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Programming using BSPlib



Available BSP libraries

Distributed-memory computers:

1. Oxford BSP library, see www.bsp-worldwide.org

2. BSPonMPI, see bsponmpi.sourceforge.net

Shared-memory computers, see www.multicorebsp.com:

1. MulticoreBSP for Java

2. MulticoreBSP for C

www.bsp-worldwide.org
bsponmpi.sourceforge.net
www.multicorebsp.com


Compilation of BSPlib programs
Oxford BSP Toolset (Hill, McColl, Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas, Bisseling;

1998)

bspcc bspinprod.c;
bsprun -npes <P> ./a.out

BSPonMPI (van Suijlen; 2006)

mpcc bspinprod.c -lbsponmpi;
./a.out

MulticoreBSP for C (Yzelman, Bisseling, Roose, Meerbergen; 2012)

cc bspinprod.c -lmcbsp -pthread -lrt;
./a.out

MulticoreBSP for Java (Yzelman, Bisseling; 2010)

javac -cp MulticoreBSP.jar bspinprod.java;
java -cp MulticoreBSP.jar bspinprod



Other BSP libraries
Other (distributed memory) BSP-style libraries (incompatible API):

I MapReduce
Google Inc.; 2004.

I Pregel
Malewicz, Austern, Bik, Dehnert, Ilan Horn, Czajkowski (Google Inc.); 2010.

I Apache Hama
Yoon et al.; 2010

I Paderborn University BSP library (PUB)
Bonorden, Juurlink, von Otte, Rieping; 1998.

I Bulk Synchronous Parallel ML (BSMLlib)
Gava, Gesbert, Hains, Tesson; 2000.

I Python/BSP
Hinsen, Sadron; 2003.

I Cloudscale BSP
McColl et al. (Cloudscale Inc.); 2012.



Hello World!

#include "bsp.h" / "mcbsp.h"

int main(int argc, char **argv) {

bsp_begin( 4 );

printf( "Hello world from thread %d out of %d!\n",

bsp_pid(), bsp_nprocs() );

bsp_end();

}



Hello World!

An example using MulticoreBSP for C and static linkage:

$ gcc -o hello hello.c lib/libmcbsp1.1.0.a -pthread -lrt

$ ./hello

Hello world from thread 3 out of 4!

Hello world from thread 2 out of 4!

Hello world from thread 0 out of 4!

Hello world from thread 1 out of 4!

$ ...



Hello World!

#include "mcbsp.h"

int P;

void hello() {

bsp_begin( P );

printf( "Hello world from thread %d!\n",

bsp_pid() );

bsp_end();

}

int main(int argc, char **argv) {

bsp_init( hello, argc, argv );

scanf( "%d", &P );

hello();

}



Summary

I There are multiple implementations of the BSPlib interface.

I Other BSP-style libraries for parallel programming exist; some
stay close to the BSP model, others do not.

I We have seen the syntax for compilation for various BSPlib
libraries, and applied these on a ‘Hello world!’ example.

I The complete program bspinprod should now be clear from
the last section. Try to compile it and to run it!



BSP benchmarking



Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and
statistics” (Benjamin Disraeli, 1804–1881)

I Benchmarking is the activity of comparing performance.

I Computer benchmarking involves running computer programs
to see how certain computer systems perform. This checks
both the hardware and the system software.

I Often, the benchmark result is obtained by ruthless reduction
of a large quantity of data to one statistical figure, the flop
rate.



Sequential benchmarking

I Already for sequential computers, benchmarking is difficult;
different programs can run at very different speeds.

I Reaching only 10% of the peak rate of a computer is quite
common. No one is embarrassed. Hush!

I Highest rates are obtained by algorithms that use
matrix–matrix multiplication, such as implemented in the
BLAS level 3 operation DGEMM. (BLAS = Basic Linear
Algebra Subprograms).

I The arithmatic intensity is key; if the flop/byte is high, the
problem is CPU bound and usually can be well-optimised.

I In contrast, irregular scalar operations which involve single
numbers and not vectors or matrices, are bandwidth-bound.

I A reasonable intermediate rate is obtained for vector–vector
operations, such as the BLAS level 1 DAXPY, defined by
y := αx + y. We use this operation for sequential
benchmarking.



BSP benchmarking

I We must be ruthless, but a single number will not work. Thus
we look to the BSP model and measure r for computation, g
for communication, and l for synchronisation.

I The aim is to obtain useful values of r , g , l that help us in
predicting performance of algorithms without actually running
an implementation.

I Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking; computation speed is
hard to determine.

I Apart from arithmatic intensity, caching plays a big role:
I A cache is a small memory close to the CPU that stores

recently accessed data. There may be a tiny primary cache, a
larger secondary cache farther away, etc.

I Higher-level caches are bigger but slower.
I Computations in primary cache are much faster than others.

We may have to distinguish rates r1, r2, etc. (but we won’t).



Communication pattern for BSP benchmark program

P(0)
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P(2)

P(0) sends data to P(1), P(2), P(3), P(1), P(2), P(3). The other
processors also send data in this cyclic fashion.



Full h-relation

I We measure a full h-relation, where every processor sends and
receives exactly h data.

I Our intentions are the worst: we try to measure the slowest
possible communication. We put single data words into other
processors in a cyclic fashion.

I This reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently. This is after all the basis
of BSP!

I ‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better; the g
obtained by our benchmarking program bspbench is
pessimistic.

I The Oxford BSP toolset has another benchmarking program,
bspprobe, which measures optimistic g -values.



Time of an h-relation on two connected PCs
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Two 400 MHz Pentium II PCs, both running Linux, connected by
Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch:

r = 122 Mflop/s, g = 1180, and l = 138324.



Least-squares fit

I Two measurements would suffice for obtaining a straight line,
but we want to use all h1 − h0 + 1 data points available in
[h0, h1].

I We minimise the squared error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I We find the best choice for g and l when

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.

I Measure ti = Tcomm(i) for all h0 ≤ i ≤ h1. Then:

∂E

∂g
=

h1∑
i=h0

2i(ig + l)− 2ti ,
∂E

∂l
=

h1∑
i=h0

2(ig + l)− 2ti .



Least-squares fit
I Two measurements would suffice for obtaining a straight line,

but we want to use all h1 − h0 + 1 data points available in
[h0, h1].

I We minimise the squared error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I We find the best choice for g and l when

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.
I Measure ti = Tcomm(i) for all h0 ≤ i ≤ h1. Then:

h1(h1 + 1)(2h1 + 1)− h0(h0 + 1)(2h0 + 1)

3
·g+(h0+h1)·l = 2

h1∑
i=h0

iti .



Least-squares fit

I Two measurements would suffice for obtaining a straight line,
but we want to use all h1 − h0 + 1 data points available in
[h0, h1].

I We minimise the squared error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I We find the best choice for g and l when

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.

I Measure ti = Tcomm(i) for all h0 ≤ i ≤ h1. Then:

(h0 + h1) · g + 2(h1 − h0 + 1) · l = 2

h1∑
i=h0

ti .



Time of an h-relation on an 8-processor SGI Origin
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Least-squares fit
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Silicon Graphics Origin 2000, Compiler plays tricks: measured
value of r too high. Choose h0 and h1 judiciously! Here, h0 = p.

r = 326 Mflop/s, g = 297, and l = 95 686.



Time of an h-relation on a 64-processor Cray T3E
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Sending more data takes less time (cf. h ≈ 130). Weird!
Explanation: switching to a different data packing mechanism.

r = 35 Mflop/s, g = 78, and l = 1825.



bspbench: initialising the communication pattern

for( i = 0; i < h; i++ ) {

src[ i ] = (double)i;

if( p == 1 ) {

destproc [ i ] = 0;

destindex[ i ] = i;

} else {

/* destination processor is one

of the p-1 others */

destproc[ i ] = (s+1 + i % (p-1)) % p;

/* destination index is in

my own part of dest */

destindex[ i ] = s + (i / (p-1)) * p;

}

}



bspbench: measuring the communication time

bsp_sync();

time0 = bsp_time();

for( iter = 0; iter < NITERS; iter++ ) {

for( i = 0; i < h; i++ )

bsp_put( destproc[ i ], &src[ i ], dest,

destindex[ i ] * SZDBL, SZDBL

);

bsp_sync();

}

time1 = bsp_time();

Adjust NITERS to obtain an accurate measurement.



Comparing BSP parameters (p = 8)

g l g l
Computer r (Mflop/s) (flop) (µs)

Cray T3E 35 31 1 193 0.88 34
IBM RS/6000 SP 212 187 148 212 0.88 698
SGI Origin 2000 326 297 95 686 0.91 294

I Machines become obsolete quickly. All of the above machines
have in the mean time been replaced by faster successors.

I Newer machines will be benchmarked in the laboratory class
of this course.



Advice from the trenches

I Always plot the benchmark results. This gives insight in your
machine and reveals the accuracy of your measurement.

I Be suspicious of artefacts. Negative g values may occur if g is
small and l is huge. In that case, the least-squares fit does not
give an accurate g .

I Run the benchmark at least three times. If the best two runs
agree, you can be reasonably confident.

I Parallel computers are like the weather: they change all the
time. Always run a benchmark program before running an
application program, just to see what machine you have today.
(Think of: a new compiler, faster communication switches,

Challenge Projects that gobble up network resources, and so on.)



Summary

I Benchmarking is difficult.

I Machines have quirks, surprises are plenty, and measurements
are often inaccurate.

I With all these caveats, it is still useful to have a table with r ,
g , l values for many different machines.

I This table should be kept up to date to reflect new
architectures appearing. You can do it! (Similar to the
LINPACK benchmark used to determine the Supercomputer
Top 500.)

I BSP benchmarking can be done using BSPlib (bspbench,
bspprobe), but also MPI-1 (mpibench).



The sequential LU decomposition



Solving linear systems is important

Applications often have as their core a linear system solver.

I Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

I Designing aircraft. Boundary element methods lead to huge
dense linear systems of equations.

I Optimising oil refineries. Linear programming by interior point
methods requires solving a sparse linear system (with many
zero coefficients) at every step of the computation.



Lower and upper triangular matrices

A =

 1 4 6
2 10 17
3 16 31

 =

 1 0 0
2 1 0
3 2 1

 1 4 6
0 2 5
0 0 3

 = LU.

I L is unit lower triangular if lii = 1 for all i and lij = 0 for all
i < j .

I U is upper triangular if uij = 0 for all i > j .



Triangular systems are easier to solve

Let A = LU. Then

Ax = b⇐⇒ L(Ux) = b⇐⇒ Ly = b and Ux = y.

 1 0 0
2 1 0
3 2 1

 y0
y1
y2

 =

 16
44
78

 =⇒

 y0
y1
y2

 =

 16
12

6


 1 4 6

0 2 5
0 0 3

 x0
x1
x2

 =

 16
12

6

 =⇒

 x0
x1
x2

 =

 0
1
2

 .



Objective

For a given A, find L,U such that LU = A, with

L =

 1
...

. . .

ln0 · · · 1

, and U =

 u01 · · · u0n
. . .

...
unn

 .

The upper-right and bottom-left white-spaces of L, resp., U
contain zero entries.



Memory-efficient sequential LU decomposition

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
In : n × n identity matrix,

such that LU = A(0).

for k := 0 to n − 1 do
for i := k + 1 to n − 1 do

aik := aik/akk ;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;



Row permutations needed

LU decomposition breaks down immediately in stage 0 for

A =

[
0 1
1 0

]
,

because we try to divide by 0.

I A solution is to permute the rows suitably.

I Thus, we compute a permuted LU decomposition,

PA = LU.

I Here, P is a permutation matrix, obtained by permuting the
rows of In.

I Output of LU decomposition of A: L, U, P.



Permutations and permutation matrices

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
We define the permutation matrix Pσ corresponding to σ by

(Pσ)ij =

{
1 if i = σ(j)
0 otherwise.

Thus, column j of Pσ is 1 in row σ(j), and 0 everywhere else.



Lemma 2.5 Properties of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n and A an n × n matrix. Then

(Pσx)i = xσ−1(i), for 0 ≤ i < n,

(PσA)ij = aσ−1(i),j , for 0 ≤ i , j < n,

(PσAP
T
σ )ij = aσ−1(i),σ−1(j), for 0 ≤ i , j < n.

Proofs: see book.



LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do
πi := i ;
for k := 0 to n − 1 do

r := argmax(|aik | : k ≤ i < n);
swap(πk , πr );
for j := 0 to n − 1 do

swap(akj , arj);
...



LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

...
for i := k + 1 to n − 1 do

aik := aik/akk ;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;



Partial row pivoting

I The pivot element in stage k is the largest element ark in
column k. Everything revolves around it. It is farthest from 0
and division by ark is most stable.

I The pivot row r is thus determined by

|ark | = max(|aik | : k ≤ i < n).

I r is the argument (or index) of the maximum.

I Full pivoting would take the largest pivot from the whole
submatrix A(k : n − 1, k : n − 1). This gives the best stability,
but is more costly (columns must be swapped, too).
In practice, partial pivoting suffices.



The meaning of π

I The algorithm permutes the matrix by a permutation matrix
Pσ. We obtain the LU decomposition PσA = LU.

I The same matrix is applied to the initial vector
e = (0, 1, 2, . . . , n − 1)T . We obtain π = Pσe.

I Therefore, by Lemma 2.5,

π(i) = (Pσe)i = eσ−1(i) = σ−1(i).

I Thus, π = σ−1 and hence

Pπ−1A = LU.



Sequential time complexity

Lemma 2.7:

n∑
k=0

k =
n(n + 1)

2
,

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6
.

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is

Tseq =
n−1∑
k=0

(2(n − k − 1)2 + n − k − 1) =
n−1∑
k=0

(2k2 + k)

=
(n − 1)n(2n − 1)

3
+

(n − 1)n

2

= (n − 1)n

(
2n

3
+

1

6

)
=

2n3

3
− n2

2
− n

6
.



Summary

I Solving a linear system Ax = b can best be done by:
I finding an LU decomposition PA = LU;
I permuting b into Pb;
I solving the triangular systems Ly = Pb and Ux = y.

I The LU decomposition costs about 2n3/3 flops and each
triangular system solve about n2 flops.

I It is always difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

I We defined the matrix Pσ; its jth column is 1 in row σ(j), and
0 everywhere else.

I An important connection between a permutation σ and the
matrix Pσ is given by (Pσx)i = xσ−1(i).



Parallel LU decomposition



Designing a parallel algorithm

I Main question: how to distribute the data?

I What data? The matrix A and the permutation π.

I Data distribution + sequential algorithm
−→ computation supersteps.

I Design backwards: insert preceding communication supersteps
following the need-to-know principle.



Data distribution for the matrix A

I The bulk of the work in the sequential computation is the
update

aij := aij − aikakj

for matrix elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2

flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor. Who
does the update?

I Many elements aij must be updated in stage k , but only few
elements aik , akj are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .



Data distribution for the matrix A

I The bulk of the work in the sequential computation is the
update

aij := aij − aikakj

for matrix elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2

flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor. Who
does the update?

I Many elements aij must be updated in stage k , but only few
elements aik , akj are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .



Matrix update by operation aij := aij − aikakj

0

1

2

3

4

5

6

aik aij

akj
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Update of row i uses only one value, aik , from column k . If we
distribute row i over only N processors, then aik needs to be sent
to at most N − 1 processors.



Matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering.

I Processor numberings have no physical meaning. Assume
BSPlib randomly renumbers the processors at the start!

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N. A processor column P(∗, t) is a group of M
processors P(s, t) with 0 ≤ s < M.



Matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering.

I Processor numberings have no physical meaning. Assume
BSPlib randomly renumbers the processors at the start!

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N. A processor column P(∗, t) is a group of M
processors P(s, t) with 0 ≤ s < M.



Cartesian matrix distribution
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A matrix distribution is called Cartesian if φ0(i , j) is independent of
j and φ1(i , j) is independent of i :

φ(i , j) = (φ0(i), φ1(j)).



Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;



Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;



Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);



Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);



Two parallelisation methods

I The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

I Matrix update uses first parallelisation method: look at lhs
(left-hand side) of assignment, owner computes.

I Pivot search uses second method: look at rhs of assignment,
compute what can be done locally, reduce the number of data
to be communicated.

I In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant
(replicated) search for the global winner.

I Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).



Distribution for permutation π

I Store πk together with row k, somewhere in processor row
P(φ0(k), ∗).

I We choose P(φ0(k), 0). This gives a true distribution.

I We could also have chosen to replicate πk in processor row
P(φ0(k), ∗). This would save some if-statements in our
programs.



Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;



Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;



Optimising the matrix distribution

I We have chosen a Cartesian matrix distribution φ to limit the
communication.

I We now specify φ further to achieve a good computational
load balance and to minimise the communication.

I Maximum number of local matrix rows with index ≥ k :

Rk = max
0≤s<M

|{i : k ≤ i < n ∧ φ0(i) = s}|.

Maximum number of local matrix columns with index ≥ k :

Ck = max
0≤t<N

|{j : k ≤ j < n ∧ φ1(j) = t}|.

I The computation cost of the largest superstep, the matrix
update (11), is then 2Rk+1Ck+1.
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R0 = 4,C0 = 3 and R4 = 2,C4 = 2



Bound for Rk

Rk ≥
⌈
n − k

M

⌉
.

Proof: Assume this is untrue, so that Rk < dn−k
M e. Because Rk is

integer, we even have Rk <
n−k
M . Hence all M processor rows

together hold less than M · n−k
M = n − k matrix rows. But they

hold all matrix rows k ≤ i < n. Contradiction. �



2D cyclic distribution attains bound

t = 0 1 2 0 1 2 0

00 000000 00000s =

1

0

1

0

1

0
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00 01 02 00 01 02 00
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φ0(i) = i mod M, φ1(j) = j mod N.

Rk =

⌈
n − k

M

⌉
, Ck =

⌈
n − k

N

⌉
.



Cost of main computation superstep (matrix update)

T(11),cyclic = 2

⌈
n − k − 1

M

⌉ ⌈
n − k − 1

N

⌉
≥ 2(n − k − 1)2

p
.

T(11),cyclic < 2

(
n − k − 1

M
+ 1

)(
n − k − 1

N
+ 1

)
=

2(n − k − 1)2

p
+

2(n − k − 1)

p
(M + N) + 2.

The upper bound is minimal for M = N =
√
p. The second-order

term 4(n − k − 1)/
√
p is the additional computation cost caused

by load imbalance.



Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

T(10) = (Rk+1(N − 1) + Ck+1(M − 1))g

≥
(⌈

n − k − 1

M

⌉
(N − 1) +

⌈
n − k − 1

N

⌉
(M − 1)

)
g

= T(10),cyclic.

T(10),cyclic <

((
n − k − 1

M
+ 1

)
N +

(
n − k − 1

N
+ 1

)
M

)
g

=

(
(n − k − 1)

(
N

M
+

M

N

)
+ M + N

)
g .

The upper bound is again minimal for M = N =
√
p. The

resulting communication cost is about 2(n − k − 1)g .



Summary

I We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing the 2D cyclic distribution,
based on a careful analysis of the main computation and
communication supersteps, and finally by showing that a
square

√
p ×√p distribution is best.

I Developing the algorithm goes hand in hand with the cost
analysis.

I We now have a correct algorithm and a good distribution, but
the overall BSP cost may not be minimal yet. Wait and see
. . .


