
1

Sorting Algorithms

 Slides used during lecture of 21/11/2014  
(D. Roose)"

"
"

Adapted from slides by"
Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar"
"

To accompany the text ``Introduction to Parallel Computing'', "
Addison Wesley, 2003."

"

2

Topic Overview

•  Issues in Sorting on Parallel Computers "
•  Bubble Sort and its Variants "
•  Quicksort "
•  Sorting Networks "
•  Bucket and Sample Sort "
•  Other Sorting Algorithms "

3

Sorting: Overview

•  One of the most commonly used and well-studied kernels. "
•  Sorting can be comparison-based or non-comparison-based. "
•  The fundamental operation of comparison-based sorting is

compare-exchange. "
•  The lower bound on any comparison-based sort of n

numbers is O(n log n). "
•  We focus here on comparison-based sorting algorithms. "

4

Sorting: Basics

"What is a parallel sorted sequence?  
Where are the input and output lists stored? "

"

•  We assume that the input and output lists are distributed. "
•  The sorted list is partitioned with the property that each

partitioned list is sorted and each element in processor Pi's
list is less than that in Pj's list if i < j. "

5

Sorting: Parallel Compare Exchange Operation

A parallel compare-exchange operation.  
Processes Pi and Pj send their elements to each other.
Process Pi keeps min{ai,aj } and Pj keeps max{ai,aj }. "

6

Sorting: Basics

•  If each processor has one element, the compare-exchange
operation stores the smaller element at the processor with
smaller id. "

•  If we have more than one element per processor, we call this
operation a compare-split. Assume each of two processors
have n/p elements. "

•  After the compare-split operation, the smaller n/p elements
are at processor Pi and the larger n/p elements at Pj, where  
i < j. "

7

Sorting: Parallel Compare Split Operation

 A compare-split operation. Each process sends its block of size
n/p to the other process. Each process merges the received
block with its own block and retains only the appropriate half of
the merged block. In this example, process Pi retains the
smaller elements and process Pi retains the larger elements. "

8

Bubble Sort and its Variants

The sequential bubble sort algorithm compares and exchanges
adjacent elements in the sequence to be sorted: "

"
"
"
"
"
"
"

Sequential bubble sort algorithm."
"
"

9

Bubble Sort and its Variants

•  The complexity of bubble sort is O(n2). "
•  Bubble sort is difficult to parallelize since the algorithm

has no concurrency. "
•  A simple variant, though, uncovers the concurrency. "

10

Odd-Even Transposition

Sequential odd-even transposition sort algorithm. "

11

Odd-Even Transposition

 Sorting n = 8 elements,  
using the odd-even transposition sort algorithm. "

12

Odd-Even Transposition

•  After n phases of odd-even exchanges, the sequence is
sorted. "

•  Each phase of the algorithm (either odd or even)
requires O(n) comparisons. "

•  Serial complexity is O(n2). "

13

Parallel Odd-Even Transposition

•  Consider the one item per processor case. "
•  There are n iterations, in each iteration, each processor

does one compare-exchange (CE). "
•  The parallel run time of this formulation in the BSP model

is O(n) = O(p):"
–  TCE = 1 + l +1.g + l!
–  Tp

(1) = nTCE = n(1 + 1.g + 2l)!

14

Parallel Odd-Even Transposition

Parallel formulation of odd-even transposition. "

15

Parallel Odd-Even Transposition

•  Consider a block of n/p elements per processor. "
•  The first step is a local sort. "
•  In each subsequent step, the compare-exchange

operation is replaced by the compare-split operation. "

•  What is the parallel run time ?"
•  Derive an expression for the parallel efficiency E that

clearly shows how E depends on p and n."
•  How should the problem size n grow with the number of

processors p to have iso-efficient behaviour?"

Parallel Odd-Even Transposition

16

Parallel run time: (assume n is multiple of p)"
•  TCS = n/p + l + (n/p)g + l = (n/p)(1 + g) +2l  

 CS = Compare-Split; "
•  Tlocal_sort = cs n/p log(n/p))!

•  Tp
(n/p) = Tlocal_sort + p TCS = cs n/p log(n/p) + n (1+g) + 2pl!

•  E = S/p = Ts / (p Tp
(n/p)) !

•  To show how E depends on p and n we can write E as follows"
 " E = csn logn

csn logn − csn log p + pn(1+ g)+ 2p
2l

E = 1
1−O(log plogn)+O(p

logn)+O(p2
n logn)

Iso-efficiency & scalability

•  Which term is dominant in Toverhead depends on n, p, g, l!
•  Assume that for n = n1 and p = p1 the parallel code runs

with a parallel efficiency E. Suppose you want to use p2
processors and you want to achieve the same efficiency."

•  If term is dominant:  
Then the size of the array to be sorted n2 must satisfy"

 "
"
•  If term is dominant:  

Then n2 must satisfy "
17

E = 1
1−O(log plogn)+O(p

logn)+O(p2
n logn)

= 1
1+Toverhead

O(p
logn)

p2
logn2 =

p1
logn1 ⇒ logn2 =

p2
p1 logn1 ⇒ n2 = n1

p2
p1

O(p2
n logn)

N fast growing
function of p !"

n2 logn2 = (
p2
p1)

2n1 logn1

Iso-efficiency & scalability

•  Analogously:"
•  Assume that for n = n1 and p = p1 the parallel code runs

with a parallel efficiency E. Suppose you want to sort an
array of size n2 and you want to achieve the same
efficiency."

•  If term is dominant:  
Then p2 must satisfy"

 "
"
•  If term is dominant:  

Then n2 must satisfy "
18

E = 1
1−O(log plogn)+O(p

logn)+O(p2
n logn)

= 1
1+Toverhead

O(p
logn)

p2
logn2 =

p1
logn1 ⇒ p2 =

logn2
logn1 p1

O(p2
n logn)

p slowly growing function of n => more work per proc &
larger parallel execution time !"

p2 =
n2 logn2
n1 logn1 p1

19

Quicksort

•  Quicksort is one of the most common sorting algorithms
for sequential computers because of its simplicity, low
overhead, and optimal average complexity. "

•  Quicksort selects one of the entries in the sequence to
be the pivot and divides the sequence into two. 
one with all elements less than the pivot and other with
all elements greater than the pivot. "

•  The process is recursively applied to each of the sublists. "

20

Quicksort

The sequential quicksort algorithm. "

21

Quicksort

 Example of the quicksort algorithm "
sorting a sequence of size n = 8. "

22

Quicksort

•  The performance of quicksort depends critically on the
quality of the pivot. "

•  In the best case, the pivot divides the list of n elements
in 2 (sub)lists of n/2 elements.  
"

•  In this case, the complexity of quicksort is O(nlog n). "

23

Parallelizing Quicksort

•  Lets start with recursive decomposition - the list is
partitioned serially and each of the subproblems is
handled by a different processor. "

•  The time for this algorithm is lower-bounded by
\Omega(n) ! "

•  Can we parallelize the partitioning step - in particular, if
we can use n processors to partition a list of length n
around a pivot in O(1) time, we have a winner. "

24

Parallelizing Quicksort: Shared Address Space
Formulation

•  Consider a list of size n equally divided across p
processors. "

•  A pivot is selected by one of the processors and made
known to all processors. "

•  Each processor partitions its list into two, say Li and Ui,
based on the selected pivot. "

•  All of the Li lists are merged and all of the Ui lists are
merged separately. "

•  The set of processors is partitioned into two (in
proportion of the size of lists L and U). The process is
recursively applied to each of the lists. "

25

Shared Address Space Formulation

26

Parallelizing Quicksort: Shared Address Space
Formulation

•  The only thing we have not described is the global
reorganization (merging) of local lists to form L and U. "

•  The problem is one of determining the right location for
each element in the merged list. "

•  Each processor computes the number of elements
locally less than and greater than pivot. "

•  It computes two sum-scans to determine the starting
location for its elements in the merged L and U lists. "

•  Once it knows the starting locations, it can write its
elements safely. "

27

Parallelizing Quicksort: Shared Address Space
Formulation

Efficient global rearrangement of the array. "

28

Parallelizing Quicksort

•  The parallel time depends on the split and merge time, and the
quality of the pivot. "

•  The latter is an issue independent of parallelism, so we focus on the
first aspect, assuming ideal pivot selection. "

•  The algorithm executes in four steps: (i) determine and broadcast
the pivot; (ii) locally rearrange the array assigned to each process;
(iii) determine the locations in the globally rearranged array that the
local elements will go to; and (iv) perform the global rearrangement."

•  The first step takes time O(log p) or O(p) (depending on how the
broadcast is implemented) , the second O(n/p) ,  
the third O(log p) (see next slide), and the fourth O(n/p). "

•  The overall complexity of splitting an n-element array is  
O(n/p) + O(log p)."

•  The process recurses until there are p lists, at which point, the lists
are sorted locally. "

29

Parallelizing Quicksort

•  Broadcast: simple method: BSP-cost = (p-1)g + l  
broadcast via recursion or tree: BSP-cost = (g + l) log p!

•  Determine the locations in the globally rearranged array :"
"can busing ‘prefix sum’ or ‘partial sums’ "
"assume array a = (a1, a2, a3, …, an)"
"partial sums si (i = 0,…,n) "
" 
"can be obtained by an algorithm that is a variant  
"of the all-to-all communication"
"BSP-cost = O(p) or, when implemented via
"(concurrent) trees, BSP-cost = O(log p)!

"
 
"

 "

si = aj
j=0

n−1

∑ or si = aj
j=1

n

∑

30

Parallelizing Quicksort: Message Passing Formulation

•  A simple message passing formulation is based on the recursive
halving of the machine. "

•  Assume that each processor in the lower half of a p processor
ensemble is paired with a corresponding processor in the upper
half. "

•  A designated processor selects and broadcasts the pivot. "
•  Each processor splits its local list into two lists, one less (Li), and

other greater (Ui) than the pivot. "
•  A processor in the low half of the machine sends its list Ui to the

paired processor in the other half. The paired processor sends its
list Li. "

•  It is easy to see that after this step, all elements less than the
pivot are in the low half of the machine and all elements greater
than the pivot are in the high half. "

31

Parallelizing Quicksort: Message Passing Formulation

•  The above process is recursed until each processor has
its own local list, which is sorted locally. "

•  The execution times are: O(log p) or O(p-1) for
broadcasting the pivot element, O(n/p) for splitting the
locally assigned portion of the array, O(n/p) for exchange
and local reorganization. "

•  It is important to remember that the reorganization of
elements is a bandwidth sensitive operation. "

32

Pivot selection

•  Pivot selection is more important in the parallel algorithm
than in the sequential quicksort algorithm ! Why?"

•  For random data sets, ‘sampling’ a subset of the data
and determining the optimal pivot (median) of the subset
results in good pivot selection. 
Of course this creates an extra overhead."

