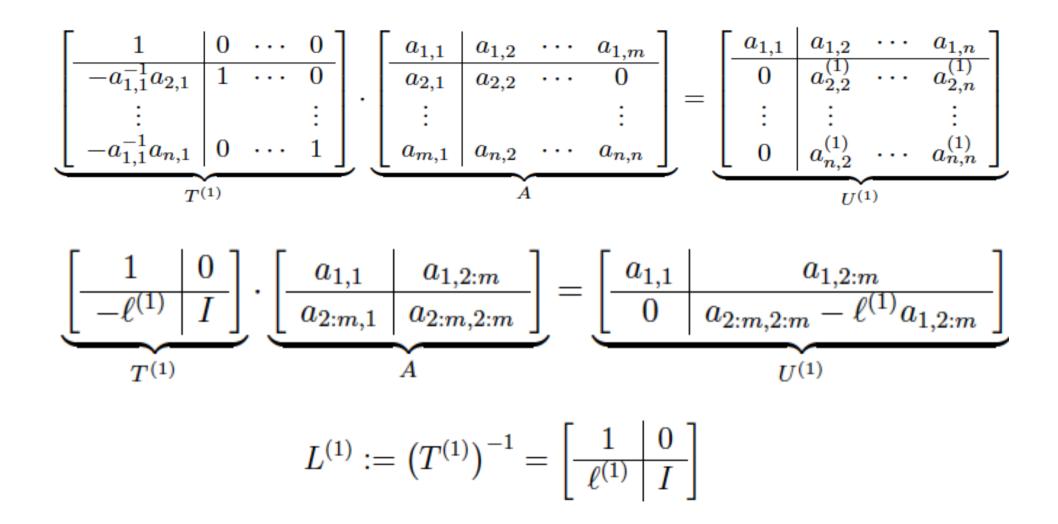
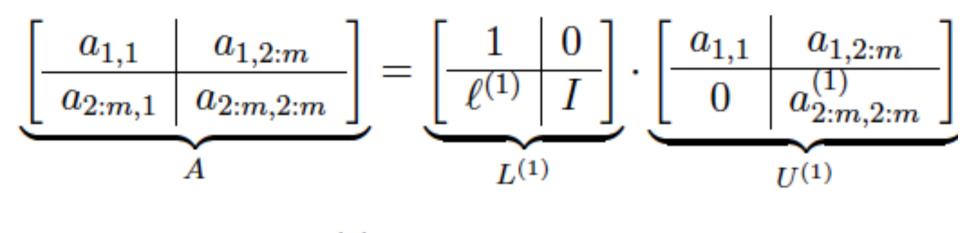
Derivation of LU factorisation of a matrix A

Inspired by Gaussian elimination

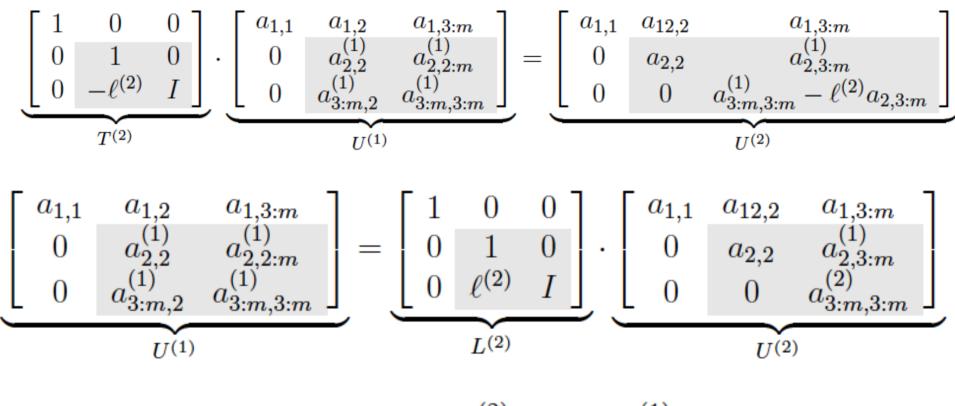
Gaussian elimination

- Gaussian elimination: transform Ax=b to Ux=y with U upper triangular
- Linear Algebra: there exists a lower triang. transformation matrix Tsuch that TA = U
- Let $L = T^{-1} \rightarrow L$ is also lower triangular !
- A = T^{-1}
- Note: shift in notation: row & column indices: 1 to n (instead of from 0 to n-1).





 $a_{2:m,2:m}^{(1)} = a_{2:m,2:m} - \ell^{(1)}a_{1,2:m}$



$$a_{3:m,3:m}^{(2)} = a_{3:m,3:m}^{(1)} - \ell^{(2)}a_{2,3:m}$$

$$U^{(0)} = A$$

$$U^{(k)} = L^{(k+1)}U^{(k+1)} , \quad k = 0, ..., k - 1$$

$$U = U^{(n)}$$

$$L = L^{(1)} \cdots L^{(n)}$$

$$A = LU$$

$$L = L^{(1)} \cdots L^{(n)} = \begin{bmatrix} 1 & 0 \\ \vdots & 1 & 0 \\ \vdots & \vdots & \ddots \\ \ell^{(1)} & \ell^{(2)} & 1 \\ \vdots & \vdots & \ell^{(n-1)} & 1 \end{bmatrix}$$

Algorithm 2.1. Sequential LU decomposition.	
input: output:	$A^{(0)}$: $n \times n$ matrix. L : $n \times n$ unit lower triangular matrix, U : $n \times n$ upper triangular matrix, such that $LU = A^{(0)}$.
$egin{aligned} ext{for } k &:= 0 ext{ to } n-1 ext{ do } \ ext{for } j &:= k ext{ to } n-1 ext{ do } \ ext{} u_{kj} &:= a_{kj}^{(k)}; \ ext{for } i &:= k+1 ext{ to } n-1 ext{ do } \ ext{} l_{ik} &:= a_{ik}^{(k)} / u_{kk}; \ ext{for } i &:= k+1 ext{ to } n-1 ext{ do } \ ext{for } j &:= k+1 ext{ to } n-1 ext{ do } \ ext{for } j &:= k+1 ext{ to } n-1 ext{ do } \ ext{} a_{ij}^{(k+1)} &:= a_{ij}^{(k)} - l_{ik} u_{kj}; \end{aligned}$	