
Introduction to the Bulk Synchronous Parallel
model

Albert-Jan N. Yzelman

11th of October, 2013

Derived from the book slides by Prof. dr. Rob H. Bisseling, found
at

www.math.uu.nl/people/bisseling/Education/PA/pa.html

www.math.uu.nl/people/bisseling/Education/PA/pa.html

Programming using BSPlib

Available BSP libraries

Distributed-memory computers:

1. Oxford BSP library, see www.bsp-worldwide.org

2. BSPonMPI, see bsponmpi.sourceforge.net

Shared-memory computers, see www.multicorebsp.com:

1. MulticoreBSP for Java

2. MulticoreBSP for C

www.bsp-worldwide.org
bsponmpi.sourceforge.net
www.multicorebsp.com

Compilation of BSPlib programs
Oxford BSP Toolset (Hill, McColl, Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas, Bisseling;

1998)

bspcc bspinprod.c;
bsprun -npes <P> ./a.out

BSPonMPI (van Suijlen; 2006)

mpcc bspinprod.c -lbsponmpi;
./a.out

MulticoreBSP for C (Yzelman, Bisseling, Roose, Meerbergen; 2012)

cc bspinprod.c -lmcbsp -pthread -lrt;
./a.out

MulticoreBSP for Java (Yzelman, Bisseling; 2010)

javac -cp MulticoreBSP.jar bspinprod.java;
java -cp MulticoreBSP.jar bspinprod

Other BSP libraries
Other (distributed memory) BSP-style libraries (incompatible API):

I MapReduce
Google Inc.; 2004.

I Pregel
Malewicz, Austern, Bik, Dehnert, Ilan Horn, Czajkowski (Google Inc.); 2010.

I Apache Hama
Yoon et al.; 2010

I Paderborn University BSP library (PUB)
Bonorden, Juurlink, von Otte, Rieping; 1998.

I Bulk Synchronous Parallel ML (BSMLlib)
Gava, Gesbert, Hains, Tesson; 2000.

I Python/BSP
Hinsen, Sadron; 2003.

I Cloudscale BSP
McColl et al. (Cloudscale Inc.); 2012.

Hello World!

#include "bsp.h" / "mcbsp.h"

int main(int argc, char **argv) {

bsp_begin(4);

printf("Hello world from thread %d out of %d!\n",

bsp_pid(), bsp_nprocs());

bsp_end();

}

Hello World!

An example using MulticoreBSP for C and static linkage:

$ gcc -o hello hello.c lib/libmcbsp1.1.0.a -pthread -lrt

$./hello

Hello world from thread 3 out of 4!

Hello world from thread 2 out of 4!

Hello world from thread 0 out of 4!

Hello world from thread 1 out of 4!

$...

Hello World!

#include "mcbsp.h"

int P;

void hello() {

bsp_begin(P);

printf("Hello world from thread %d!\n",

bsp_pid());

bsp_end();

}

int main(int argc, char **argv) {

bsp_init(hello, argc, argv);

scanf("%d", &P);

hello();

}

Summary

I There are multiple implementations of the BSPlib interface.

I Other BSP-style libraries for parallel programming exist; some
stay close to the BSP model, others do not.

I We have seen the syntax for compilation for various BSPlib
libraries, and applied these on a ‘Hello world!’ example.

I The complete program bspinprod should now be clear from
the last section. Try to compile it and to run it!

BSP benchmarking

Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and
statistics” (Benjamin Disraeli, 1804–1881)

I Benchmarking is the activity of comparing performance.

I Computer benchmarking involves running computer programs
to see how certain computer systems perform. This checks
both the hardware and the system software.

I Often, the benchmark result is obtained by ruthless reduction
of a large quantity of data to one statistical figure, the flop
rate.

Sequential benchmarking

I Already for sequential computers, benchmarking is difficult;
different programs can run at very different speeds.

I Reaching only 10% of the peak rate of a computer is quite
common. No one is embarrassed. Hush!

I Highest rates are obtained by algorithms that use
matrix–matrix multiplication, such as implemented in the
BLAS level 3 operation DGEMM. (BLAS = Basic Linear
Algebra Subprograms).

I The arithmatic intensity is key; if the flop/byte is high, the
problem is CPU bound and usually can be well-optimised.

I In contrast, irregular scalar operations which involve single
numbers and not vectors or matrices, are bandwidth-bound.

I A reasonable intermediate rate is obtained for vector–vector
operations, such as the BLAS level 1 DAXPY, defined by
y := αx + y. We use this operation for sequential
benchmarking.

BSP benchmarking

I We must be ruthless, but a single number will not work. Thus
we look to the BSP model and measure r for computation, g
for communication, and l for synchronisation.

I The aim is to obtain useful values of r , g , l that help us in
predicting performance of algorithms without actually running
an implementation.

I Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking; computation speed is
hard to determine.

I Apart from arithmatic intensity, caching plays a big role:
I A cache is a small memory close to the CPU that stores

recently accessed data. There may be a tiny primary cache, a
larger secondary cache farther away, etc.

I Higher-level caches are bigger but slower.
I Computations in primary cache are much faster than others.

We may have to distinguish rates r1, r2, etc. (but we won’t).

Communication pattern for BSP benchmark program

P(0)

0 3

2

5

1

4

P(1)

P(3)

P(2)

P(0) sends data to P(1), P(2), P(3), P(1), P(2), P(3). The other
processors also send data in this cyclic fashion.

Full h-relation

I We measure a full h-relation, where every processor sends and
receives exactly h data.

I Our intentions are the worst: we try to measure the slowest
possible communication. We put single data words into other
processors in a cyclic fashion.

I This reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently. This is after all the basis
of BSP!

I ‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better; the g
obtained by our benchmarking program bspbench is
pessimistic.

I The Oxford BSP toolset has another benchmarking program,
bspprobe, which measures optimistic g -values.

Time of an h-relation on two connected PCs

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
(in

 fl
op

 u
ni

ts)

h

Measured data
Least-squares fit

Two 400 MHz Pentium II PCs, both running Linux, connected by
Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch:

r = 122 Mflop/s, g = 1180, and l = 138324.

Least-squares fit

I Two measurements would suffice for obtaining a straight line,
but we want to use all h1 − h0 + 1 data points available in
[h0, h1].

I We minimise the squared error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I We find the best choice for g and l when

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.

I Measure ti = Tcomm(i) for all h0 ≤ i ≤ h1. Then:

∂E

∂g
=

h1∑
i=h0

2i(ig + l)− 2ti ,
∂E

∂l
=

h1∑
i=h0

2(ig + l)− 2ti .

Least-squares fit
I Two measurements would suffice for obtaining a straight line,

but we want to use all h1 − h0 + 1 data points available in
[h0, h1].

I We minimise the squared error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I We find the best choice for g and l when

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.
I Measure ti = Tcomm(i) for all h0 ≤ i ≤ h1. Then:

h1(h1 + 1)(2h1 + 1)− h0(h0 + 1)(2h0 + 1)

3
·g+(h0+h1)·l = 2

h1∑
i=h0

iti .

Least-squares fit

I Two measurements would suffice for obtaining a straight line,
but we want to use all h1 − h0 + 1 data points available in
[h0, h1].

I We minimise the squared error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I We find the best choice for g and l when

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.

I Measure ti = Tcomm(i) for all h0 ≤ i ≤ h1. Then:

(h0 + h1) · g + 2(h1 − h0 + 1) · l = 2

h1∑
i=h0

ti .

Time of an h-relation on an 8-processor SGI Origin

Measured data
Least-squares fit

T
im

e
(i

n
fl

op
 u

ni
ts

)

0 50 100 150 200 250
h

0

50 000

100 000

150 000

200 000

Silicon Graphics Origin 2000, Compiler plays tricks: measured
value of r too high. Choose h0 and h1 judiciously! Here, h0 = p.

r = 326 Mflop/s, g = 297, and l = 95 686.

Time of an h-relation on a 64-processor Cray T3E

0

5000

10000

15000

20000

25000

0 50 100 150 200 250

Ti
m

e
(in

 fl
op

 u
ni

ts)

h

Measured data
Least-squares fit

Sending more data takes less time (cf. h ≈ 130). Weird!
Explanation: switching to a different data packing mechanism.

r = 35 Mflop/s, g = 78, and l = 1825.

bspbench: initialising the communication pattern

for(i = 0; i < h; i++) {

src[i] = (double)i;

if(p == 1) {

destproc [i] = 0;

destindex[i] = i;

} else {

/* destination processor is one

of the p-1 others */

destproc[i] = (s+1 + i % (p-1)) % p;

/* destination index is in

my own part of dest */

destindex[i] = s + (i / (p-1)) * p;

}

}

bspbench: measuring the communication time

bsp_sync();

time0 = bsp_time();

for(iter = 0; iter < NITERS; iter++) {

for(i = 0; i < h; i++)

bsp_put(destproc[i], &src[i], dest,

destindex[i] * SZDBL, SZDBL

);

bsp_sync();

}

time1 = bsp_time();

Adjust NITERS to obtain an accurate measurement.

Comparing BSP parameters (p = 8)

g l g l
Computer r (Mflop/s) (flop) (µs)

Cray T3E 35 31 1 193 0.88 34
IBM RS/6000 SP 212 187 148 212 0.88 698
SGI Origin 2000 326 297 95 686 0.91 294

I Machines become obsolete quickly. All of the above machines
have in the mean time been replaced by faster successors.

I Newer machines will be benchmarked in the laboratory class
of this course.

Advice from the trenches

I Always plot the benchmark results. This gives insight in your
machine and reveals the accuracy of your measurement.

I Be suspicious of artefacts. Negative g values may occur if g is
small and l is huge. In that case, the least-squares fit does not
give an accurate g .

I Run the benchmark at least three times. If the best two runs
agree, you can be reasonably confident.

I Parallel computers are like the weather: they change all the
time. Always run a benchmark program before running an
application program, just to see what machine you have today.
(Think of: a new compiler, faster communication switches,

Challenge Projects that gobble up network resources, and so on.)

Summary

I Benchmarking is difficult.

I Machines have quirks, surprises are plenty, and measurements
are often inaccurate.

I With all these caveats, it is still useful to have a table with r ,
g , l values for many different machines.

I This table should be kept up to date to reflect new
architectures appearing. You can do it! (Similar to the
LINPACK benchmark used to determine the Supercomputer
Top 500.)

I BSP benchmarking can be done using BSPlib (bspbench,
bspprobe), but also MPI-1 (mpibench).

The sequential LU decomposition

Solving linear systems is important

Applications often have as their core a linear system solver.

I Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

I Designing aircraft. Boundary element methods lead to huge
dense linear systems of equations.

I Optimising oil refineries. Linear programming by interior point
methods requires solving a sparse linear system (with many
zero coefficients) at every step of the computation.

Lower and upper triangular matrices

A =

 1 4 6
2 10 17
3 16 31

 =

 1 0 0
2 1 0
3 2 1

 1 4 6
0 2 5
0 0 3

 = LU.

I L is unit lower triangular if lii = 1 for all i and lij = 0 for all
i < j .

I U is upper triangular if uij = 0 for all i > j .

Triangular systems are easier to solve

Let A = LU. Then

Ax = b⇐⇒ L(Ux) = b⇐⇒ Ly = b and Ux = y.

 1 0 0
2 1 0
3 2 1

 y0
y1
y2

 =

 16
44
78

 =⇒

 y0
y1
y2

 =

 16
12

6

 1 4 6

0 2 5
0 0 3

 x0
x1
x2

 =

 16
12

6

 =⇒

 x0
x1
x2

 =

 0
1
2

 .

Objective

For a given A, find L,U such that LU = A, with

L =

 1
...

. . .

ln0 · · · 1

, and U =

 u01 · · · u0n
. . .

...
unn

 .

The upper-right and bottom-left white-spaces of L, resp., U
contain zero entries.

Memory-efficient sequential LU decomposition

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
In : n × n identity matrix,

such that LU = A(0).

for k := 0 to n − 1 do
for i := k + 1 to n − 1 do

aik := aik/akk ;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;

Row permutations needed

LU decomposition breaks down immediately in stage 0 for

A =

[
0 1
1 0

]
,

because we try to divide by 0.

I A solution is to permute the rows suitably.

I Thus, we compute a permuted LU decomposition,

PA = LU.

I Here, P is a permutation matrix, obtained by permuting the
rows of In.

I Output of LU decomposition of A: L, U, P.

Permutations and permutation matrices

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
We define the permutation matrix Pσ corresponding to σ by

(Pσ)ij =

{
1 if i = σ(j)
0 otherwise.

Thus, column j of Pσ is 1 in row σ(j), and 0 everywhere else.

Lemma 2.5 Properties of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n and A an n × n matrix. Then

(Pσx)i = xσ−1(i), for 0 ≤ i < n,

(PσA)ij = aσ−1(i),j , for 0 ≤ i , j < n,

(PσAP
T
σ)ij = aσ−1(i),σ−1(j), for 0 ≤ i , j < n.

Proofs: see book.

LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do
πi := i ;
for k := 0 to n − 1 do

r := argmax(|aik | : k ≤ i < n);
swap(πk , πr);
for j := 0 to n − 1 do

swap(akj , arj);
...

LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

...
for i := k + 1 to n − 1 do

aik := aik/akk ;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;

Partial row pivoting

I The pivot element in stage k is the largest element ark in
column k. Everything revolves around it. It is farthest from 0
and division by ark is most stable.

I The pivot row r is thus determined by

|ark | = max(|aik | : k ≤ i < n).

I r is the argument (or index) of the maximum.

I Full pivoting would take the largest pivot from the whole
submatrix A(k : n − 1, k : n − 1). This gives the best stability,
but is more costly (columns must be swapped, too).
In practice, partial pivoting suffices.

The meaning of π

I The algorithm permutes the matrix by a permutation matrix
Pσ. We obtain the LU decomposition PσA = LU.

I The same matrix is applied to the initial vector
e = (0, 1, 2, . . . , n − 1)T . We obtain π = Pσe.

I Therefore, by Lemma 2.5,

π(i) = (Pσe)i = eσ−1(i) = σ−1(i).

I Thus, π = σ−1 and hence

Pπ−1A = LU.

Sequential time complexity

Lemma 2.7:

n∑
k=0

k =
n(n + 1)

2
,

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6
.

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is

Tseq =
n−1∑
k=0

(2(n − k − 1)2 + n − k − 1) =
n−1∑
k=0

(2k2 + k)

=
(n − 1)n(2n − 1)

3
+

(n − 1)n

2

= (n − 1)n

(
2n

3
+

1

6

)
=

2n3

3
− n2

2
− n

6
.

Summary

I Solving a linear system Ax = b can best be done by:
I finding an LU decomposition PA = LU;
I permuting b into Pb;
I solving the triangular systems Ly = Pb and Ux = y.

I The LU decomposition costs about 2n3/3 flops and each
triangular system solve about n2 flops.

I It is always difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

I We defined the matrix Pσ; its jth column is 1 in row σ(j), and
0 everywhere else.

I An important connection between a permutation σ and the
matrix Pσ is given by (Pσx)i = xσ−1(i).

Parallel LU decomposition

Designing a parallel algorithm

I Main question: how to distribute the data?

I What data? The matrix A and the permutation π.

I Data distribution + sequential algorithm
−→ computation supersteps.

I Design backwards: insert preceding communication supersteps
following the need-to-know principle.

Data distribution for the matrix A

I The bulk of the work in the sequential computation is the
update

aij := aij − aikakj

for matrix elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2

flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor. Who
does the update?

I Many elements aij must be updated in stage k , but only few
elements aik , akj are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .

Data distribution for the matrix A

I The bulk of the work in the sequential computation is the
update

aij := aij − aikakj

for matrix elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2

flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor. Who
does the update?

I Many elements aij must be updated in stage k , but only few
elements aik , akj are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .

Matrix update by operation aij := aij − aikakj

0

1

2

3

4

5

6

aik aij

akj

0 1 2 3 4 5 6

Update of row i uses only one value, aik , from column k . If we
distribute row i over only N processors, then aik needs to be sent
to at most N − 1 processors.

Matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering.

I Processor numberings have no physical meaning. Assume
BSPlib randomly renumbers the processors at the start!

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N. A processor column P(∗, t) is a group of M
processors P(s, t) with 0 ≤ s < M.

Matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering.

I Processor numberings have no physical meaning. Assume
BSPlib randomly renumbers the processors at the start!

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N. A processor column P(∗, t) is a group of M
processors P(s, t) with 0 ≤ s < M.

Cartesian matrix distribution

00 02 01 02 00 01 00

00

0000

0000

00

0000 0000

0000

00 00

00 0002

02

01

01

02

02

01

01

10 12 11 12 10 11 10

10 10 10

10 10 10

12 11 12 11

00 02 0201 00 01 00

12 11 12 11

0

0

1

0

1

0

1

s =

t = 0 2 1 2 0 1 0

A matrix distribution is called Cartesian if φ0(i , j) is independent of
j and φ1(i , j) is independent of i :

φ(i , j) = (φ0(i), φ1(j)).

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);

Two parallelisation methods

I The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

I Matrix update uses first parallelisation method: look at lhs
(left-hand side) of assignment, owner computes.

I Pivot search uses second method: look at rhs of assignment,
compute what can be done locally, reduce the number of data
to be communicated.

I In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant
(replicated) search for the global winner.

I Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).

Distribution for permutation π

I Store πk together with row k, somewhere in processor row
P(φ0(k), ∗).

I We choose P(φ0(k), 0). This gives a true distribution.

I We could also have chosen to replicate πk in processor row
P(φ0(k), ∗). This would save some if-statements in our
programs.

Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;

Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;

Optimising the matrix distribution

I We have chosen a Cartesian matrix distribution φ to limit the
communication.

I We now specify φ further to achieve a good computational
load balance and to minimise the communication.

I Maximum number of local matrix rows with index ≥ k :

Rk = max
0≤s<M

|{i : k ≤ i < n ∧ φ0(i) = s}|.

Maximum number of local matrix columns with index ≥ k :

Ck = max
0≤t<N

|{j : k ≤ j < n ∧ φ1(j) = t}|.

I The computation cost of the largest superstep, the matrix
update (11), is then 2Rk+1Ck+1.

Example

00 02 01 02 00 01 00

00

0000

0000

00

0000 0000

0000

00 00

00 0002

02

01

01

02

02

01

01

10 12 11 12 10 11 10

10 10 10

10 10 10

12 11 12 11

00 02 0201 00 01 00

12 11 12 11

0

0

1

0

1

0

1

s =

t = 0 2 1 2 0 1 0

R0 = 4,C0 = 3 and R4 = 2,C4 = 2

Bound for Rk

Rk ≥
⌈
n − k

M

⌉
.

Proof: Assume this is untrue, so that Rk < dn−k
M e. Because Rk is

integer, we even have Rk <
n−k
M . Hence all M processor rows

together hold less than M · n−k
M = n − k matrix rows. But they

hold all matrix rows k ≤ i < n. Contradiction. �

2D cyclic distribution attains bound

t = 0 1 2 0 1 2 0

00 000000 00000s =

1

0

1

0

1

0

01 02 00 01 02

00 01 02 00 01 02 00

11 12 121110 10

00

00

00

00 00

00

10

10

10 10

10 10

10

01

01 01

01

11

11 11

1112

12 12

12

02

0202

02

φ0(i) = i mod M, φ1(j) = j mod N.

Rk =

⌈
n − k

M

⌉
, Ck =

⌈
n − k

N

⌉
.

Cost of main computation superstep (matrix update)

T(11),cyclic = 2

⌈
n − k − 1

M

⌉ ⌈
n − k − 1

N

⌉
≥ 2(n − k − 1)2

p
.

T(11),cyclic < 2

(
n − k − 1

M
+ 1

)(
n − k − 1

N
+ 1

)
=

2(n − k − 1)2

p
+

2(n − k − 1)

p
(M + N) + 2.

The upper bound is minimal for M = N =
√
p. The second-order

term 4(n − k − 1)/
√
p is the additional computation cost caused

by load imbalance.

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

T(10) = (Rk+1(N − 1) + Ck+1(M − 1))g

≥
(⌈

n − k − 1

M

⌉
(N − 1) +

⌈
n − k − 1

N

⌉
(M − 1)

)
g

= T(10),cyclic.

T(10),cyclic <

((
n − k − 1

M
+ 1

)
N +

(
n − k − 1

N
+ 1

)
M

)
g

=

(
(n − k − 1)

(
N

M
+

M

N

)
+ M + N

)
g .

The upper bound is again minimal for M = N =
√
p. The

resulting communication cost is about 2(n − k − 1)g .

Summary

I We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing the 2D cyclic distribution,
based on a careful analysis of the main computation and
communication supersteps, and finally by showing that a
square

√
p ×√p distribution is best.

I Developing the algorithm goes hand in hand with the cost
analysis.

I We now have a correct algorithm and a good distribution, but
the overall BSP cost may not be minimal yet. Wait and see
. . .

