Introduction to the Bulk Synchronous Parallel model

Albert-Jan N. Yzelman

11th of October, 2013

Derived from the book slides by Prof. dr. Rob H. Bisseling, found at

www.math.uu.nl/people/bisseling/Education/PA/pa.html

Programming using BSPlib

Distributed-memory computers:

- 1. Oxford BSP library, see www.bsp-worldwide.org
- 2. BSPonMPI, see bsponmpi.sourceforge.net

Shared-memory computers, see www.multicorebsp.com:

- 1. MulticoreBSP for Java
- 2. MulticoreBSP for C

Compilation of BSPlib programs

Oxford BSP Toolset (Hill, McColl, Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas, Bisseling; 1998)

bspcc bspinprod.c; bsprun -npes <P> ./a.out

BSPonMPI (van Suijlen; 2006)

mpcc bspinprod.c -lbsponmpi; ./a.out

MulticoreBSP for C (Yzelman, Bisseling, Roose, Meerbergen; 2012)

cc bspinprod.c -Imcbsp -pthread -Irt; ./a.out

MulticoreBSP for Java (Yzelman, Bisseling; 2010)

javac -cp MulticoreBSP.jar bspinprod.java; java -cp MulticoreBSP.jar bspinprod

Other BSP libraries

Other (distributed memory) BSP-style libraries (incompatible API):

MapReduce

Google Inc.; 2004.

Pregel

Malewicz, Austern, Bik, Dehnert, Ilan Horn, Czajkowski (Google Inc.); 2010.

Apache Hama

Yoon et al.; 2010

Paderborn University BSP library (PUB)

Bonorden, Juurlink, von Otte, Rieping; 1998.

Bulk Synchronous Parallel ML (BSMLlib)

Gava, Gesbert, Hains, Tesson; 2000.

Python/BSP

Hinsen, Sadron; 2003.

Cloudscale BSP

McColl et al. (Cloudscale Inc.); 2012.

Hello World!

```
#include "bsp.h" / "mcbsp.h"
```

```
int main(int argc, char **argv) {
    bsp_begin( 4 );
```

```
bsp_end();
```

}

Hello World!

An example using MulticoreBSP for C and static linkage:

\$ gcc -o hello hello.c lib/libmcbsp1.1.0.a -pthread -lrt \$./hello Hello world from thread 3 out of 4! Hello world from thread 2 out of 4! Hello world from thread 0 out of 4! Hello world from thread 1 out of 4! \$...

Hello World!

```
#include "mcbsp.h"
int P;
void hello() {
    bsp_begin( P );
    printf( "Hello world from thread %d!\n",
        bsp_pid() );
    bsp_end();
}
int main(int argc, char **argv) {
    bsp_init( hello, argc, argv );
    scanf( "%d", &P );
    hello();
}
```

Summary

- There are multiple implementations of the BSPlib interface.
- Other BSP-style libraries for parallel programming exist; some stay close to the BSP model, others do not.
- We have seen the syntax for compilation for various BSPlib libraries, and applied these on a 'Hello world!' example.
- The complete program bspinprod should now be clear from the last section. Try to compile it and to run it!

BSP benchmarking

<ロ> <@> < E> < E> E のQの

Benchmarking: art, science, magic?

"There are three kinds of lies: lies, damned lies, and statistics" (Benjamin Disraeli, 1804–1881)

- Benchmarking is the activity of comparing performance.
- Computer benchmarking involves running computer programs to see how certain computer systems perform. This checks both the hardware and the system software.
- Often, the benchmark result is obtained by ruthless reduction of a large quantity of data to one statistical figure, the flop rate.

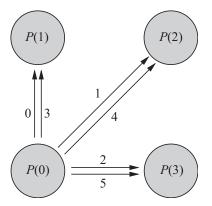
Sequential benchmarking

- Already for sequential computers, benchmarking is difficult; different programs can run at very different speeds.
- Reaching only 10% of the peak rate of a computer is quite common. No one is embarrassed. Hush!
- Highest rates are obtained by algorithms that use matrix-matrix multiplication, such as implemented in the BLAS level 3 operation DGEMM. (BLAS = Basic Linear Algebra Subprograms).
- The arithmatic intensity is key; if the flop/byte is high, the problem is CPU bound and usually can be well-optimised.
- In contrast, irregular scalar operations which involve single numbers and not vectors or matrices, are bandwidth-bound.
- ► A reasonable intermediate rate is obtained for vector–vector operations, such as the BLAS level 1 DAXPY, defined by y := αx + y. We use this operation for sequential benchmarking.

BSP benchmarking

- We must be ruthless, but a single number will not work. Thus we look to the BSP model and measure r for computation, g for communication, and l for synchronisation.
- The aim is to obtain useful values of r, g, l that help us in predicting performance of algorithms without actually running an implementation.
- Most of our troubles in this endeavour come from the difficulty of sequential benchmarking; computation speed is hard to determine.
- > Apart from arithmatic intensity, **caching** plays a big role:
 - A cache is a small memory close to the CPU that stores recently accessed data. There may be a tiny primary cache, a larger secondary cache farther away, etc.
 - Higher-level caches are bigger but slower.
 - Computations in primary cache are much faster than others.
 We may have to distinguish rates r₁, r₂, etc. (but we won't).

Communication pattern for BSP benchmark program

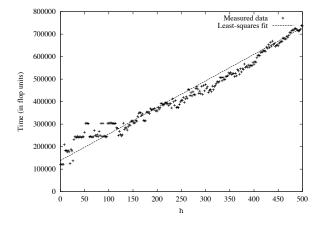


P(0) sends data to P(1), P(2), P(3), P(1), P(2), P(3). The other processors also send data in this cyclic fashion.

Full *h*-relation

- We measure a full *h*-relation, where every processor sends and receives exactly *h* data.
- Our intentions are the worst: we try to measure the slowest possible communication. We put single data words into other processors in a cyclic fashion.
- This reveals whether the system software indeed combines data for the same destination and whether it can handle all-to-all communication efficiently. This is after all the basis of BSP!
- 'Underpromise and overdeliver' is the motto: actual communication performance can only be better; the g obtained by our benchmarking program bspbench is pessimistic.
- The Oxford BSP toolset has another benchmarking program, bspprobe, which measures optimistic g-values.

Time of an *h*-relation on two connected PCs



Two 400 MHz Pentium II PCs, both running Linux, connected by Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch: r = 122 Mflop/s, g = 1180, and l = 138324.

Least-squares fit

- ► Two measurements would suffice for obtaining a straight line, but we want to use all h₁ h₀ + 1 data points available in [h₀, h₁].
- We minimise the squared error

$$E_{
m LSQ}(g, l) = \sum_{h=h_0}^{h_1} (T_{
m comm}(h) - (hg + l))^2.$$

We find the best choice for g and I when

$$\frac{\partial E}{\partial g} = \frac{\partial E}{\partial I} = 0$$

and solving the resulting 2×2 linear system.

• Measure $t_i = T_{\text{comm}}(i)$ for all $h_0 \le i \le h_1$. Then:

$$\frac{\partial E}{\partial g} = \sum_{i=h_0}^{h_1} 2i(ig+l) - 2t_i, \quad \frac{\partial E}{\partial l} = \sum_{i=h_0}^{h_1} 2(ig+l) - 2t_i.$$

Least-squares fit

- ► Two measurements would suffice for obtaining a straight line, but we want to use all h₁ h₀ + 1 data points available in [h₀, h₁].
- We minimise the squared error

$$E_{
m LSQ}(g, l) = \sum_{h=h_0}^{h_1} (T_{
m comm}(h) - (hg + l))^2.$$

We find the best choice for g and I when

$$\frac{\partial E}{\partial g} = \frac{\partial E}{\partial I} = 0$$

and solving the resulting 2×2 linear system.

• Measure $t_i = T_{\text{comm}}(i)$ for all $h_0 \le i \le h_1$. Then:

$$\frac{h_1(h_1+1)(2h_1+1)-h_0(h_0+1)(2h_0+1)}{3} \cdot g + (h_0+h_1) \cdot l = 2 \sum_{i=h_0}^{h_1} it_i.$$

Least-squares fit

- ► Two measurements would suffice for obtaining a straight line, but we want to use all h₁ h₀ + 1 data points available in [h₀, h₁].
- We minimise the squared error

$$E_{
m LSQ}(g, l) = \sum_{h=h_0}^{h_1} (T_{
m comm}(h) - (hg + l))^2.$$

We find the best choice for g and I when

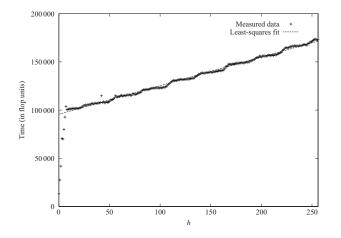
$$\frac{\partial E}{\partial g} = \frac{\partial E}{\partial I} = 0$$

and solving the resulting 2×2 linear system.

• Measure $t_i = T_{\text{comm}}(i)$ for all $h_0 \le i \le h_1$. Then:

$$(h_0 + h_1) \cdot g + 2(h_1 - h_0 + 1) \cdot I = 2 \sum_{i=h_0}^{h_1} t_i.$$

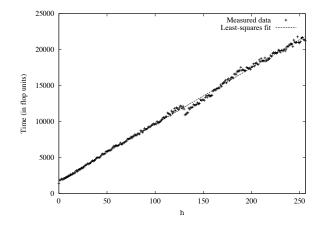
Time of an *h*-relation on an 8-processor SGI Origin



Silicon Graphics Origin 2000, Compiler plays tricks: measured value of r too high. Choose h_0 and h_1 judiciously! Here, $h_0 = p$. r = 326 Mflop/s, g = 297, and l = 95 686.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Time of an *h*-relation on a 64-processor Cray T3E



Sending more data takes less time (cf. $h \approx 130$). Weird! Explanation: switching to a different data packing mechanism. r = 35 Mflop/s, g = 78, and l = 1825.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

bspbench: initialising the communication pattern

```
for( i = 0; i < h; i++ ) {
    src[ i ] = (double)i;
    if( p == 1 ) {
        destproc [ i ] = 0;
        destindex[ i ] = i;
    } else {
        /* destination processor is one
           of the p-1 others */
        destproc[ i ] = (s+1 + i % (p-1)) % p;
        /* destination index is in
           my own part of dest */
        destindex[ i ] = s + (i / (p-1)) * p;
    }
7
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

bspbench: measuring the communication time

```
bsp_sync();
time0 = bsp_time();
for( iter = 0; iter < NITERS; iter++ ) {</pre>
    for( i = 0; i < h; i++ )
        bsp_put( destproc[ i ], &src[ i ], dest,
                  destindex[ i ] * SZDBL, SZDBL
               ):
    bsp_sync();
}
time1 = bsp_time();
```

Adjust NITERS to obtain an accurate measurement.

Comparing BSP parameters (p = 8)

		g	1	g	1
Computer	r (Mflop/s)	(flop)		(μs)	
Cray T3E	35	31	1 193	0.88	34
IBM RS/6000 SP	212	187	148 212	0.88	698
SGI Origin 2000	326	297	95 686	0.91	294

- Machines become obsolete quickly. All of the above machines have in the mean time been replaced by faster successors.
- Newer machines will be benchmarked in the laboratory class of this course.

Advice from the trenches

- Always plot the benchmark results. This gives insight in your machine and reveals the accuracy of your measurement.
- Be suspicious of artefacts. Negative g values may occur if g is small and l is huge. In that case, the least-squares fit does not give an accurate g.
- Run the benchmark at least three times. If the best two runs agree, you can be reasonably confident.
- Parallel computers are like the weather: they change all the time. Always run a benchmark program before running an application program, just to see what machine you have today. (Think of: a new compiler, faster communication switches, Challenge Projects that gobble up network resources, and so on.)

Summary

- Benchmarking is difficult.
- Machines have quirks, surprises are plenty, and measurements are often inaccurate.
- With all these caveats, it is still useful to have a table with r, g, l values for many different machines.
- This table should be kept up to date to reflect new architectures appearing. You can do it! (Similar to the LINPACK benchmark used to determine the Supercomputer Top 500.)
- BSP benchmarking can be done using BSPlib (bspbench, bspprobe), but also MPI-1 (mpibench).

The sequential LU decomposition

Solving linear systems is important

Applications often have as their core a linear system solver.

- Building bridges. Finite element models in engineering give rise to linear systems involving a stiffness matrix.
- Designing aircraft. Boundary element methods lead to huge dense linear systems of equations.
- Optimising oil refineries. Linear programming by interior point methods requires solving a sparse linear system (with many zero coefficients) at every step of the computation.

Lower and upper triangular matrices

$$A = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 10 & 17 \\ 3 & 16 & 31 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix} = LU.$$

► L is unit lower triangular if l_{ii} = 1 for all i and l_{ij} = 0 for all i < j.</p>

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• U is upper triangular if $u_{ij} = 0$ for all i > j.

Triangular systems are easier to solve

Let A = LU. Then

 $A\mathbf{x} = \mathbf{b} \iff L(U\mathbf{x}) = \mathbf{b} \iff L\mathbf{y} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{y}$.

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 44 \\ 78 \end{bmatrix} \Longrightarrow \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \\ 6 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \\ 6 \end{bmatrix} \Longrightarrow \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Objective

For a given A, find L, U such that LU = A, with

$$L = \begin{pmatrix} 1 & & \\ \vdots & \ddots & \\ I_{n0} & \cdots & 1 \end{pmatrix}, \text{ and } U = \begin{pmatrix} u_{01} & \cdots & u_{0n} \\ & \ddots & \vdots \\ & & & u_{nn} \end{pmatrix}$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The upper-right and bottom-left white-spaces of L, resp., U contain zero entries.

Memory-efficient sequential LU decomposition

input: $A: n \times n$ matrix, $A = A^{(0)}$. output: $A: n \times n$ matrix, $A = L - I_n + U$, with $L: n \times n$ unit lower triangular matrix, $U: n \times n$ upper triangular matrix, $I_n: n \times n$ identity matrix, such that $LU = A^{(0)}$.

for
$$k := 0$$
 to $n - 1$ do
for $i := k + 1$ to $n - 1$ do
 $a_{ik} := a_{ik}/a_{kk};$
for $i := k + 1$ to $n - 1$ do
for $j := k + 1$ to $n - 1$ do
 $a_{ij} := a_{ij} - a_{ik}a_{kj};$

Row permutations needed

LU decomposition breaks down immediately in stage 0 for

$${f A}=\left[egin{array}{cc} 0&1\ 1&0 \end{array}
ight],$$

because we try to divide by 0.

- A solution is to permute the rows suitably.
- Thus, we compute a permuted LU decomposition,

$$PA = LU.$$

- ► Here, P is a permutation matrix, obtained by permuting the rows of I_n.
- ▶ Output of LU decomposition of A: L, U, P.

Permutations and permutation matrices

Let $\sigma : \{0, \ldots, n-1\} \to \{0, \ldots, n-1\}$ be a permutation. We define the permutation matrix P_{σ} corresponding to σ by

$$(P_{\sigma})_{ij} = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

Thus, column j of P_{σ} is 1 in row $\sigma(j)$, and 0 everywhere else.

Lemma 2.5 Properties of P_{σ}

Let $\sigma : \{0, \ldots, n-1\} \rightarrow \{0, \ldots, n-1\}$ be a permutation. Let **x** be a vector of length *n* and *A* an *n* × *n* matrix. Then

$$(P_{\sigma}\mathbf{x})_i = x_{\sigma^{-1}(i)}, \quad \text{for } 0 \le i < n,$$

 $(P_{\sigma}A)_{ij} = a_{\sigma^{-1}(i),j}, \quad \text{for } 0 \le i,j < n,$
 $(P_{\sigma}AP_{\sigma}^{T})_{ij} = a_{\sigma^{-1}(i),\sigma^{-1}(j)}, \quad \text{for } 0 \le i,j < n.$

Proofs: see book.

LU decomposition with row permutations

LU decomposition with row permutations

for
$$i := k + 1$$
 to $n - 1$ do
 $a_{ik} := a_{ik}/a_{kk};$
for $i := k + 1$ to $n - 1$ do
for $j := k + 1$ to $n - 1$ do
 $a_{ij} := a_{ij} - a_{ik}a_{kj};$

Partial row pivoting

- The pivot element in stage k is the largest element a_{rk} in column k. Everything revolves around it. It is farthest from 0 and division by a_{rk} is most stable.
- The pivot row r is thus determined by

$$|a_{rk}| = \max(|a_{ik}| : k \leq i < n).$$

- r is the argument (or index) of the maximum.
- ► Full pivoting would take the largest pivot from the whole submatrix A(k: n − 1, k: n − 1). This gives the best stability, but is more costly (columns must be swapped, too). In practice, partial pivoting suffices.

The meaning of π

- The algorithm permutes the matrix by a permutation matrix P_{σ} . We obtain the LU decomposition $P_{\sigma}A = LU$.
- The same matrix is applied to the initial vector $\mathbf{e} = (0, 1, 2, \dots, n-1)^T$. We obtain $\pi = P_\sigma \mathbf{e}$.
- ▶ Therefore, by Lemma 2.5,

$$\pi(i) = (P_{\sigma}\mathbf{e})_i = e_{\sigma^{-1}(i)} = \sigma^{-1}(i).$$

• Thus, $\pi = \sigma^{-1}$ and hence

 $P_{\pi^{-1}}A = LU.$

Sequential time complexity

Lemma 2.7:

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is

$$T_{\text{seq}} = \sum_{k=0}^{n-1} (2(n-k-1)^2 + n-k-1) = \sum_{k=0}^{n-1} (2k^2 + k)$$

= $\frac{(n-1)n(2n-1)}{3} + \frac{(n-1)n}{2}$
= $(n-1)n\left(\frac{2n}{3} + \frac{1}{6}\right) = \frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

- Solving a linear system $A\mathbf{x} = \mathbf{b}$ can best be done by:
 - finding an LU decomposition PA = LU;
 - permuting **b** into P**b**;
 - solving the triangular systems $L\mathbf{y} = P\mathbf{b}$ and $U\mathbf{x} = \mathbf{y}$.
- The LU decomposition costs about 2n³/3 flops and each triangular system solve about n² flops.
- It is always difficult to keep permutations and their inverses apart. In theoretical analysis, it is sometimes easier to work with permutation matrices than with the corresponding permutations.
- We defined the matrix P_σ; its jth column is 1 in row σ(j), and 0 everywhere else.
- An important connection between a permutation σ and the matrix P_σ is given by (P_σx)_i = x_{σ⁻¹(i)}.

Parallel LU decomposition

<ロ> <@> < E> < E> E のQの

Designing a parallel algorithm

- Main question: how to distribute the data?
- What data? The matrix A and the permutation π .
- Data distribution + sequential algorithm
 —> computation supersteps.
- Design backwards: insert preceding communication supersteps following the need-to-know principle.

Data distribution for the matrix A

The bulk of the work in the sequential computation is the update

$$a_{ij} := a_{ij} - a_{ik}a_{kj}$$

for matrix elements a_{ij} with $i, j \ge k + 1$, taking $2(n - k - 1)^2$ flops.

► The other operations take only n - k - 1 flops. Thus, the data distribution is chosen mainly by considering the matrix update.

Data distribution for the matrix A

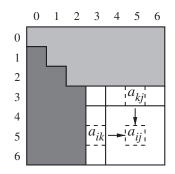
The bulk of the work in the sequential computation is the update

$$a_{ij} := a_{ij} - a_{ik}a_{kj}$$

for matrix elements a_{ij} with $i, j \ge k + 1$, taking $2(n - k - 1)^2$ flops.

- ► The other operations take only n k 1 flops. Thus, the data distribution is chosen mainly by considering the matrix update.
- Elements a_{ij}, a_{ik}, a_{kj} may not be on the same processor. Who does the update?
- Many elements a_{ij} must be updated in stage k, but only few elements a_{ik}, a_{kj} are used, all from column k or row k of the matrix. Moving those elements around causes less traffic.
- Therefore, the owner of a_{ij} computes the new value a_{ij} using communicated values of a_{ik}, a_{kj}.

Matrix update by operation $a_{ij} := a_{ij} - a_{ik}a_{kj}$



Update of row *i* uses only one value, a_{ik} , from column *k*. If we distribute row *i* over only *N* processors, then a_{ik} needs to be sent to at most N - 1 processors.

Matrix distribution

A matrix distribution is a mapping

 $\phi: \ \{(i,j): 0 \le i, j < n\} \to \{(s,t): 0 \le s < M \land 0 \le t < N\}$

from the set of matrix index pairs to the set of processor identifiers. The mapping function ϕ has two coordinates,

$$\phi(i,j) = (\phi_0(i,j),\phi_1(i,j)).$$

Matrix distribution

A matrix distribution is a mapping

 $\phi: \{(i,j): 0 \le i, j < n\} \to \{(s,t): 0 \le s < M \land 0 \le t < N\}$

from the set of matrix index pairs to the set of processor identifiers. The mapping function ϕ has two coordinates,

$$\phi(i,j) = (\phi_0(i,j),\phi_1(i,j)).$$

- Here, we number the processors in 2D fashion, with p = MN. This is just a numbering.
- Processor numberings have no physical meaning. Assume BSPlib randomly renumbers the processors at the start!
- A processor row P(s, *) is a group of N processors P(s, t) with 0 ≤ t < N. A processor column P(*, t) is a group of M processors P(s, t) with 0 ≤ s < M.</p>

Cartesian matrix distribution

t = 0		2	1	2	0	1	0
s = 0	00	02	01	02	00	01	00
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10

A matrix distribution is called Cartesian if $\phi_0(i,j)$ is independent of j and $\phi_1(i,j)$ is independent of i:

$$\phi(i,j)=(\phi_0(i),\phi_1(j)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Parallel matrix update

(8) if
$$\phi_0(k) = s \land \phi_1(k) = t$$
 then put a_{kk} in $P(*, t)$;

(9) if $\phi_1(k) = t$ then for all $i : k < i < n \land \phi_0(i) = s$ do $a_{ik} := a_{ik}/a_{kk};$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Parallel matrix update

(8) if
$$\phi_0(k) = s \land \phi_1(k) = t$$
 then put a_{kk} in $P(*, t)$;

(9) if
$$\phi_1(k) = t$$
 then for all $i : k < i < n \land \phi_0(i) = s$ do
 $a_{ik} := a_{ik}/a_{kk};$

(10) if
$$\phi_1(k) = t$$
 then for all $i: k < i < n \land \phi_0(i) = s$ do
put a_{ik} in $P(s, *)$;
if $\phi_0(k) = s$ then for all $j: k < j < n \land \phi_1(j) = t$ do
put a_{kj} in $P(*, t)$;

<□ > < @ > < E > < E > E のQ @

(11) for all
$$i : k < i < n \land \phi_0(i) = s$$
 do
for all $j : k < j < n \land \phi_1(j) = t$ do
 $a_{ij} := a_{ij} - a_{ik}a_{kj};$

Parallel pivot search

(0) if $\phi_1(k) = t$ then $r_s := \operatorname{argmax}(|a_{ik}| : k \le i < n \land \phi_0(i) = s);$

(1) if $\phi_1(k) = t$ then put r_s and $a_{r_s,k}$ in P(*,t);

Parallel pivot search

(0) if
$$\phi_1(k) = t$$
 then $r_s := \operatorname{argmax}(|a_{ik}| : k \le i < n \land \phi_0(i) = s);$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(1) if $\phi_1(k) = t$ then put r_s and $a_{r_s,k}$ in P(*,t);

(2) if
$$\phi_1(k) = t$$
 then
 $s_{\max} := \operatorname{argmax}(|a_{r_q,k}| : 0 \le q < M);$
 $r := r_{s_{\max}};$

(3) **if** $\phi_1(k) = t$ **then** put *r* in *P*(*s*,*);

Two parallelisation methods

- The need-to-know principle: exactly those nonlocal data that are needed in a computation superstep should be fetched in preceding communication supersteps.
- Matrix update uses first parallelisation method: look at lhs (left-hand side) of assignment, owner computes.
- Pivot search uses second method: look at rhs of assignment, compute what can be done locally, reduce the number of data to be communicated.
- In pivot search: first a local search, then communication of the local winner to all processors, finally a redundant (replicated) search for the global winner.

Broadcast of r in (3) is needed later in (4). Designing backwards, we formulate (4) first and then insert (3).

Distribution for permutation π

- Store π_k together with row k, somewhere in processor row $P(\phi_0(k), *)$.
- We choose $P(\phi_0(k), 0)$. This gives a true distribution.
- We could also have chosen to replicate π_k in processor row P(φ₀(k), *). This would save some **if**-statements in our programs.

Index and row swaps

(4) if
$$\phi_0(k) = s \wedge t = 0$$
 then put π_k as $\hat{\pi}_k$ in $P(\phi_0(r), 0)$;
if $\phi_0(r) = s \wedge t = 0$ then put π_r as $\hat{\pi}_r$ in $P(\phi_0(k), 0)$;

(5) if
$$\phi_0(k) = s \wedge t = 0$$
 then $\pi_k := \hat{\pi}_r$;
if $\phi_0(r) = s \wedge t = 0$ then $\pi_r := \hat{\pi}_k$;

Index and row swaps

(4) if
$$\phi_0(k) = s \land t = 0$$
 then put π_k as $\hat{\pi}_k$ in $P(\phi_0(r), 0)$;
if $\phi_0(r) = s \land t = 0$ then put π_r as $\hat{\pi}_r$ in $P(\phi_0(k), 0)$;

(5) if
$$\phi_0(k) = s \wedge t = 0$$
 then $\pi_k := \hat{\pi}_r$;
if $\phi_0(r) = s \wedge t = 0$ then $\pi_r := \hat{\pi}_k$;

(6) if
$$\phi_0(k) = s$$
 then for all $j: 0 \le j < n \land \phi_1(j) = t$ do
put a_{kj} as \hat{a}_{kj} in $P(\phi_0(r), t)$;
if $\phi_0(r) = s$ then for all $j: 0 \le j < n \land \phi_1(j) = t$ do
put a_{rj} as \hat{a}_{rj} in $P(\phi_0(k), t)$;

(7) if
$$\phi_0(k) = s$$
 then for all $j: 0 \le j < n \land \phi_1(j) = t$ do
 $a_{kj} := \hat{a}_{rj};$
if $\phi_0(r) = s$ then for all $j: 0 \le j < n \land \phi_1(j) = t$ do
 $a_{rj} := \hat{a}_{kj};$

Optimising the matrix distribution

- We have chosen a Cartesian matrix distribution φ to limit the communication.
- We now specify φ further to achieve a good computational load balance and to minimise the communication.
- Maximum number of local matrix rows with index $\geq k$:

$$R_k = \max_{0 \le s < M} |\{i : k \le i < n \land \phi_0(i) = s\}|.$$

Maximum number of local matrix columns with index $\geq k$:

$$C_k = \max_{0 \leq t < N} |\{j : k \leq j < n \land \phi_1(j) = t\}|.$$

► The computation cost of the largest superstep, the matrix update (11), is then 2R_{k+1}C_{k+1}.

Example

t = 0		2	1	2	0	1	0
s = 0	00	02	01	02	00	01	00
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10

$$R_0 = 4, C_0 = 3 \text{ and } R_4 = 2, C_4 = 2$$

Bound for R_k

$$R_k \ge \left\lceil \frac{n-k}{M} \right\rceil$$

Proof: Assume this is untrue, so that $R_k < \lceil \frac{n-k}{M} \rceil$. Because R_k is integer, we even have $R_k < \frac{n-k}{M}$. Hence all M processor rows together hold less than $M \cdot \frac{n-k}{M} = n-k$ matrix rows. But they hold all matrix rows $k \leq i < n$. Contradiction.

2D cyclic distribution attains bound

t = 0		1	2	0	1	2	0
s = 0	00	01	02	00	01	02	00
1	10	11	12	10	11	12	10
0	00	01	02	00	01	02	00
1	10	11	12	10	11	12	10
0	00	01	02	00	01	02	00
1	10	11	12	10	11	12	10
0	00	01	02	00	01	02	00

 $\phi_0(i) = i \mod M, \quad \phi_1(j) = j \mod N.$

$$R_k = \left\lceil \frac{n-k}{M} \right\rceil, \quad C_k = \left\lceil \frac{n-k}{N} \right\rceil.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Cost of main computation superstep (matrix update)

$$T_{(11),\mathrm{cyclic}} = 2\left\lceil \frac{n-k-1}{M}
ight
ceil \left\lceil \frac{n-k-1}{N}
ight
ceil \geq rac{2(n-k-1)^2}{p}.$$

$$T_{(11),\text{cyclic}} < 2\left(\frac{n-k-1}{M}+1\right)\left(\frac{n-k-1}{N}+1\right) \\ = \frac{2(n-k-1)^2}{p} + \frac{2(n-k-1)}{p}(M+N) + 2.$$

The upper bound is minimal for $M = N = \sqrt{p}$. The second-order term $4(n - k - 1)/\sqrt{p}$ is the additional computation cost caused by load imbalance.

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

$$\begin{array}{lll} T_{(10)} & = & (R_{k+1}(N-1)+C_{k+1}(M-1))g \\ & \geq & \left(\left\lceil \frac{n-k-1}{M} \right\rceil (N-1) \ + \ \left\lceil \frac{n-k-1}{N} \right\rceil (M-1)\right)g \\ & = & T_{(10), {\rm cyclic}}. \end{array}$$

$$T_{(10),\text{cyclic}} < \left(\left(\frac{n-k-1}{M} + 1 \right) N + \left(\frac{n-k-1}{N} + 1 \right) M \right) g \\ = \left((n-k-1) \left(\frac{N}{M} + \frac{M}{N} \right) + M + N \right) g.$$

The upper bound is again minimal for $M = N = \sqrt{p}$. The resulting communication cost is about 2(n - k - 1)g.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Summary

. . .

- ▶ We determined the matrix distribution, first by restricting it to be Cartesian, then by choosing the 2D cyclic distribution, based on a careful analysis of the main computation and communication supersteps, and finally by showing that a square $\sqrt{p} \times \sqrt{p}$ distribution is best.
- Developing the algorithm goes hand in hand with the cost analysis.
- We now have a correct algorithm and a good distribution, but the overall BSP cost may not be minimal yet. Wait and see