into two. 
one with all elements less than the pivot and other with 
all elements greater than the pivot. "

•  The process is recursively applied to each of the sublists. "
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Quicksort  

The sequential quicksort algorithm. "
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Quicksort  

  Example of the quicksort algorithm "
sorting a sequence of size  n = 8. "
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Quicksort  

•  The performance of quicksort depends critically on the 
quality of the pivot. "

•  In the best case, the pivot divides the list of n elements 
in 2 (sub)lists of n/2 elements.  
"

•  In this case, the complexity of quicksort is O(nlog n). "
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Parallelizing Quicksort  

•  Lets start with recursive decomposition - the list is 
partitioned serially and each of the subproblems is 
handled by a different processor. "

•  The time for this algorithm is lower-bounded by 
\Omega(n) ! "

•  Can we parallelize the partitioning step - in particular, if 
we can use n processors to partition a list of length n 
around a pivot in O(1) time, we have a winner. "
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Parallelizing Quicksort: Shared Address Space 
Formulation  

•  Consider a list of size n equally divided across p 
processors. "

•  A pivot is selected by one of the processors and made 
known to all processors. "

•  Each processor partitions its list into two, say Li and Ui, 
based on the selected pivot. "

•  All of the Li lists are merged and all of the Ui  lists are 
merged separately. "

•  The set of processors is partitioned into two (in 
proportion of the size of lists L and U ). The process is 
recursively applied to each of the lists. "
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Shared Address Space Formulation  
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Parallelizing Quicksort: Shared Address Space 
Formulation  

•  The only thing we have not described is the global 
reorganization (merging) of local lists to form L and U. "

•  The problem is one of determining the right location for 
each element in the merged list. "

•  Each processor computes the number of elements 
locally less than and greater than pivot. "

•  It computes two sum-scans to determine the starting 
location for its elements in the merged L and U lists. "

•  Once it knows the starting locations, it can write its 
elements safely. "
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Parallelizing Quicksort: Shared Address Space 
Formulation  

Efficient global rearrangement of the array. "
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Parallelizing Quicksort 

•  The parallel time depends on the split and merge time, and the 
quality of the pivot. "

•  The latter is an issue independent of parallelism, so we focus on the 
first aspect, assuming ideal pivot selection. "

•  The algorithm executes in four steps: (i) determine and broadcast 
the pivot; (ii) locally rearrange the array assigned to each process; 
(iii) determine the locations in the globally rearranged array that the 
local elements will go to; and (iv) perform the global rearrangement."

•  The first step takes time O(log p) or O(p) (depending on how the 
broadcast is implemented) , the second O(n/p) ,  
the third O(log p) (see next slide), and the fourth O(n/p). "

•  The overall complexity of splitting an n-element array is  
O(n/p) + O(log p)."

•  The process recurses until there are p lists, at which point, the lists 
are sorted locally. "
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Parallelizing Quicksort 

•  Broadcast: simple method: BSP-cost = (p-1)g + l  
broadcast via recursion or tree: BSP-cost = (g + l) log p!

•  Determine the locations in the globally rearranged array :"
"can busing ‘prefix sum’ or ‘partial sums’ "
"assume array a = (a1, a2, a3, …, an )"
"partial sums si (i = 0,…,n)  "
" 
"can be obtained by an algorithm that is a variant  
"of the all-to-all communication"
"BSP-cost = O(p) or, when implemented via 
"(concurrent) trees, BSP-cost = O(log p)!

"
 
"

 "

si = aj
j=0

n−1

∑ or si = aj
j=1

n

∑
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Parallelizing Quicksort: Message Passing Formulation  

•  A simple message passing formulation is based on the recursive 
halving of the machine. "

•  Assume that each processor in the lower half of a p processor 
ensemble is paired with a corresponding processor in the upper 
half. "

•  A designated processor selects and broadcasts the pivot. "
•  Each processor splits its local list into two lists, one less (Li), and 

other greater (Ui) than the pivot. "
•  A processor in the low half of the machine sends its list Ui to the 

paired processor in the other half. The paired processor sends its  
list Li. "

•  It is easy to see that after this step, all elements less than the 
pivot are in the low half of the machine and all elements greater 
than the pivot are in the high half. "



31


Parallelizing Quicksort: Message Passing Formulation  

•  The above process is recursed until each processor has 
its own local list, which is sorted locally. "

•  The execution times are: O(log p) or O(p-1) for 
broadcasting the pivot element, O(n/p) for splitting the 
locally assigned portion of the array, O(n/p) for exchange 
and local reorganization.  "

•  It is important to remember that the reorganization of 
elements is a bandwidth sensitive operation. "
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Pivot selection  

•  Pivot selection is more important in the parallel algorithm 
than in the sequential quicksort algorithm ! Why?"

•  For random data sets, ‘sampling’ a subset of the data 
and determining the optimal pivot (median) of the subset 
results in good pivot selection. 
Of course this creates an extra overhead."


