Parallel Computing

Dirk Roose Albert-Jan Yzelman
Office: 200A 03.25 Office: 200A 03.18

HO3F9A
Parallel computing

Dirk Roose & Albert-Jan Yzelman
Semester 1 ‘

Aims
Insight in

e parallel computers and available
software environments,

e the design and performance analysis
of parallel algorithms.

HPC Cluster with 8448 "cores’ (VSC)

The student will be able to

e design efficient parallel versions of algorithms with simple data
dependencies

e both in the ‘shared address space’ programming model and in
the ‘message passing’ programming model.

Parallel computing: Content

Architecture of parallel HPC systems (short)
Performance analysis on parallel systems

Design & analysis of parallel algorithms for model problems
(matrix operations, sorting, ...)
using the BSP model

Simple examples in BSPlib, BSPonMPI, MulticoreBSP
(MPI: Message Passing Interface)

Dynamic load-balancing
Guest lecture on Parallel Matching by Rob Bisseling

Parallel computing
Prerequisites
Bachelor-level knowledge of algorithms & programming

Course material

Rob H. Bisseling, Parallel Scientific Computation.
A Structured Approach using BSP and MPI.
Oxford University Press, 2004.

+ some papers
Exercises and practical sessions
5 sessions (3 on parallel systems:
multicore processor; HPC-cluster)
no project

Exam
Open book exam
- insight in theory (in particular performance analysis)
- design of an efficient parallel algorithm (high level description)

Course textbook

Rob H. Bisseling,

Parallel Scientific Computation.

A Structured Approach using BSP and
MPI, Oxford University Press, 2004

(BSP: Bulk Synchronous Parallel;
MPI: Message Passing Interface)

Available in Acco (?)

Table of content of book:

http://ukcatalogue.oup.com/product/ * 1 %
9780198529392.do#.UGSxJULv-2U '_ . .

Book: Parallel Scientific Computation

e The first text to explain how to use BSP in parallel computing

e Clear exposition of distributed-memory parallel computing with
applications to core topics of scientific computation

e Each topic treated follows the complete path from theory to
practice

e This is the first text explaining how to use the bulk synchronous
parallel (BSP) model [...] in parallel algorithm design and parallel
programming.

e An appendix on the message-passing interface (MPI) discusses
how to program using the MPI communication library. MPI
equivalents of all the programs are also presented.

Book: Parallel Scientific Computation (2)

The main topics treated in the book are core in the area of
scientific computation: solving dense linear systems by Gaussian
elimination, computing fast Fourier transforms, and solving sparse
linear systems by iterative methods. Each topic is treated in depth,
starting from the problem formulation and a sequential algorithm,
through a parallel algorithm and its analysis, to a complete parallel
program written in C and BSPlib, and experimental results obtained
using this program on a parallel computer.

Additional topics treated in the exercises include: data compression,
random number generation, cryptography, eigensystem solving, 3D and
Strassen matrix multiplication, wavelets and image compression, fast
cosine transform, decimals of pi, simulated annealing, and molecular
dynamics.

Extra (separate texts) : sorting, graph coarsening, case studies,
scheduling & load balancing

Why parallel computing ?

e Limits of single computer/processor
- available memory size and memory access time
- performance

e Until 2007:
growing mismatch between clock cycle and memory access time
(clock cycle: + 40% /year; memory access: + 10%/year)

e Since 2007: multicore processors!

e Parallel computing allows
- to solve problems that don’t fit in the memory of a single
processor

- to solve problems that can’t be solved in a reasonable time on a

single core (processor) .

Revolution is Happening Now (2005)

. . . 10,000,000
e Chip density is
continuing to increase
1,000,000
~2X every 2 years
o Clock speed is not
e Number of
processor cores —
may double s
instead R A
. . 1,000 w
e There is little or no / >
hidden parallelism 100 o] o 2,
(ILP) to be found ARk o
B - r's
. T e 4
e Parallelism must be 0 ,/ ,/ : A,4
'] ad
exposed to and /// A% | et
] . &
managed by software , [F /{{ Z T
Rtte 4 ¢ Clock Speed (MHz)
Source: Intel, Microsoft (Sutter) i e
and Stanford (Olukotun, 0 l [[
Hammond) 1970 1975 1980 1985 1990 1995 2000 2005 2010

Manycore processors

l SAnvibia TESLA

‘

IrEEEETEREEEN

kb L LA
DESESNEEEEEN |

NVIDIA GPU: Tesla K20c:
2496 Cores (Dynamic Parallelism)

Intel Xeon Phi coprocessors beschikken over maximaal 61
cores, 244 threads en 1,2 teraFLOPS aan prestatiekracht en
ze zijn beschikbaar in een groot aantal configuraties om
aan verschillende wensen op het gebied van hardware,
software, werkbelasting, prestatie en efficiéntie te voldoen.

Parallel Computing

Introduction & Motivation
adapted version of
slides from
Kathy Yelick and Jim Demmel
EECS & Math Departments
UC Berkeley

www.cs.berkeley.edu/~demmel/cs267_spri1

QOutline

all

e Why pow®érful computers must be parallel
processors

Including your laptops and handhelds

. Lar%e Computational Science and Engineering (CSE)
problems require powerful computers

Commercial problems too

e Why writing (fast) parallel programs is hard

But things are improving

e Principles of parallel computing performance

o Structure of the course

11

Units of Measure

e High Performance Computing (HPC) units are:
- Flop: floating point operation, usually double precision unless noted
- Flop/s: floating point operations per second
- Bytes: size of data (a double precision floating point number is 8)

e Typical sizes are millions, billions, trillions...

Mega
Giga
Tera
Peta
Exa
Zetta
Yotta

12

Mflop/s = 10° flop/sec Mbyte = 220 = 1048576 ~ 106 bytes
Gflop/s = 10° flop/sec Gbyte = 230 ~ 10° bytes

Tflop/s = 1012 flop/sec Thyte = 240 ~ 1012 bytes

Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes

Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes

Zflop/s = 102! flop/sec Zbyte = 270 ~ 1021 bytes

Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

all (2007)

Why powerful

computers are
parallel

circa 1991-2006

13

Technology Trends: Microprocessor Capacity

1975 1980 1985 1990 1995
9
10M Micro. 500
(transistors) 2000 (mips)
™ g 25
entium
¢ — Processor
B0486
100K @ 20386 10
BO2BH
10K BOEE 01
‘BUL‘U
4004 0.01

2X transistors/Chip Every 1.5 years Gordon M o under of
Called “Moore’s Law” ordon Moore (co-founder o

Intel) predicted in 1965 that the

. transistor density of
Microprocessors have semiconductor chips would double
become smaller, denser, and roughly every 18 months.

more powerful.

Slide source: Jack Dongarra
14

Microprocessor Transistors / Clock (1970-2000)

10000000

1000000

¢ Transistors (Thousands)

100000 +——

® Frequency (MHz)
10000 +——

1000

100

10

1970 1975 1980 1985 1990 1995 2000

15

Revolution in Processors

10000000

1000000

¢ Transistors (Thousands)
100000 -—— = Frequency (MHz)

A Power (W)

e Cores

10000 7

1000

100

10

1

0 T T T T T T T f
1970 1975 1980 1985 1990 1995 2000 2005 2010

e Chip density is continuing to increase ~2x every 2 years
e Clock speed is not

e Number of processor cores may double instead

e Power is under control, no longer growing

Parallelism in 20112

e These arguments are no longer theoretical

e All major processor vendors are producing multicore chips
- Every machine will soon be a parallel machine
- To keep doubling performance, parallelism must double

e Which commercial applications can use this parallelism?
- Do they have to be rewritten from scratch?

e Will all programmers have to be parallel programmers?
- New software model needed
- Try to hide complexity from most programmers - eventually
- In the meantime, need to understand it

e Computer industry betting on this big change, but does
not have all the answers

- Berkeley ParLab established to work on this

17

Memory is Not Keeping Pace

Technology trends against constant or increasing memory per core
e Memory density is doubling every three years; processor logic is every two
e Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Cost of Computation vs. Memory

Evolution of memory density
10000
E‘ 1000 ,»'j:}—’A - 2X/3yrs
2 [2
£ 10 o
§ 4XI3yrs
= 0 . Source: IBM
14e

1985 1990 1995 2000 2005 2010 2015
Year mass production starts

+1Mb

= 4Mb
16Mb
64Mb

x 128Mb

 256Mb

oO512Mb

A1Gb

5 2Gb
4Gb

100

0.1

0.01

0.001

.

Source: David Turek, IBM

™~

m\%

Y

3.

2,

<

=
%

%

®

\‘“1'

B Dollars/Mbyte

A Dollars/MFLOP

The cost to sense, collect, generate and calculate data is declining

much faster than the cost to access, manage and store it

Question: Can you double concurrency without doubling memory?
e Strong scaling: fixed problem size, increase number of processors
e Weak scaling: grow problem size proportionally to number of processors

More Limits: How fast can a serial computer

pe’s
1 Tflop/s, 1
Thbyte
sequential
machine

r=20.3
mm

e Consider the 1 Tflop/s sequential machine:
—-Data must travel some distance, r, to get from

memory to processor.

-To get 1 data element per cycle, this means 1012
times per second at the speed of light, c = 3x108
m/s. Thusr < c/1012= 0.3 mm.

e Now put 1 Thyte of storage in a 0.3 mm x 0.3 mm

area.

—Each bit occupies about 1 square Angstrom, or
the size of a small atom.

®No choice but parallelism

More Exotic Solutions on the Horizon

e Graphics and Game processors
- Graphics Processing Units (GPUs), e.g., NVIDIA and ATI/AMD
- Game processors, e.g., Cell for PS3
Parallel processor attached to main processor
Originally special purpose, getting more general
Programming model not yet mature

e FPGAs - Field Programmable Gate Arrays
- Inefficient use of chip area
- More efficient than multicore for some domains
- Programming challenge now includes hardware design, e.g., layout
- Wire routing heuristics still troublesome;

e Dataflow architectures
- Have considerable experience with dataflow from 1980’s
- Programming with functional languages?

20

The TOP500 Project

eListing the 500 most Ipowerful
computers in the world
eYardstick: Rmax of Linpack

-Solve Ax=b, dense problem, matrix is random
—~Dominated by dense matrix-matrix multiply

eUpdate twice a year:
-ISC’xy in June in Germany
-SCxy in November in the U.S.

oAll information available from the
TOP500 web site at: www.top500.0rg

The TOP12 (June 2014)

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
a National Super Computer Center Tianhe-2 (MilkyWay-2) - TH-IVB-FEP 3120000 33862.7 54902.4 17808
in Guangzhou Cluster, Intel Xeon E5-2692 12C
China 2.200GHz, TH Express-2, Intel Xeon Phi
31S1P
NUDT
@ DOE/SC/Oak Ridge National Titan - Cray XK7 , Opteron 6274 16C 560640 17590.0 271125 8209
Laboratory 2.200GHz, Cray Gemini interconnect,
United States NVIDIA K20x
Cray Inc.
© DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1572864 171732 201327 7890
United States 1.60 GHz, Custom
IBM
@ RIKEN Advanced Institute for K computer, SPARC64 Vlllix 2.0GHz, Tofu 705024 10510.0 112804 12660
Computational Science (AICS) interconnect
Japan Fujitsu
6 DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C 786432 8586.6 10066.3 3945
Laboratory 1.60GHz, Custom
United States IBM

22

The TOP12 (June 2014)

0 Swiss National Supercomputing Piz Daint - Cray XC30, Xeon E5-2670 8C 115984 6271.0 7788.9 2325

Centre (CSCS) 2.600GHz, Aries interconnect , NVIDIA
Switzerland K20x
Cray Inc.
o Texas Advanced Computing Stampede - PowerEdge C8220, Xeon E5- 462462 5168.1 8520.1 4510
Center/Univ. of Texas 2680 8C 2.700GHz, Infiniband FDR, Intel
United States Xeon Phi SE10P
Dell
o Forschungszentrum Juelich JUQUEEN - BlueGene/Q, Power BQC 458752 5008.9 5872.0 2301
(FZJ) 16C 1.600GHz, Custom Interconnect
Germany IBM
o DOE/NNSA/LLNL Vulcan - BlueGene/Q, Power BQC 16C 393216 4293.3 5033.2 1972
United States 1.600GHz, Custom Interconnect
IBM
m Government Cray XC30, Intel Xeon E5-2697v2 12C 225984 31435 4881.3
United States 2.7GHz, Aries interconnect
Cray Inc.
0 Exploration & Production - Eni HPC2 - iDataPlex DX360M4, Intel Xeon 62640 3003.0 4006.3 1067
S.p.A. E5-2680v2 10C 2.8GHz, Infiniband FDR,
Italy NVIDIA K20x
1BM
@ Leibniz Rechenzentrum SuperMUC - iDataPlex DX360M4, Xeon 147456 2897.0 3185.1 3423
Germany E5-2680 8C 2.70GHz, Infiniband FDR

IBM

36t List: The TOP10 (Nov. 2010)

National Tianhe-1A 186.36
1 SuperComputer NUDT NUDT TH MPP, China ’ 8 2,566 4.04
Center in Tianjin Xeon 6C, NVidia, FT-1000 8C
Oak Ridge National Jaguar 224,16
: Laboratory Cray Cray XT5, HC 2.6 GHz USA 2 1,759| 6.95
National ML eE
. . TC3600 Blade, Intel . 120,64
3 C::atzric:r;lﬁeurflz%%n Dawning X5650, NVidia Tesla China o 1271 2.58
C2050 GPU
GSIC, Tokyo TSUBAME-2
4 Institute of NEC/HP HP ProLiant, Xeon 6C, Japan | 73,278 1,192| 1.40
Technology NVidia, Linux/Windows
DOE/SC/ Hopper 153,40
> LBNL/NERSC Cray Cray XE6, 6C 2.1 GHz | USA g 1.054| 2.91
Commissariat a Tera 100 138.36
6 [I'Energie Atomique Bull Bull bullx super-node France ’ 8 1,050, 4.59
(CEA) $6010/S6030
Roadrunner 122,40
7 DOE/NNSA/LANL IBM BladeCenter QS22/LS21 USA 0 1,042| 2.34
University of Kraken
8 Tennessee Cray Cray XT5 HC 2.36GHz USA 98,928 831.7| 3.09
Forschungszentru Jugene 294,91
2 | m Juelich (FZ)) IBM Blue Gene/P Solution |“€"Many 2| 8255 2.26
NNF /NINICA / Cialn 1N7 1K
1 Eflop/s 274 PFlop/s
100 Pflop/s 33,9 PFlop/s
10 Pflop/s
1 Pflop/s
134 TFlop/s
100 Tflop/s
10 Tflop/s
1 Tflop/s
100 Gflop/s
10 Gflop/s
1 Gflop/s
100 Mflop/s

1994 1996 1998 2000

2002 2004

2006 2008 2010 2012 2014

Performance

Projected Performance Development

10EFlops
1 EFlops
100PFlops =
10 PFlops 4 #500
- Sum
1 PFlops — #1 Trend
Line
100 TFlops — #2500 Trend
Line
10 TFlops - —— Sum Trend
Line
1 TFlops 4
100 GFlops 42
10GFlops{ & 32 -
10F|ops-93:5’
100 MFlops +—FV7"—7V—7T"""T"T"""T"T"T"T"T"T"T"T"T""T"T T T T T TT T T
= W O 0O 00 — OO W0 OO~ NNOM = O~ Om0
B e R s e eS8 8sc 5500000 O
Rl i e R et A A A I I I s B A)
Lists
Core Count
500 : — -1
M2
450 13-4
400 “5-8
-19-16
350 “117-32
® 300 L 33-64
£ 1165-128
% 250 11129-256
@ 200 M 257.512
L1513-1024
150 -11025-2048
100 £12049-4096
-1 4k-8k
50 u 8k-16k
0 f T =T ——— e .16k'32k
N ST WD ONWBOODNDNO - AN®MSWON oo o H32k64k
DM ODO OO0 OO0 O O v«
OO ODOOOOOOO0 OO O O o Ep4k128k
— v m v v v v N AN N AN NN ANNANNN

W 128k-

Moore’s Law reinterpreted

e Number of cores per chip will double every
two years

e Clock speed will not increase (possibly
decrease)

e Need to deal with systems with millions of
concurrent threads

e Need to deal with inter-chip parallelism as
well as intra-chip parallelism

QOutline

/all

e Large CSE problems require powerful computers
Commercial problems too

29

Computational Science- Recent News

“An important development in sciences is
occurring at the intersection of computer
science and the sciences that has the
potential to have a profound impact on
science. It is a leap from the application of
computing ... to the integration of
computer science concepts, tools, and

theorems into the very fabric of science.” -
Science 2020 Report, March 2006

Nature, March 23, 2006

30

Drivers for Change

- Continued exponential increase in computational
power — simulation is becoming third pillar of
science, complementing theory and experiment

- Continued exponential increase in experimental
data — techniques and technology in data
analysis, visualization, analytics, networking, and
collaboration tools are becoming essential in all
data rich scientific applications

31

Simulation: The Third Pillar of Science

e Traditional scientific and engineering method:

(1) Do theory or paper design @ @

(2) Perform experiments or build system

e Limitations:
-Too difficult—build large wind tunnels
-Too expensive—build a throw-away passenger jet
-Too slow—wait for climate or galactic evolution

-Too dangerous—weapons, drug design, climate
experimentation

Simulation

e Computational science and engineering paradigm:
(3) Use computers to simulate and analyze the phenomenon

-Based on known physical laws and efficient numerical
methods

-Analyze simulation results with computational tools and
32 methods beyond what is possible manually

Data Driven Science

e Scientific data sets are growing exponentially

- Ability to generate data is exceeding our
ability to store and analyze

- Simulation systems and some observational
devices grow in capability with Moore’s Law
e Petabyte (PB) data sets will soon be common:

- Climate modeling: estimates of the next IPCC
data is in 10s of petabytes

- Genome:)Gl alone will have .5 petabyte of
data this year and double each year

- Particle physics: LHC is projected to produce
16 petabytes of data per year

- Astrophysics: LSST and others will produce 5
petabytes/year

e Create scientific communities with
Science Gateways” to data

Some Particularly Challenging Computations

eScience
- Global climate modeling
- Biology: genomics; protein folding; drug design
- Astrophysical modeling
- Computational Chemistry
- Computational Material Sciences and Nanosciences

e Engineering
- Semiconductor design
- Earthquake and structural modeling
- Computation fluid dynamics (airplane design)
- Combustion (engine design)
- Crash simulation

e Business
- Financial and economic modeling
- Transaction processing, web services and search engines

e Defense
- Nuclear weapons -- test by simulations
- Cryptography
34

Economic Impact of HPC

e Airlines:
- System-wide logistics optimization systems on parallel systems.
- Savings: approx. $100 million per airline per year.

e Automotive design:
- Major automotive companies use large systems (500+ CPUs) for:
- CAD-CAM, crash testing, structural integrity and aerodynamics
- One company has 500+ CPU parallel system.
- Savings: approx. $1 billion per company per year.

e Semiconductor industry:
- Semiconductor firms use large systems (500+ CPUs) for
-device electronics simulation and logic validation
- Savings: approx. $1 billion per company per year.
e Energy

- Computational modeling improved performance of current nuclear
power plants, equivalent to building two new power plants.

35

What Supercomputers Do

Introducing Computational Science and Engineering

Two Examples
- simulation replacing experiment that is too slow
- analyzing massive amounts of data with new tools

36

Global Climate Modeling Problem

e Problem is to compute:
f(latitude, longitude, elevation, time) -> “weather”
(temperature, pressure, humidity, wind velocity)

e Approach:
- Discretize the domain, e.g., a measurement point every 10 km
- Devise an algorithm to predict weather at time t+dt given t

* Uses:

- Predict major events, e.g.,
El Nino

- Use in setting air emissions
standards

- Evaluate global warming
scenarios

Source: http://www.epm.ornl.gov/chammp/chammp.html

37

High Resolution . . TPT
Climate Modeling on Wintertime Precipitation

NERSC-3 — P, Duffy, As model resolution becomes finer, results
etal., LLNL converge towards observations

model, 75 km resolution

model, 300 km resolution

45N - 45N
=
gaoN 40N
@3N 35N

90w 120W
0 05 1 15 25 3 35 4 45 5
[T T T

observations

model, 50 km resolution

45N w7 45N
8 aon ~ 40N
2
= -~ 35N
30N - 30N

S120W 90W

Example : weather prediction (Europe

e Navier-Stokes equations (PDE) : discretized on a grid
e Assume domain : 3000 km x 3000 km x 10 km
resolution: 1 km x 1km x 0.1 km
-> grid of size: 3000 x 3000 x 100 = + 102 grid points
time interval: 48 h. ; time step: 3 min. -> = 1000 timesteps
cost per gid point : 1000 flop (flop = floating point operation)
-> Total cost: 102 x 1000 x 1000 = 1015 flop = 1 Pflop

e PC or workstation (1 Gflops) : 300 hours
Cluster (e.g. ThinKing) (> 1 Tflops) : < 20 min

e Required memory :
solution only: 102 grid points x 5 variables x 8 bytes = 4 1010 bytes
= 40 Gbyte ! —--> total required memory: + 400 Gbyte
39

Which commercial applications require parallelism?

Analyzed in detail in
“Berkeley View” report

1 Finite State Mach.
2 Combinational

mosil] ” 5

!
B -

3 Graph Traversal
4 Structured Grid
5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

Analyzed in detail in
“Berkeley View” report
www.eecs.berkeley.edu/
Pubs/TechRpts/2006/
EECS-2006-183.html

What do commercial and CSE applications have in commc

Motif/Dwarf: Common Computational Methods

(Red Hot — Blue Cool)

Embed
SPEC

a1}
(=]

Games
HPC

;

7 ey
g~

L

!Healt'h Image Speech Music Browser

1 Finite State Mach.

2 Combinational

3 Graph Traversal
4 Structured Grid
5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

9 N-Body

8 Dynamic Prog -
[]

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

_Outline

all
-Whywul computers must be parallel
proceSsors

Including your laptops and handhelds

e Large CSE problems require powerful computers
Commercial problems too

e Why writing (fast) parallel programs is hard

But things are improving

e Principles of parallel computing performance

e Structure of the course

42

Principles of Parallel Computing

e Finding enough parallelism (Amdahl’s Law)
e Granularity

e Locality

e Load balance

e Coordination and synchronization

e Performance modeling

All of these things makes parallel
programming even harder than sequential
programming.

43

“Automatic” Parallelism in Modern Machines

eBit level parallelism
—within floating point operations, etc.

eInstruction level parallelism (ILP)
-multiple instructions execute per clock cycle

eMemory system parallelism
—-overlap of memory operations with computation

¢OS parallelism
—multiple jobs run in parallel on commodity SMPs

Limits to all of these —- for very high
performance, need user to identify, schedule and
c490rdinate parallel tasks

Finding Enough Parallelism
e Suppose only part of an application seems parallel
e Amdahl’s law

—let s be the fraction of work done sequentially,
so (1-s) is the fraction that is parallelizable

—-P = number of processors

Speedup(P) = Time(1)/Time(P)
<=1/(s + (1-5)/P)
<=1/s

e Even if the parallel part speeds up perfectly
performance is limited by the sequential part

* Top500 list: currently 2"d fastest machine has
HP~224K; fastest has ~186K+GPUs

Overhead of Parallelism

e Given enough parallel work, this is the biggest barrier
to getting desired speedup

e Parallelism overheads include:
—cost of starting a thread or process
—cost of communicating shared data
—cost of synchronizing
—extra (redundant) computation

e Each of these can be in the range of milliseconds
(=millions of flops) on some systems

e Tradeoff: Algorithm needs sufficiently large units of
work to run tast in parallel (i.e. large granularity), but
not so large that there is not enough parallel work

46

Locality and Parallelism

Conventional
Storage [[prod Gred | [fored,
Hierarch Cach Cach Cach
.2 Cachk L2 Cache L2 Cache
| 6{’{1t:t‘\‘.:él::t:t:«‘.‘tﬁt’x‘:t:t‘\‘.:t‘I::t:t:«‘.‘&1t’t“t:t‘\‘.:t‘l::t:t:«‘.&1{’{“t:t‘\‘.:él::t:t:«‘.‘tﬁt’{“t:t‘\‘.::t‘l::t:t:«‘.‘tﬁt't“t:t‘t::t‘l:’-} —. ’_c
& S
L3 Cachg L3 Cachg L3 Cachg %
G .'v\'\\'\\'\\\l‘\.\‘ \\\\\\\\\\\\\\\\\\\\\\\ A A u I \\\\\\\\\\\\\\\\\\\\\) = 5.
[I 5 =
o
Q
Memory Memory Memory Z
[[
6j\\j\':\,\:\:«.:\:\:\j\:\‘\\j\:\,\:\:«.:\:\:\j\:\‘\\j\:\,\:\:«::\:\:\j\:\j\\j\:\,\:\:«.:\:\:\j\:\‘\\j\:\,\:\:«.:\:\:\j\:\‘\\j\:\,\:\:«.:)

e Large memories are slow, fast memories are small
e Storage hierarchies are large and fast on average

e Parallel processors, collectively, have large, fast cache
- the slow accesses to “remote” data we call “communication”

. &A?Igorithm should do most work on local data

Processor-DRAM Gap (latency)

Goal: find algorithms that minimize communication, not necessarily arithmetic

TOQQ oo % HProc
60%/yr.

“Moore’s Law”

100 o ey Processor-Memory

| _ . .~ DRAM
PRAME 790/

10| A (grows 50% / year)

Performance

(@)
OO OO OO XL O HOH OO O o
— OO NGO P IOH-OIS IO FHACO PO
Time

48

Load Imbalance

e Load imbalance is the time that some processors in
the system are idle due to

- insufficient parallelism (during that phase)
- unequal size tasks

e Examples of the latter
- adapting to “interesting parts of a domain”
- tree-structured computations
- fundamentally unstructured problems

e Algorithm needs to balance load

- Sometimes can determine work load, divide up evenly, before
starting

- “Static Load Balancing”

- Sometimes work load changes dynamically, need to rebalance
dynamically

-“Dynamic Load Balancing”

49

Parallel Software Eventually - ParLab view

o2 types of programmers -> 2 layers
e Efficiency Layer (10% of today’s programmers)

- Expert programmers build Libraries implementing motifs,
“Frameworks”, OS,

- Highest fraction of peak performance possible

e Productivity Layer (90% of today’s programmers)

- Domain experts / Naive programmers productively build parallel
applications by composing frameworks & libraries

- Hide as many details of machine, parallelism as possible
- Willing to sacrifice some performance for productive programming

e Expect students may want to work at either level

- In the meantime, we all need to understand enough of the efficiency
layer to use parallelism effectively

50

QOutline

all
oWhyggy@/ﬁul computers must be parallel
proceSsors

Including your laptops and handhelds

e Large CSE problems require powerful computers
Commercial problems too

e Why wrigi_ggs (afasQ arallel programs is hard

But thi re iImproving

e Principles of parallel computing performance

e Structure of the course

51

Improving Real Performance

Peak Performance grows exponentially,
a la Moore’s Law

e In 1990’s, peak performance increased
100x; in 2000’s, it will increase 1000x

But efficiency (the performance relative to
the hardware peak) has declined

e was 40-50% on the vector supercomputers
of 1990s

e now as little as 5-10% on parallel
supercomputers of today

Close the gap through ...

e Mathematical methods and algorithms that
achieve high performance on a single
processor and scale to thousands of
processors

e More efficient programming models and

tools for massively parallel supercomputers
52

Teraflops

Performance Levels

1,000

Peak Performance

100

[
=

1

7
L Real Performance

o b o a1
1996 2000 2004

e Peak performance

- Sum of all speeds of all floating point units in the system

- You can’t possibly compute faster than this speed

e LINPACK

- The “hello world” program for parallel performance

- Solve Ax=b using Gaussian Elimination, highly tuned

e Gordon Bell Prize winning applications performance

- The right application/algorithm/platform
years of work

combination plus

e Average sustained applications performance

- What one reasonable can expect for standard applications

When reporting performance results, these levels are
pften confused, even in reviewed publications

Performance Levels (for example on NERSC-5)

e Peak advertised performance (PAP): 100 Tflop/s
e LINPACK (TPP): 84 Tflop/s

e Best climate application: 14 Tflop/s
- WRF code benchmarked in December 2007

e Average sustained applications performance: ? Tflop/s
- Probably less than 10% peak!

e We will study performance
- Hardware and software tools to measure it
- Identifying bottlenecks
- Practical performance tuning (Matlab demo)

54

Parallel Computing in Data Analysis

e Finding information amidst large quantities of data

e General themes of sifting through large, unstructured data
sets:

- Has there been an outbreak of some medical condition in a
community?

- bio-informatics

e Data collected and stored at enormous speeds (Gbyte/hour)
- telescope scanning the skies
- microarrays generating gene expression data

55

