
Slides taken from

Parallel Computing Platforms

Ananth Grama, Anshul Gupta,
George Karypis, and Vipin Kumar !

"

To accompany the text ``Introduction to Parallel Computing'',

Addison Wesley, 2003.

Limitations of
Memory System Performance

•  Memory system, and not processor speed, is often
the bottleneck for many applications.

•  Memory system performance is largely captured by
two parameters, latency and bandwidth.

•  Latency is the time from the issue of a memory
request to the time the data is available at the
processor.

•  Bandwidth is the rate at which data can be pumped
to the processor by the memory system.

Memory Latency: An Example

•  Consider a processor operating at 1 GHz (1 ns
clock) connected to a DRAM with a latency of 100
ns (no caches). Assume that the processor has two
multiply-add units and is capable of executing four
instructions in each cycle of 1 ns. The following
observations follow:

–  The peak processor rating is 4 GFLOPS.

–  Since the memory latency is equal to 100 cycles and block

size is one word, every time a memory request is made,
the processor must wait 100 cycles before it can process
the data.

Memory Latency: An Example

•  On the above architecture, consider the problem of
computing a dot-product of two vectors.

–  A dot-product computation performs one multiply-add on

a single pair of vector elements, i.e., each floating point
operation requires one data fetch.

–  It follows that the peak speed of this computation is
limited to one floating point operation every 100 ns, or a
speed of 10 MFLOPS, a very small fraction of the peak
processor rating!

Improving Effective Memory
Latency Using Caches

•  Caches are small and fast memory elements
between the processor and DRAM.

•  This memory acts as a low-latency high-bandwidth
storage.

•  If a piece of data is repeatedly used, the effective
latency of this memory system can be reduced by
the cache.

•  The fraction of data references satisfied by the
cache is called the cache hit ratio of the
computation on the system.

•  Cache hit ratio achieved by a code on a memory
system often determines its performance.

Explicitly Parallel Platforms

Communication Model
of Parallel Platforms

•  There are two primary forms of data exchange
between parallel tasks - accessing a shared data
space and exchanging messages.

•  Platforms that provide a shared data space are
called shared-address-space machines or
multiprocessors.

•  Platforms that support messaging are also called
message passing platforms or multicomputers.

Shared-Address-Space Platforms

•  Part (or all) of the memory is accessible to all
processors.

•  Processors interact by modifying data objects
stored in this shared-address-space.

•  If the time taken by a processor to access any
memory word in the system global or local is
identical, the platform is classified as a uniform
memory access (UMA), else, a non-uniform memory
access (NUMA) machine.

NUMA and UMA Shared-Address-Space
Platforms

M

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

M

M

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

MM

P

C
M

M

(b)

P

C

P

C

P

C

C

P

P

M

M

C

(a) (c)

P

P

P

Typical shared-address-space architectures: (a) Uniform-
memory access shared-address-space computer; (b)

Uniform-memory-access shared-address-space computer
with caches and memories; (c) Non-uniform-memory-

access shared-address-space computer with local memory
only.

NUMA and UMA
Shared-Address-Space Platforms

•  The distinction between NUMA and UMA platforms is
important from the point of view of algorithm design. NUMA
machines require locality from underlying algorithms for
performance.

•  Programming these platforms is easier since reads and writes
are implicitly visible to other processors.

•  However, read-write data to shared data must be coordinated
(this will be discussed in greater detail when we talk about
threads programming).

•  Caches in such machines require coordinated access to
multiple copies. This leads to the cache coherence problem.

Shared-Address-Space
vs.

Shared Memory Machines

•  It is important to note the difference between the
terms shared address space and shared memory.

•  We refer to the former as a programming
abstraction and to the latter as a physical machine
attribute.

•  It is possible to provide a shared address space
using a physically distributed memory.

Message-Passing Platforms

•  These platforms comprise of a set of processors
and their own (exclusive) memory.

•  Instances of such a view come naturally from
clustered workstations and non-shared-address-
space multicomputers.

•  These platforms are programmed using (variants
of) send and receive primitives.

•  Libraries such as MPI provide such primitives.

Message Passing
vs.

Shared Address Space Platforms

•  Message passing requires little hardware support,
other than a network.

•  Shared address space platforms can easily emulate
message passing. The reverse is more difficult to
do (in an efficient manner).

Interconnection Networks
for Parallel Computers

•  Interconnection networks carry data between
processors and to memory.

•  Interconnects are made of switches and links
(wires, fiber).

•  Interconnects are classified as static or dynamic.

•  Static networks consist of point-to-point

communication links among processing nodes and
are also referred to as direct networks.

•  Dynamic networks are built using switches and
communication links. Dynamic networks are also
referred to as indirect networks.

Static and Dynamic
Interconnection Networks

Static network Indirect network

Switching element
Processing node

Network interface/switch

P

P P P

P

P

PP

Classification of interconnection networks: (a) a static
network; and (b) a dynamic network.

Design of parallel algorithms

Core content of this course:

•  Take memory hierarchy into account (data locality)

•  Distribute data over memories

•  Distribute work over processors

•  Introduce & analyse  

communication & synchronization

A first hands-on experience : do the exercise !

