Graph matching for BSP

Rob H. Bisseling

Mathematical Institute, Utrecht University Joint work with Fredrik Manne (Bergen, Norway)

KU Leuven, October 31, 2014

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusion

Matching

Introduction Greedy matching

BSP algorithm for edge-weighted matching Sequential approximation algorithm BSP approximation algorithm

Conclusion

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Matchmaker, Matchmaker, Make me a match

From the film Fiddler on the roof

- Hodel: Well, somebody has to arrange the matches.
 Young people can't decide these things themselves.
- ► Hodel: For Papa, make him a scholar.
- Chava: For Mama, make him rich as a king.

Universiteit Utrecht

Outlin

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Matching can win you a Nobel prize

Marriage as an Economic Problem

Lloyd Shapley and Alvin Roth win the Nobel Prize for showing the best way to match people with what they really want.

By Matthew Yglesias | Posted Monday, Oct. 15, 2012, at 1:51 PM ET

The Nobel Prize in economics went to Alvin E. Roth and Lloyd S. Shapley "for the theory of stable allocations and the practice of market design"

Source: Slate magazine October 15, 2012

• • • • • • • • • • • • •

Universiteit Utrecht

Outlin

Matching

Introduction Greedy matching

BSP matching

Approximation BSP algorithm

Motivation of graph matching

- Graph matching is a pairing of neighbouring vertices.
- It has applications in
 - medicine: finding suitable donors for organs
 - social networks: finding partners
 - scientific computing: finding pivot elements in matrix computations
 - graph coarsening: making the graph smaller by merging similar vertices before partitioning it for parallel computations
 - bioinformatics: finding similarity in Protein-Protein Interaction networks

Outline

Matching

Introduction Greedy matching

BSP matching Approximation

Motivation of greedy/approximation graph matching

- Optimal solution is possible in polynomial time.
- ► Time for weighted matching in graph G = (V, E) is O(mn + n² log n) with n = |V| the number of vertices, and m = |E| the number of edges (Gabow 1990).
- ► The aim is a billion vertices, n = 10⁹, with 100 edges per vertex, i.e. m = 10¹¹.
- ► Thus, a time of O(10²⁰) = 100,000 Petaflop units is far too long. Fastest supercomputer today, the Tianhe-2, performs 33.8 Petaflop/s.
- We need linear-time greedy or approximation algorithms.

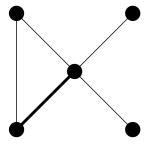
Matching

Introduction Greedy matching

BSP matching Approximation BSP algorithm

Formal definition of graph matching

- A graph is a pair G = (V, E) with vertices V and edges E.
- All edges e ∈ E are of the form e = (v, w) for vertices v, w ∈ V.
- A matching is a collection $M \subseteq E$ of disjoint edges.
- Here, the graph is undirected, so (v, w) = (w, v).


Outline

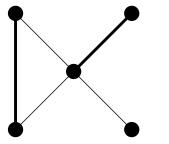
Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Maximal matching

Outlin

Matching Introduction Greedy matching


BSP matching Approximation BSP algorithm

Conclusion

A matching is maximal if we cannot enlarge it further by adding another edge to it.

Maximum matching

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusion

A matching is maximum if it possesses the largest possible number of edges, compared to all other matchings.

Edge-weighted matching

If the edges are provided with weights ω : E → ℝ_{>0}, finding a matching M which maximises

$$\omega(M) = \sum_{e \in M} \omega(e),$$

is called edge-weighted matching.

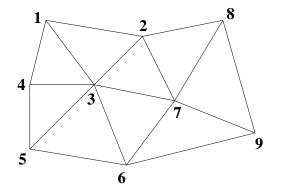
 Greedy matching provides us with maximal matchings, but not necessarily with maximum possible weight.

Outline

Matching

Introduction Greedy matching

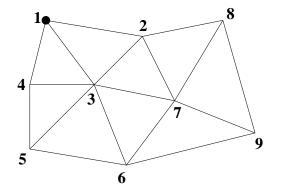
BSP matching Approximation


- ► In random order, vertices v ∈ V select and match neighbours one-by-one.
- Here, we can pick
 - the first available neighbour w of v (greedy random matching)
 - the neighbour w with maximum ω(v, w) (greedy weighted matching)
- Or: we sort the edges by weight, and successively match the vertices v and w of the heaviest available edge (v, w) (greedy matching)

Outline

Matching Introduction Greedy matching

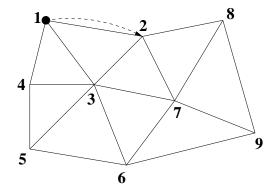
BSP matching Approximation BSP algorithm


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

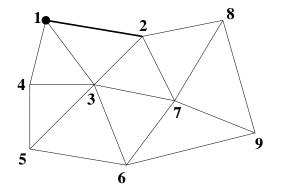
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

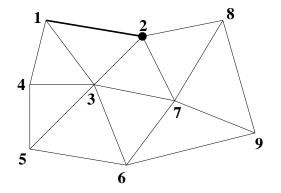
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

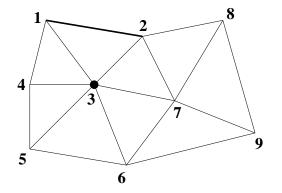
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

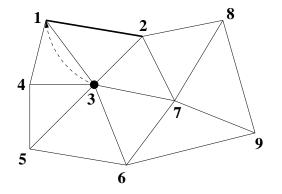
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

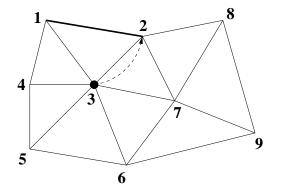
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

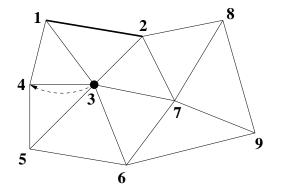
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

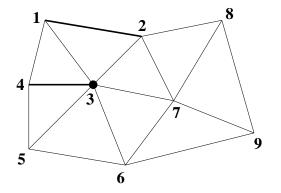
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

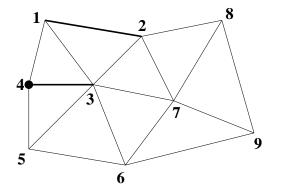
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

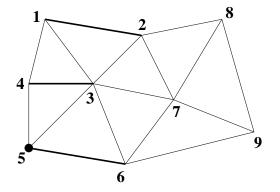
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

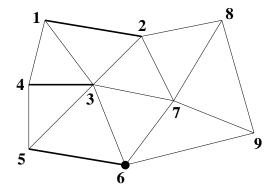
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

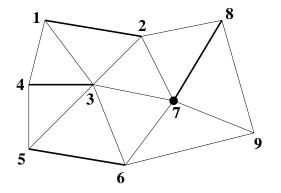
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

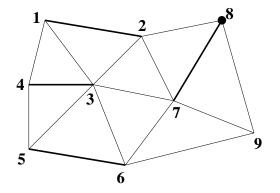
Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

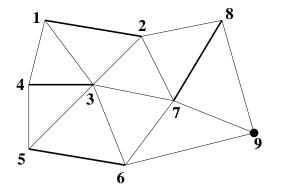
Conclusion



Outline

Matching Introduction Greedy matching

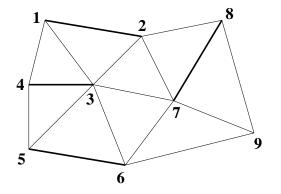
BSP matching Approximation BSP algorithm


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusion


Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusion

Outline

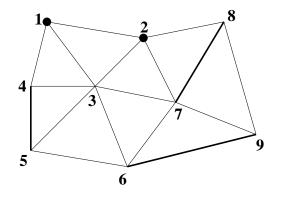
Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusion

Greedy is a 1/2-approximation algorithm

- Weight $\omega(M) \ge \omega_{\text{optimal}}/2$
- Cardinality $|M| \ge |M_{\text{card}-\text{max}}|/2$, because M is maximal.
- ► Time complexity is O(m log m), because all edges must be sorted.


Outline

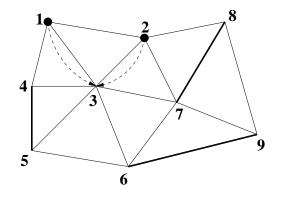
Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Parallel greedy matching: trouble

Suppose we match vertices simultaneously.

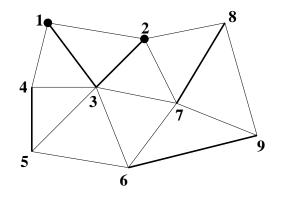
æ


< □ > < □ > < □ > < □ > < □ > < □ >

Greedy matching BSP matching

Approximation BSP algorithm

Parallel greedy matching: trouble


Two vertices each find an unmatched neighbour...

Universiteit Utrecht

Greedy matching

BSP algorithm

Parallel greedy matching: trouble

... but generate an invalid matching.

Universiteit Utrecht

Greedy matching

BSP algorithm

Dominant-edge algorithm

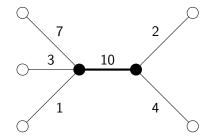
while
$$E \neq \emptyset$$
 do
pick dominant edge $(v, w) \in E$
 $M := M \cup \{(v, w)\}$
 $E := E \setminus \{(x, y) \in E : x = v \lor x = w\}$
 $V := V \setminus \{v, w\}$
return M

Outline

Matching Introduction Greedy matching

BSP matching

Approximation BSP algorithm


Conclusion

• An edge $(v, w) \in E$ is dominant if

$$\omega(v,w) = \max\{\omega(x,y) : (x,y) \in E \land (x = v \lor x = w)\}$$

Dominant edge

Outline

Matching Introduction Greedy matching

BSP matching

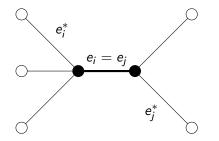
Approximation BSP algorithm

Conclusion

Proof: algorithm is 1/2-approximation

- Let *M* be the matching produced by the dominant-edge algorithm.
- Let M^* be a maximum matching with weight ω_{optimal} .
- Let M^{*} = {e₀^{*},..., e_{k-1}^{*}}. For each edge e_i^{*} ∈ M^{*}, define an edge e_i ∈ M, as follows. If e_i^{*} ∈ M, e_i = e_i^{*}, otherwise e_i is the edge that removes e_i^{*} from E in the algorithm.
- It may happen that $e_i = e_j$ for $i \neq j$.
- ω(e_i) ≥ ω(e^{*}_i) for all *i*, since e_i is locally dominant in the algorithm and removes e^{*}_i, or e_i = e^{*}_i.

Outline


Matching Introduction Greedy matching

BSP matching

Approximation BSP algorithm

Proof (cont'd)

Every edge e ∈ M can occur at most twice in the list of e_i's, since it can remove from E at most 2 edges from M^{*}.

$$2\omega(M) \geq \sum_{i=0}^{k-1} \omega(e_i) \geq \sum_{i=0}^{k-1} \omega(e_i^*) = \omega_{ ext{optimal}}$$

• Hence $\omega(M) \geq \omega_{\text{optimal}}/2$.

Universiteit Utrecht

Approximation

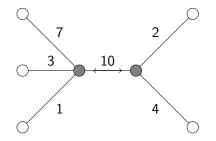
Sequential approximation algorithm: initialisation

function SEQMATCHING(V, E) for all $v \in V$ do pref(v) = null $D := \emptyset$ $M := \emptyset$

> { Find dominant edges } for all $v \in V$ do $Adj_v := \{w \in V : (v, w) \in E\}$ $pref(v) := \operatorname{argmax}\{\omega(v, w) : w \in Adj_v\}$ if pref(pref(v)) = v then $D := D \cup \{v, pref(v)\}$ $M := M \cup \{(v, pref(v))\}$

Outline

Matching Introduction Greedy matching


BSP matching

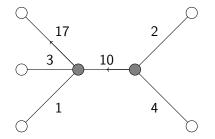
Approximation BSP algorithm

Conclusion

Mutual preferences

Outline

Matching Introduction Greedy matching


BSP matching

Approximation BSP algorithm

Conclusion

Non-mutual preferences

Outline

Matching Introduction Greedy matching

BSP matching

Approximation BSP algorithm

Conclusion

Sequential approximation algorithm: main loop

while
$$D \neq \emptyset$$
 do
pick $v \in D$
 $D := D \setminus \{v\}$
for all $x \in Adj_v \setminus \{pref(v)\} : (x, pref(x)) \notin M$ do
 $Adj_x := Adj_x \setminus \{v\}$
 $pref(x) := \operatorname{argmax}\{\omega(x, w) : w \in Adj_x\}$
if $pref(pref(x)) = x$ then
 $D := D \cup \{x, pref(x)\}$
 $M := M \cup \{(x, pref(x))\}$
return M

Outline

Matching Introduction Greedy matching

BSP matching

Approximation BSP algorithm

Properties of the dominant-edge algorithm

Dominant-edge algorithm is a 1/2-approximation:

 $\omega(M) \ge \omega_{\mathrm{optimal}}/2$

Dominant edge means mutual preference:

v = pref(w) and w = pref(v).

- Dominance is a local property: easy to parallelise.
- Algorithm keeps going until set of dominant vertices D is empty and matching M is maximal.
- Assumption without loss of generality: weights are unique.
 Otherwise, use vertex numbering to break ties.

Universiteit Utrecht

Matching Introduction Greedy matching

BSP matching

Approximation BSP algorithm

Time complexity

- Linear time complexity O(|E|) if edges of each vertex are sorted by weight.
- Sorting costs are

$$\sum_{v} deg(v) \log deg(v) \leq \sum_{v} deg(v) \log \Delta = 2|E| \log \Delta,$$

where Δ is the maximum vertex degree.

This algorithm is based on a dominant-edge algorithm by Preis (1999), called LAM, which is linear-time O(|E|), does not need sorting, and also is a 1/2-approximation, but is hard to parallelise.

Dutline

Matching Introduction Greedy matching

BSP matching

Approximation BSP algorithm

Conclusion

Parallel algorithm (Manne & Bisseling, 2007)

• Processor P(s) has vertex set V_s , with

$$igcup_{s=0}^{p-1}V_s=V$$

and $V_s \cap V_t = \emptyset$ if $s \neq t$.

This is a p-way partitioning of the vertex set.

Universiteit Utrecht

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Halo vertices

- The adjacency set Adj_v of a vertex v may contain vertices w from another processor.
- We define the set of halo vertices

$$H_s = \bigcup_{v \in V_s} Adj_v \setminus V_s$$

- The weights ω(v, w) are stored with the edges, for all v ∈ V_s and w ∈ V_s ∪ H_s.
- E_s = {(v, w) ∈ E : v ∈ V_s} is the subset of all the edges connected to V_s.

Dutline

Matching Introduction Greedy matching BSP matching

Approximation BSP algorithm

Parallel algorithm for P(s): initialisation

function PARMATCHING(V_s, H_s, E_s , distribution ϕ) for all $v \in V_s$ do pref(v) = null $D_{s} := \emptyset$ $M_c := \emptyset$ { Find dominant edges } for all $v \in V_s$ do $Adj_{v} := \{ w \in V_s \cup H_s : (v, w) \in E_s \}$ SetNewPreference(v, Adj_v , pref, V_s , D_s , M_s , ϕ) Sync

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Setting a vertex preference

function SETNEWPREFERENCE(v, Adj, V, D, M, ϕ) $pref(v) := \operatorname{argmax}\{\omega(v, w) : w \in Adj\}$ if $pref(v) \in V$ then if pref(pref(v)) = v then $D := D \cup \{v, pref(v)\}$ $M := M \cup \{(v, pref(v))\}$

else

put proposal(v, pref(v)) in $P(\phi(pref(v)))$

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

How to propose

Source: www.theguardian.com

proposal(v, w): v proposes to w

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusion

Parallel algorithm for P(s): main loop

while
$$D_s \neq \emptyset$$
 do
pick $v \in D_s$
 $D_s := D_s \setminus \{v\}$
for all $x \in Adj_v \setminus \{pref(v)\} : (x, pref(x)) \notin M_s$ do
if $x \in V_s$ then
 $Adj_x := Adj_x \setminus \{v\}$
 $SetNewPreference(x, Adj_x, pref, V_s, D_s, M_s, \phi)$
else $\{x \in H_s\}$
put unavailable(v, x) in $P(\phi(x))$
Sync

Universiteit Utrecht

BSP algorithm

Parallel algorithm for P(s): communication

for all messages *m* received do if m = proposal(x, y) then if pref(y) = x then $D_{s} := D_{s} \cup \{y\}$ $M_{\mathfrak{s}} := M_{\mathfrak{s}} \cup \{(x, y)\}$ put accepted(x, y) in $P(\phi(x))$ if m = accepted(x, y) then $D_{s} := D_{s} \cup \{x\}$ $M_{\mathfrak{s}} := M_{\mathfrak{s}} \cup \{(x, y)\}$ if m = unavailable(v, x) then if $(x, pref(x)) \notin M_s$ then $Adi_{\star} := Adi_{\star} \setminus \{v\}$ SetNewPreference(x, Adj_x , pref, V_s , D_s , M_s , ϕ)

Universiteit Utrecht

BSP algorithm

Termination

- The algorithm alternates supersteps of computation running the main loop and communication handling the received messages.
- ► The whole algorithm can terminate when no messages have been received by processor P(s) and the local set D_s is empty, for all s.
- This can be checked at every synchronisation point.

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Load balance

- Processors can have different amounts of work, even if they have the same number of vertices or edges.
- ► Use can be made of a global clock based on ticks, the unit of time needed to handle a vertex x (in O(1)).
- After every k ticks, everybody synchronises.

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Synchronisation frequency

- Guidance for the choice of k is provided by the BSP parameter l, the cost of a global synchronisation.
- ► Choosing k ≥ l guarantees that at most 50% of the total time is spent in synchronisation.
- Choosing k sufficiently small will cause all processors to be busy during most supersteps.
- Good choice: k = 2/?

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Sending messages

- The BSP system takes care that messages are sent automatically, in bulk. A useful BSPlib primitive for doing this is bsp_send.
- In the next superstep, all received messages are read (using bsp_move) and processed.
- Google's Pregel system (Malewicz 2010) follows this BSP style.

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Further improvement: edge-based (2D) distribution

	SpMV		Mate	Matching	
Name	1 <i>D</i>	2 <i>D</i>	1D	2 <i>D</i>	
rw9 (af_shell10)	113	105	169	150	
rw10 (boneS10)	150	145	228	189	
rw11 (Stanford)	340	141	479	234	
rw12 (gupta3)	710	44	1,305	61	
$rw13$ (St_Berk.)	716	448	1,152	812	
rw14 (F1)	139	130	148	139	
sw1~(small world)	1,007	417	2,111	303	
sw2	1,957	829	3,999	563	
sw3	2,017	832	4,255	528	
er1 (random)	1,856	1,133	1,788	1,157	
er2	3,451	1,841	3,721	1,635	
er3	5,476	2,569	6,350	1,990	

BSP algorithm

Communication volume in sparse matrix-vector multiplication and Karp-Sipser matching. Source: Patwary, Bisseling, Manne (2010). ・ロト ・四ト ・ヨト ・ヨト -2

MulticoreBSP enables shared-memory BSP

Print this	Multicorel	BSP efficient es	esy & correct parallelisati		euven Flanders ExaScien	ce Lab Utrecht University
BRP Indexid RECENT NEW • Venice 1.2, and a readmap for fullow wiexes. • Venice 1.2, and a readmap for fullow wiexes. • Venice 1.2, and a readmap for fullow wiexes. • UnicodEDE Port venice 1.1 witksand. • use all flows larme Extend Larme MuticodEDE Port venice 1.1 witksand. Extend Larme Extend Larme MuticodEDE Port Venice Extend Larme Detection Speed of SpBV multiplication on a 64-core machine Operative CR	manrooror			211		
BBP Roted BSP Rotegy RECENT NEW • Version 12, and a mandings for future releases. • Unitored BSP for Q, version 11, released. • Unitored BSP for Q, vers	Introduction 💏	$\text{Home} \ \rightarrow \ \text{Introduction}$				Print this page
Product 2, and a madmap for future measure. Autocal BBP for a water of a state of the state of	BSP model					
The at more than a set of the set	3SP library	RECENT NE	ws			
Determined by the set of the set						
Introduction Buttom Barb brigs Bulk Bynchronous Parallel (BBP) programming to modern multicore processors. BSP programming bads to high- reference codes:						
MillioneBDP brings But Synchronous Parallel (BBP) programming to modern multicon processors. BDP programming bads to high- performance oxdes:						
protomance codes:		Introduction	1			
		_		ltiplication on a		•
		10			PThread 1D	
		8	3 -	- 1 -	Bar 20	-
		s/d	5			
a da		Gflc				
		4				
		2			_	
				cage15 a	daptive wiki07	
Albert-Jan Yzelman 2014, www.multicorebsp.org	Albowt	lan V-a	Jman 2014		ultiooxob.	

Universiteit Utrecht

BSP algorithm

Matching with MulticoreBSP

- BSP program can remain the same, giving portability.
- To exploit the ease of reading data in shared memory, the bsp_direct_get is available in MulticoreBSP.
- This performs the communication immediately and blocks until the communication has been carried out.
- Possible use: replace the set M_s of matched edges by a boolean array matched_s marking the local matched vertices.
- ► This array can be read by all processors using bsp_direct_get, to replace the check (x, pref(x)) ∉ M_s.

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

Conclusions and outlook

- ▶ BSP is extremely suitable for parallel graph computations:
 - no need to worry about communication because we buffer messages until the next synchronisation;
 - · no need for send-receive pairs;
 - BSP cost model gives synchronisation frequency;
 - correctness proof of algorithm becomes simpler;
 - no deadlock possible.

Outline

Matching Introduction Greedy matching

BSP matching Approximation

