Introduction to the Bulk Synchronous Parallel
model

Albert-Jan N. Yzelman

11th of October, 2013

Derived from the book slides by Prof. dr. Rob H. Bisseling, found
at

www.math.uu.nl/people/bisseling/Education/PA/pa.html

www.math.uu.nl/people/bisseling/Education/PA/pa.html

Programming using BSPlib

Available BSP libraries

Distributed-memory computers:
1. Oxford BSP library, see www.bsp-worldwide.org

2. BSPonMPI, see bsponmpi.sourceforge.net

Shared-memory computers, see www.multicorebsp.com:
1. MulticoreBSP for Java
2. MulticoreBSP for C

www.bsp-worldwide.org
bsponmpi.sourceforge.net
www.multicorebsp.com

Compilation of BSPlib programs
Oxford BSP T00|Set (Hill, McColl, Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas, Bisseling;

1998)

bspcc bspinprod.c;
bsprun -npes <P> ./a.out

BS PO“MP' (van Suijlen; 2006)

mpcc bspinprod.c -Ibsponmpi;
./a.out

Mu|tiCOI’eBSP for C (Yzelman, Bisseling, Roose, Meerbergen; 2012)

cc bspinprod.c -Imcbsp -pthread -Irt;
./a.out

Other BSP libraries
Other (distributed memory) BSP-style libraries (

» MapReduce

Google Inc.; 2004.
> Pregel

Malewicz, Austern, Bik, Dehnert, llan Horn, Czajkowski (Google Inc.); 2010.
» Apache Hama

Yoon et al.; 2010

» Paderborn University BSP library (PUB)

Bonorden, Juurlink, von Otte, Rieping; 1998.

» Bulk Synchronous Parallel ML (BSMLIib)

Gava, Gesbert, Hains, Tesson; 2000.

» Python/BSP

Hinsen, Sadron; 2003.

» Cloudscale BSP

McColl et al. (Cloudscale Inc.); 2012.

Hello World!

#include "bsp.h" / "mcbsp.h"

int main(int argc, char **xargv) {
bsp_begin(4);

printf("Hello world from thread %d out of %d!\n",
bsp_pid(), bsp_nprocs());

bsp_end () ;

Hello World!

An example using MulticoreBSP for C and static linkage:

$ gcc -o hello hello.c 1ib/libmcbspl.1.0.a -pthread -1rt
$./hello

Hello world from thread 3 out of 4!

Hello world from thread 2 out of 4!

Hello world from thread O out of 4!

Hello world from thread 1 out of 4!

$

Hello World!

#include "mcbsp.h"
int P;

void hello() {
bsp_begin(P);
printf("Hello world from thread %d!\n",
bsp_pid());
bsp_end) ;

int main(int argc, char **argv) {
bsp_init(hello, argc, argv);
scanf ("%d", &P);
hello();

Summary

» There are multiple implementations of the BSPIlib interface.

» Other BSP-style libraries for parallel programming exist; some
stay close to the BSP model, others do not.

» We have seen the syntax for compilation for various BSPIlib
libraries, and applied these on a ‘Hello world!" example.

» The complete program bspinprod should now be clear from
the last section. Try to compile it and to run it!

BSP benchmarking

Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and
statistics” (Benjamin Disraeli, 1804-1881)

» Benchmarking is the activity of comparing performance.

» Computer benchmarking involves running computer programs
to see how certain computer systems perform. This checks
both the hardware and the system software.

» Often, the benchmark result is obtained by ruthless reduction
of a large quantity of data to one statistical figure, the flop
rate.

Sequential benchmarking

> Already for sequential computers, benchmarking is difficult;
different programs can run at very different speeds.

» Reaching only 10% of the peak rate of a computer is quite
common. No one is embarrassed. Hush!

> Highest rates are obtained by algorithms that use
matrix—matrix multiplication, such as implemented in the
BLAS level 3 operation DGEMM. (BLAS = Basic Linear
Algebra Subprograms).

» The arithmatic intensity is key; if the flop/byte is high, the
problem is CPU bound and usually can be well-optimised.

> In contrast, irregular scalar operations which involve single
numbers and not vectors or matrices, are bandwidth-bound.

> A reasonable intermediate rate is obtained for vector—vector
operations, such as the BLAS level 1 DAXPY, defined by

y ‘= ax+y. We use this operation for sequential
benchmarking.

BSP benchmarking

» We must be ruthless, but a single number will not work. Thus
we look to the BSP model and measure r for computation, g
for communication, and / for synchronisation.

» The aim is to obtain useful values of r, g, | that help us in
predicting performance of algorithms without actually running
an implementation.

» Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking; computation speed is
hard to determine.

> Apart from arithmatic intensity, caching plays a big role:

» A cache is a small memory close to the CPU that stores
recently accessed data. There may be a tiny primary cache, a
larger secondary cache farther away, etc.

> Higher-level caches are bigger but slower.

» Computations in primary cache are much faster than others.
We may have to distinguish rates r1, r, etc. (but we won't).

Communication pattern for BSP benchmark program

0|3 4

_

P(0) sends data to P(1), P(2), P(3), P(1), P(2), P(3). The other
processors also send data in this cyclic fashion.

Full h-relation

» We measure a full h-relation, where every processor sends and
receives exactly h data.

» Qur intentions are the worst: we try to measure the slowest
possible communication. We put single data words into other
processors in a cyclic fashion.

» This reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently. This is after all the basis
of BSP!

» ‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better; the g
obtained by our benchmarking program bspbench is
pessimistic.

» The Oxford BSP toolset has another benchmarking program,
bspprobe, which measures optimistic g-values.

Time of an h-relation on two connected PCs

800000 T T T
Measured data +
Least-squares fit -------- 4
|
700000 £
#43:»5'
w@ﬁ#
600000 - f E
ﬁ}#wr*
£ 500000 - A = .
5 il
& S
< 400000 | ity J
S 2
£ L e+]
& 300000 :"*Mr** t‘;tfr
e W*W hid
b+ e -
200000 1y -
L
100000 B
0

0 50 100 150 200 250 300 350 400 450 500
h

Two 400 MHz Pentium Il PCs, both running Linux, connected by
Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch:
r =122 Mflop/s, g = 1180, and | = 138324.

Least-squares fit

» Two measurements would suffice for obtaining a straight line,
but we want to use all h; — hg + 1 data points available in
[ho, h1].

» We minimise the squared error

hy

ELSQ(g7 /) = Z (Tcomm(h) - (hg + /))2
h=ho

» We find the best choice for g and / when
0F _OE _
og ol
and solving the resulting 2 x 2 linear system.
» Measure tj = Teomm(i) for all hg < i < h;. Then:

0

h1 hl
£ £
gg:§:2i(ig+l)—2t;, %:E 2(ig + 1) — 2t

i=hg i=hg

Least-squares fit

» Two measurements would suffice for obtaining a straight line,
but we want to use all hy — hg + 1 data points available in

[ho, h1].
» We minimise the squared error

hy

Ersq(g,l) = Z (Tcomm(h) — (hg + /))2~
h=hg

» We find the best choice for g and / when
0E OE
og ol
and solving the resulting 2 x 2 linear system.
» Measure t; = Teomm(i) for all hg < i < hy. Then:

0

h
g +(hot+hy)-l =2 it

i=hg

hl(hl + 1)(2/71 +].) — ho(ho + 1)(2/70 + 1)
3

Least-squares fit

» Two measurements would suffice for obtaining a straight line,
but we want to use all h; — hg + 1 data points available in

[ho, h1].
» We minimise the squared error
hy

Ersq(g,l) = Z (Tcomm(h) — (hg + /))2'
h=hg

» We find the best choice for g and / when
OF _ 0 _
og ol
and solving the resulting 2 x 2 linear system.
» Measure t; = Teomm(i) for all hg < i < hy. Then:

0

hy
(ho+h1)-g+2(h —ho+1)-1=2) t.

i=hg

Time of an h-relation on an 8-processor SGI Origin

200000 T

Measured data +
Least-squares fit -—-----

150000

100000 |- s

Time (in flop units)

50000 [b
"

0 50 100 150 200 250

Silicon Graphics Origin 2000, Compiler plays tricks: measured
value of r too high. Choose hg and h; judiciously! Here, hy = p.
r =326 Mflop/s, g =297, and / = 95 686.

Time of an h-relation on a 64-processor Cray T3E

25000 T
Measured data +
Least-squares fit --------
20000 M A
i
o
‘§ 15000 M B
j=%
=]
=
&
2 10000 B
&
5000 - B
0 .
0 50 100 150 200 250

Sending more data takes less time (cf. h ~ 130). Weird!
Explanation: switching to a different data packing mechanism.
r =35 Mflop/s, g =78, and | = 1825.

bspbench: initialising the communication pattern

for(i =0; i < h; i++) {

src[i 1 = (double)i;
if(p==1)A

destproc [i 1 = 0;

destindex[1]
} else {

/* destination processor is one

of the p-1 others */
destproc[i] = (s+1 +1i % (p-1)) % p;

i;

/* destination index is in
my own part of dest */
destindex[i 1 =s + (i / (p-1)) * p;

bspbench: measuring the communication time

bsp_sync() ;
time0 = bsp_time();

for(iter = 0; iter < NITERS; iter++) {

for(i = 0; i < h; i++)

bsp_put(destproc[i], &src[i], dest,
destindex[i] * SZDBL, SZDBL
);

bsp_sync();
}
timel = bsp_time();

Adjust NITERS to obtain an accurate measurement.

Comparing BSP parameters (p = 8)

g / g /
Computer r (Mflop/s) (flop) (us)
Cray T3E 35 31 1193 0.88 34
IBM RS/6000 SP 212 187 148 212 0.88 698
SGI Origin 2000 326 297 95 686 0.91 294

» Machines become obsolete quickly. All of the above machines
have in the mean time been replaced by faster successors.

» Newer machines will be benchmarked in the laboratory class
of this course.

Advice from the trenches

» Always plot the benchmark results. This gives insight in your
machine and reveals the accuracy of your measurement.

» Be suspicious of artefacts. Negative g values may occur if g is
small and / is huge. In that case, the least-squares fit does not
give an accurate g.

» Run the benchmark at least three times. If the best two runs
agree, you can be reasonably confident.

» Parallel computers are like the weather: they change all the
time. Always run a benchmark program before running an
application program, just to see what machine you have today.
(Think of: a new compiler, faster communication switches,
Challenge Projects that gobble up network resources, and so on.)

Summary

» Benchmarking is difficult.

» Machines have quirks, surprises are plenty, and measurements
are often inaccurate.

» With all these caveats, it is still useful to have a table with r,
g, | values for many different machines.

» This table should be kept up to date to reflect new
architectures appearing. You can do it! (Similar to the
LINPACK benchmark used to determine the Supercomputer
Top 500.)

» BSP benchmarking can be done using BSPIlib (bspbench,
bspprobe), but also MPI-1 (mpibench).

The sequential LU decomposition

Solving linear systems is important

Applications often have as their core a linear system solver.

» Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

» Designing aircraft. Boundary element methods lead to huge
dense linear systems of equations.

» Optimising oil refineries. Linear programming by interior point
methods requires solving a sparse linear system (with many
zero coefficients) at every step of the computation.

Lower and upper triangular matrices

1 4 6 1 00 1 46
A=12 10 17 [=2 1 0 0 2 5 |=LU.
3 16 31 321 0 0 3

» L is unit lower triangular if /; = 1 for all i and /;; = 0 for all
i <j.
» U is upper triangular if u; = 0 for all i > j.

Triangular systems are easier to solve

Let A= LU. Then

Ax=b <= L(Ux) =b <= Ly =Dband Ux=y.

10077 y [16] Yo [16
2 1 nl=|4|=|n|=|1
| 3 1] |y | | 78 | L y2 | | 6
[1 4 6] [x | [16] [xo | [0
0 25 X1 = 12 — X1 = 1
_003__X2_ _6_ L X2 | _2

Objective

For a given A, find L, U such that LU = A, with

1 Upr -+ Uon
L= : ,and U =
lo -~ 1 Unn

The upper-right and bottom-left white-spaces of L, resp., U
contain zero entries.

Memory-efficient sequential LU decomposition

input: A: n X n matrix, A= A0)

output: A: nxnmatrix, A=L— I, + U, with
L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,
I, 1 n X nidentity matrix,
such that LU = A®©).

for k:=0ton—1do
fori=k+1ton—1do
ajk = ajk/ akk;
fori=k+1ton—1do
forj:=k+1ton—1do
ajj = ajj — ajkdkj,

Row permutations needed

LU decomposition breaks down immediately in stage O for

0 1
A=
o)
because we try to divide by 0.
> A solution is to permute the rows suitably.
» Thus, we compute a permuted LU decomposition,

PA=LU.

» Here, P is a permutation matrix, obtained by permuting the
rows of /,,.

» Output of LU decomposition of A: L, U, P.

Permutations and permutation matrices

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
We define the permutation matrix P, corresponding to o by

(%M:{liﬁ:om

0 otherwise.

Thus, column j of P, is 1 in row o(j), and 0 everywhere else.

Lemma 2.5 Properties of P,

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
Let x be a vector of length n and A an n x n matrix. Then

(Pox)i = Xg-1(3j), for 0 <i<n,

(PUA),'J' = a1 for 0 < i,j < n,

DNE
o

(PUAPT)U = a5-1(i),0-1(j)> for 0 <i,j < n.

Proofs: see book.

LU decomposition with row permutations

input: A: nx n matrix, A= A0,

output: A: nxnmatrix, A=L—I,+ U, with
L: nx nunit lower triangular matrix,
U : n x n upper triangular matrix,
7 : permutation vector of length n.

fori:=0ton—1do
=1,
for k:=0ton—1do
r = argmax(|aj| : kK < i< n);
swap(mi, 7);
for j:=0ton—1do
swap(agj, a,);

LU decomposition with row permutations

input:
output:

A: nx nmatrix, A= A,

A: nxnmatrix, A=L— 1,4+ U, with
L : n x n unit lower triangular matrix,
U : n X n upper triangular matrix,

7 . permutation vector of length n.

fori:=k+1ton—1do
ajk i= ajk/ akk;
fori:=k+1ton—1do
forj:=k+1ton—1do
djj ‘= ajj — ajkdkj,

Partial row pivoting

» The pivot element in stage k is the largest element a, in
column k. Everything revolves around it. It is farthest from 0
and division by a,x is most stable.

» The pivot row r is thus determined by
lar| = max(|ai| : k < i< n).

» r is the argument (or index) of the maximum.

» Full pivoting would take the largest pivot from the whole
submatrix A(k: n—1,k: n—1). This gives the best stability,
but is more costly (columns must be swapped, too).

In practice, partial pivoting suffices.

The meaning of 7

v

The algorithm permutes the matrix by a permutation matrix
P,. We obtain the LU decomposition P,A = LU.

The same matrix is applied to the initial vector
e=(0,1,2,...,n—1)T. We obtain 7 = P,e.
Therefore, by Lemma 2.5,

v

v

7T(i) = (Poe),- = €;-1(j) = O’_l(i).
» Thus, 7 = o1 and hence

P. 1A= LU.

Sequential time complexity

Lemma 2.7:

~ . n(n+1) ~ 5 n(n+1)(2n+1)
Z:k_T’ > K= 6 '

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is
— n—1
Twq = Z (n—k—-124+n—k—-1)=Y (2k*>+k)
=0 k=0
(n=1)n@n—-1) (n—1)n
3 + 2

N 3 6) 3 2 6

=

Summary

» Solving a linear system Ax = b can best be done by:
» finding an LU decomposition PA = LU,
» permuting b into Pb;
» solving the triangular systems Ly = Pb and Ux =y.
» The LU decomposition costs about 2n/3 flops and each
triangular system solve about n? flops.

» It is always difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

» We defined the matrix P,; its jth column is 1 in row o(j), and
0 everywhere else.

» An important connection between a permutation ¢ and the
matrix P, is given by (P,x); = Xo—1(j)-

Parallel LU decomposition

Designing a parallel algorithm

» Main question: how to distribute the data?
What data? The matrix A and the permutation 7.

v

v

Data distribution + sequential algorithm
—> computation supersteps.

v

Design backwards: insert preceding communication supersteps
following the need-to-know principle.

Data distribution for the matrix A

» The bulk of the work in the sequential computation is the
update

a,-j = a,-j — a,-kakj
for matrix elements aj with i,j > k + 1, taking 2(n — k — 1)?
flops.

» The other operations take only n— k — 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

Data distribution for the matrix A

» The bulk of the work in the sequential computation is the
update

a,-j = a,-j — a,-kakj
for matrix elements aj with i,j > k + 1, taking 2(n — k — 1)?
flops.
» The other operations take only n— k — 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.
» Elements ajj, ajx, ax; may not be on the same processor. Who
does the update?

» Many elements a; must be updated in stage k, but only few
elements aj, a,; are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

» Therefore, the owner of a;; computes the new value aj; using
communicated values of aj, ay;.

Matrix update by operation a;; := aj; — ajcay;

0
1
2
3 g
4 1.
5 ik| =1 %ij1
6

Update of row i uses only one value, aj, from column k. If we
distribute row i over only N processors, then aj needs to be sent
to at most N — 1 processors.

Matrix distribution
» A matrix distribution is a mapping
¢ {(,j)):0<ij<n} —={(s,t):0<s<MAO<t<N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function ¢ has two coordinates,

Matrix distribution

» A matrix distribution is a mapping
¢ {(i,)):0<i,j<n}—={(st):0<s<MAO<t<N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function ¢ has two coordinates,

> Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering.

» Processor numberings have no physical meaning. Assume
BSPlib randomly renumbers the processors at the start!

» A processor row P(s,x*) is a group of N processors P(s,t)
with 0 < t < N. A processor column P(x,t) is a group of M
processors P(s, t) with 0 <s < M.

Cartesian matrix distribution

t=0 2 1 2 0 1 O

00| 02{01|02]| 00| 01|00

10| 12| 11| 12| 10| 11| 10
00| 02{01(02]|00{01]00
10| 12| 11| 12| 10| 11| 10
00| 02{01|02]|00|01]00
10 12| 11| 12| 10| 11| 10

_ o = O = O O

A matrix distribution is called Cartesian if ¢o(/,/) is independent of
J and ¢1(i,j) is independent of i:

¢(i.J) = (¢o(i), 91()))-

Parallel matrix update

(8) if ¢po(k) =s A ¢1(k) =t then put ax in P(x,t);

(9) if pi(k)=tthenforalli:k <i<nA ¢o(i) =s do
aik = aik/ akk;

Parallel matrix update

(8) if ¢po(k) =s A ¢1(k) =t then put ax in P(x,t);

(9) if pi(k)=tthenforalli:k <i<nA ¢o(i) =s do
aik = aik/ akk;

(10) if ¢1(k) =t thenforall i: k <i<n A ¢o(i) =s do
put ajx in P(s,x*);

if po(k) =sthenforallj: k<j<nA ¢1(j)=1tdo
put agj in P(x, t);

(11) forall i: k <i<n A ¢o(i) =s do
forall j: k<j<nA ¢1(j) =t do
djj ‘= ajj — ajkdkj,

Parallel pivot search

(0) if ¢1(k) =t then rs := argmax(|ai| : k < i< n A ¢o(i) =s);

(1) if ¢1(k) =t then put rs and a,_x in P(x,t);

Parallel pivot search

(0) if ¢1(k) =t then rs := argmax(|ai| : k < i< n A ¢o(i) =s);
(1) if ¢1(k) =t then put rs and a,_x in P(x,t);

(2) if ¢1(k) =t then
Smax = argmax(|a,, x| : 0 < g < M);

r= rSmax;

(3) if ¢1(k) = t then put r in P(s, *);

Two parallelisation methods

» The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

» Matrix update uses first parallelisation method: look at |hs
(left-hand side) of assignment, owner computes.

» Pivot search uses second method: look at rhs of assignment,
compute what can be done locally, reduce the number of data
to be communicated.

> In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant
(replicated) search for the global winner.

» Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).

Distribution for permutation 7

» Store 7y together with row k, somewhere in processor row
P(¢o(k),*).

» We choose P(¢o(k),0). This gives a true distribution.

» We could also have chosen to replicate 7 in processor row
P(¢o(k),). This would save some if-statements in our
programs.

Index and row swaps

(4) if ¢o(k) =s A t =0 then put 7y as 7x in P(¢po(r),0);
if ¢o(r) =s A t =0 then put 7, as @, in P(¢o(k),0);

(5) if ¢po(k) =s A t =0 then 7y := 7/,
if po(r) =s A t =0 then 7, := 7y;

Index and row swaps

(4) if ¢o(k) =s A t =0 then put 7y as 7x in P(¢po(r),0);
if ¢o(r) =s A t =0 then put 7, as @, in P(¢o(k),0);

(5) if ¢po(k) =s A t =0 then 7y := 7/,
if po(r) =s A t =0 then 7, := 7y;

(6) if ¢po(k) =sthenforall j:0<j<nA ¢1(j)=tdo
put ay; as ékj in P(¢0(I’), t);

if ¢o(r)=sthenforallj:0<j<nA ¢1(j) =t do
put a, as a, in P(¢o(k), t);

(7) if ¢o(k)=sthenforall j:0<j<nA ¢1(j) =t do
agj = érj;

if po(r) =sthenforallj:0<j<nA ¢1(j)=1tdo
arj = ékj;

Optimising the matrix distribution

» We have chosen a Cartesian matrix distribution ¢ to limit the
communication.

» We now specify ¢ further to achieve a good computational
load balance and to minimise the communication.

» Maximum number of local matrix rows with index > k:

Ry = ik <i) = s}.
k= gmax [{izk<i<nn goli)=s}

Maximum number of local matrix columns with index > k:

Ck = max H{j:k<j<nA ¢1(j) =t}
0<t<

» The computation cost of the largest superstep, the matrix
update (11), is then 2Ry 1 Cy1.

Example

t=0 2 1 2 0 1 O

00| 02{01|02]| 00| 01|00
00| 02{01|02]|00|01]00
10 12| 11| 12| 10| 11| 10
00| 02{01(02]|00|01]|00
10 12| 11| 12| 10| 11| 10
00| 02{01|02]|00|01]00
10 12| 11| 12| 10| 11| 10

_ o = O = o O

Rb :i4,(b =3 and Rﬁ Zi2,(l =2

Bound for Ry

n—k

Proof: Assume this is untrue, so that R < [“*|. Because Ry is

integer, we even have Ry < k . Hence all M processor rows
together hold less than M - = n — k matrix rows. But they
hold all matrix rows kK < i < n. Contradiction. O

2D cyclic distribution attains bound

t=0 1 2 0 I 2 O
00/ 01/02|/00(01|02|00
10| 11| 12| 10| 11| 12| 10
00/ 01/02/00(01|02(00
11| 12| 10| 11| 12| 10
00/ 01/02/00(01[02{00
10| 11| 12| 10| 11| 12| 10
00/ 01/02/00(01[02(00

©
1]

S = O = O = O
—_
(==

¢o(i) =i mod M, ¢1(j) =, mod N.

o] e

Cost of main computation superstep (matrix update)

n J—
T(ll),cyclic =2 ’V M

n—k-—1 n—k-—1
T(ll),cyclic < 2 <M+1> <N+1>

_ 2(n—k—1)2+2(n—k—1)(M+N)+2
p p ‘

The upper bound is minimal for M = N = ,/p. The second-order
term 4(n — k — 1)/,/p is the additional computation cost caused
by load imbalance.

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

Tao)y = (Reyr(N—=1)+ Cepa(M—1))g

(7= [+ [P)

- T(lO),CycliC'

n—k-—1 n—k-—1
T(lO),cyclic < <<M+1> N + (N—I-l) /\/l>g

_ ((n—k—1)<AA/Il+AA/Il>+M+N>g.

The upper bound is again minimal for M = N = /p. The
resulting communication cost is about 2(n — k — 1)g.

Y

Summary

» We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing the 2D cyclic distribution,
based on a careful analysis of the main computation and
communication supersteps, and finally by showing that a
square /p X ,/p distribution is best.

> Developing the algorithm goes hand in hand with the cost
analysis.

» We now have a correct algorithm and a good distribution, but
the overall BSP cost may not be minimal yet. Wait and see

