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Limitations of  
Memory System Performance  

•  Memory system, and not processor speed, is often 
the bottleneck for many applications. 


•  Memory system performance is largely captured by 
two parameters, latency and bandwidth. 


•  Latency is the time from the issue of a memory 
request to the time the data is available at the 
processor. 


•  Bandwidth is the rate at which data can be pumped 
to the processor by the memory system. 




Memory Latency: An Example  

•  Consider a processor operating at 1 GHz (1 ns 
clock) connected to a DRAM with a latency of 100 
ns (no caches). Assume that the processor has two 
multiply-add units and is capable of executing four 
instructions in each cycle of 1 ns. The following 
observations follow: 

–  The peak processor rating is 4 GFLOPS. 

–  Since the memory latency is equal to 100 cycles and block 

size is one word, every time a memory request is made, 
the processor must wait 100 cycles before it can process 
the data. 


Memory Latency: An Example  

•  On the above architecture, consider the problem of 
computing a dot-product of two vectors. 

–  A dot-product computation performs one multiply-add on 

a single pair of vector elements, i.e., each floating point 
operation requires one data fetch. 


–  It follows that the peak speed of this computation is 
limited to one floating point operation every 100 ns, or a 
speed of 10 MFLOPS, a very small fraction of the peak 
processor rating! 




Improving Effective Memory  
Latency Using Caches  

•  Caches are small and fast memory elements 
between the processor and DRAM. 


•  This memory acts as a low-latency high-bandwidth 
storage. 


•  If a piece of data is repeatedly used, the effective 
latency of this memory system can be reduced by 
the cache. 


•  The fraction of data references satisfied by the 
cache is called the cache hit ratio of the 
computation on the system. 


•  Cache hit ratio achieved by a code on a memory 
system often determines its performance. 


Explicitly Parallel Platforms  



Communication Model  
of Parallel Platforms  

•  There are two primary forms of data exchange 
between parallel tasks - accessing a shared data 
space and exchanging messages. 


•  Platforms that provide a shared data space are 
called shared-address-space machines or 
multiprocessors. 


•  Platforms that support messaging are also called 
message passing platforms or multicomputers. 


Shared-Address-Space Platforms  

•  Part (or all) of the memory is accessible to all 
processors. 


•  Processors interact by modifying data objects 
stored in this shared-address-space. 


•  If the time taken by a processor to access any 
memory word in the system global or local is 
identical, the platform is classified as a uniform 
memory access (UMA), else, a non-uniform memory 
access (NUMA) machine. 




NUMA and UMA Shared-Address-Space 
Platforms  
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Typical shared-address-space architectures: (a) Uniform-
memory access shared-address-space computer; (b) 

Uniform-memory-access shared-address-space computer 
with caches and memories; (c) Non-uniform-memory-

access shared-address-space computer with local memory 
only.


NUMA and UMA  
Shared-Address-Space Platforms  

•  The distinction between NUMA and UMA platforms is 
important from the point of view of algorithm design. NUMA 
machines require locality from underlying algorithms for 
performance. 


•  Programming these platforms is easier since reads and writes 
are implicitly visible to other processors. 


•  However, read-write data to shared data must be coordinated 
(this will be discussed in greater detail when we talk about 
threads programming). 


•  Caches in such machines require coordinated access to 
multiple copies. This leads to the cache coherence problem. 







Shared-Address-Space  
vs.  

Shared Memory Machines  

•  It is important to note the difference between the 
terms shared address space and shared memory. 


•  We refer to the former as a programming 
abstraction and to the latter as a physical machine 
attribute. 


•  It is possible to provide a shared address space 
using a physically distributed memory. 


Message-Passing Platforms  

•  These platforms comprise of a set of processors 
and their own (exclusive) memory. 


•  Instances of such a view come naturally from 
clustered workstations and non-shared-address-
space multicomputers. 


•  These platforms are programmed using (variants 
of) send and receive primitives. 


•  Libraries such as MPI provide such primitives. 




Message Passing  
vs.  

Shared Address Space Platforms  

•  Message passing requires little hardware support, 
other than a network. 


•  Shared address space platforms can easily emulate 
message passing. The reverse is more difficult to 
do (in an efficient manner). 


Interconnection Networks  
for Parallel Computers  

•  Interconnection networks carry data between 
processors and to memory. 


•  Interconnects are made of switches and links 
(wires, fiber). 


•  Interconnects are classified as static or dynamic. 

•  Static networks consist of point-to-point 

communication links among processing nodes and 
are also referred to as direct networks. 


•  Dynamic networks are built using switches and 
communication links. Dynamic networks are also 
referred to as indirect networks. 




Static and Dynamic 
Interconnection Networks  
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Classification of interconnection networks: (a) a static 
network; and (b) a dynamic network.


Design of parallel algorithms 

Core content of this course:

•  Take memory hierarchy into account (data locality)

•  Distribute data over memories

•  Distribute work over processors

•  Introduce & analyse  

communication & synchronization



A first hands-on experience : do the exercise !



