
Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

1

Graph matching for BSP

Rob H. Bisseling

Mathematical Institute, Utrecht University
Joint work with Fredrik Manne (Bergen, Norway)

KU Leuven, October 31, 2014

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

2

Matching
Introduction
Greedy matching

BSP algorithm for edge-weighted matching
Sequential approximation algorithm
BSP approximation algorithm

Conclusion

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

3

Matchmaker, Matchmaker, Make me a match

From the film Fiddler on the roof

I Hodel: Well, somebody has to arrange the matches.
Young people can’t decide these things themselves.

I Hodel: For Papa, make him a scholar.

I Chava: For Mama, make him rich as a king.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

4

Matching can win you a Nobel prize

Source: Slate magazine October 15, 2012

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

5

Motivation of graph matching

I Graph matching is a pairing of neighbouring vertices.
I It has applications in

• medicine: finding suitable donors for organs
• social networks: finding partners
• scientific computing: finding pivot elements in matrix

computations
• graph coarsening: making the graph smaller by merging

similar vertices before partitioning it for parallel
computations

• bioinformatics: finding similarity in Protein-Protein
Interaction networks

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

6

Motivation of greedy/approximation graph
matching

I Optimal solution is possible in polynomial time.

I Time for weighted matching in graph G = (V ,E) is
O(mn + n2 log n) with n = |V | the number of vertices,
and m = |E | the number of edges (Gabow 1990).

I The aim is a billion vertices, n = 109, with 100 edges per
vertex, i.e. m = 1011.

I Thus, a time of O(1020) = 100, 000 Petaflop units is far
too long. Fastest supercomputer today, the Tianhe-2,
performs 33.8 Petaflop/s.

I We need linear-time greedy or approximation algorithms.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

7

Formal definition of graph matching

I A graph is a pair G = (V ,E) with vertices V and edges E .

I All edges e ∈ E are of the form e = (v ,w) for vertices
v ,w ∈ V .

I A matching is a collection M ⊆ E of disjoint edges.

I Here, the graph is undirected, so (v ,w) = (w , v).

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

8

Maximal matching

I A matching is maximal if we cannot enlarge it further by
adding another edge to it.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

9

Maximum matching

I A matching is maximum if it possesses the largest possible
number of edges, compared to all other matchings.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

10

Edge-weighted matching

I If the edges are provided with weights ω : E → R>0,
finding a matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called edge-weighted matching.

I Greedy matching provides us with maximal matchings,
but not necessarily with maximum possible weight.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

11

Sequential greedy matching

I In random order, vertices v ∈ V select and match
neighbours one-by-one.

I Here, we can pick
• the first available neighbour w of v

(greedy random matching)
• the neighbour w with maximum ω(v ,w)

(greedy weighted matching)

I Or: we sort the edges by weight, and successively match
the vertices v and w of the heaviest available edge (v ,w)
(greedy matching)

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

13

Greedy is a 1/2-approximation algorithm

I Weight ω(M) ≥ ωoptimal/2

I Cardinality |M| ≥ |Mcard−max|/2, because M is maximal.

I Time complexity is O(m log m), because all edges must be
sorted.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Suppose we match vertices simultaneously.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Two vertices each find an unmatched neighbour. . .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

. . . but generate an invalid matching.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

15

Dominant-edge algorithm

while E 6= ∅ do
pick dominant edge (v ,w) ∈ E
M := M ∪ {(v ,w)}
E := E \ {(x , y) ∈ E : x = v ∨ x = w}
V := V \ {v ,w}

return M

I An edge (v ,w) ∈ E is dominant if

ω(v ,w) = max{ω(x , y) : (x , y) ∈ E ∧ (x = v ∨ x = w)}

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

16

Dominant edge

1

3

7

10

2

4

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

17

Proof: algorithm is 1/2-approximation

I Let M be the matching produced by the dominant-edge
algorithm.

I Let M∗ be a maximum matching with weight ωoptimal.

I Let M∗ = {e∗0 , . . . , e∗k−1}. For each edge e∗i ∈ M∗, define
an edge ei ∈ M, as follows. If e∗i ∈ M, ei = e∗i , otherwise
ei is the edge that removes e∗i from E in the algorithm.

I It may happen that ei = ej for i 6= j .

I ω(ei) ≥ ω(e∗i) for all i , since ei is locally dominant in the
algorithm and removes e∗i , or ei = e∗i .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

18

Proof (cont’d)

e∗i

ei = ej

e∗j

I Every edge e ∈ M can occur at most twice in the list of
ei ’s, since it can remove from E at most 2 edges from M∗.

I

2ω(M) ≥
k−1∑
i=0

ω(ei) ≥
k−1∑
i=0

ω(e∗i) = ωoptimal

I Hence ω(M) ≥ ωoptimal/2.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

19

Sequential approximation algorithm: initialisation

function SeqMatching(V ,E)
for all v ∈ V do

pref (v) = null
D := ∅
M := ∅

{ Find dominant edges }
for all v ∈ V do

Adjv := {w ∈ V : (v ,w) ∈ E}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

20

Mutual preferences

1

3

7

10

2

4

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

21

Non-mutual preferences

1

3

17

10

2

4

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

22

Sequential approximation algorithm: main loop

while D 6= ∅ do
pick v ∈ D
D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ M do

Adjx := Adjx \ {v}
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)}
M := M ∪ {(x , pref (x))}

return M

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

23

Properties of the dominant-edge algorithm

I Dominant-edge algorithm is a 1/2-approximation:

ω(M) ≥ ωoptimal/2

I Dominant edge means mutual preference:

v = pref (w) and w = pref (v).

I Dominance is a local property: easy to parallelise.

I Algorithm keeps going until set of dominant vertices D is
empty and matching M is maximal.

I Assumption without loss of generality: weights are unique.
Otherwise, use vertex numbering to break ties.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

24

Time complexity

I Linear time complexity O(|E |) if edges of each vertex are
sorted by weight.

I Sorting costs are∑
v

deg(v) log deg(v) ≤
∑
v

deg(v) log ∆ = 2|E | log ∆,

where ∆ is the maximum vertex degree.

I This algorithm is based on a dominant-edge algorithm by
Preis (1999), called LAM, which is linear-time O(|E |),
does not need sorting, and also is a 1/2-approximation, but
is hard to parallelise.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

25

Parallel algorithm (Manne & Bisseling, 2007)

I Processor P(s) has vertex set Vs , with

p−1⋃
s=0

Vs = V

and Vs ∩ Vt = ∅ if s 6= t.

I This is a p-way partitioning of the vertex set.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

26

Halo vertices

I The adjacency set Adjv of a vertex v may contain vertices
w from another processor.

I We define the set of halo vertices

Hs =
⋃

v∈Vs

Adjv \ Vs

I The weights ω(v ,w) are stored with the edges, for all
v ∈ Vs and w ∈ Vs ∪ Hs .

I Es = {(v ,w) ∈ E : v ∈ Vs}
is the subset of all the edges connected to Vs .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

27

Parallel algorithm for P(s): initialisation

function ParMatching(Vs ,Hs ,Es , distribution φ)
for all v ∈ Vs do

pref (v) = null
Ds := ∅
Ms := ∅

{ Find dominant edges }
for all v ∈ Vs do

Adjv := {w ∈ Vs ∪ Hs : (v ,w) ∈ Es}
SetNewPreference(v ,Adjv , pref ,Vs ,Ds ,Ms , φ)

Sync

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

28

Setting a vertex preference

function SetNewPreference(v ,Adj ,V ,D,M, φ)
pref (v) := argmax{ω(v ,w) : w ∈ Adj}
if pref (v) ∈ V then

if pref (pref (v)) = v then
D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

else
put proposal(v , pref (v)) in P(φ(pref (v)))

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

29

How to propose

Source: www.theguardian.com

proposal(v ,w): v proposes to w

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

30

Parallel algorithm for P(s): main loop

while Ds 6= ∅ do
pick v ∈ Ds

Ds := Ds \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ Ms do

if x ∈ Vs then
Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

else {x ∈ Hs}
put unavailable(v , x) in P(φ(x))

Sync

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

31

Parallel algorithm for P(s): communication

for all messages m received do
if m = proposal(x , y) then

if pref (y) = x then
Ds := Ds ∪ {y}
Ms := Ms ∪ {(x , y)}
put accepted(x , y) in P(φ(x))

if m = accepted(x , y) then
Ds := Ds ∪ {x}
Ms := Ms ∪ {(x , y)}

if m = unavailable(v , x) then
if (x , pref (x)) /∈ Ms then

Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

32

Termination

I The algorithm alternates supersteps of computation
running the main loop and communication handling the
received messages.

I The whole algorithm can terminate when no messages
have been received by processor P(s) and the local set Ds

is empty, for all s.

I This can be checked at every synchronisation point.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

33

Load balance

I Processors can have different amounts of work, even if
they have the same number of vertices or edges.

I Use can be made of a global clock based on ticks, the unit
of time needed to handle a vertex x (in O(1)).

I After every k ticks, everybody synchronises.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

34

Synchronisation frequency

I Guidance for the choice of k is provided by the BSP
parameter l , the cost of a global synchronisation.

I Choosing k ≥ l guarantees that at most 50% of the total
time is spent in synchronisation.

I Choosing k sufficiently small will cause all processors to be
busy during most supersteps.

I Good choice: k = 2l?

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

35

Sending messages

I The BSP system takes care that messages are sent
automatically, in bulk. A useful BSPlib primitive for doing
this is bsp send.

I In the next superstep, all received messages are read (using
bsp move) and processed.

I Google’s Pregel system (Malewicz 2010) follows this BSP
style.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

36

Further improvement: edge-based (2D) distribution

SpMV Matching
Name 1D 2D 1D 2D

rw9 (af shell10) 113 105 169 150
rw10 (boneS10) 150 145 228 189
rw11 (Stanford) 340 141 479 234
rw12 (gupta3) 710 44 1,305 61
rw13 (St Berk.) 716 448 1,152 812
rw14 (F1) 139 130 148 139
sw1 (small world) 1,007 417 2,111 303
sw2 1,957 829 3,999 563
sw3 2,017 832 4,255 528
er1 (random) 1,856 1,133 1,788 1,157
er2 3,451 1,841 3,721 1,635
er3 5,476 2,569 6,350 1,990

Communication volume in sparse matrix–vector multiplication
and Karp–Sipser matching.
Source: Patwary, Bisseling, Manne (2010).

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

37

MulticoreBSP enables shared-memory BSP

Albert-Jan Yzelman 2014, www.multicorebsp.org

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

38

Matching with MulticoreBSP

I BSP program can remain the same, giving portability.

I To exploit the ease of reading data in shared memory, the
bsp direct get is available in MulticoreBSP.

I This performs the communication immediately and blocks
until the communication has been carried out.

I Possible use: replace the set Ms of matched edges by a
boolean array matched s marking the local matched
vertices.

I This array can be read by all processors using
bsp direct get, to replace the check (x , pref (x)) /∈ Ms .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

39

Conclusions and outlook

I BSP is extremely suitable for parallel graph computations:
• no need to worry about communication because we buffer

messages until the next synchronisation;
• no need for send-receive pairs;
• BSP cost model gives synchronisation frequency;
• correctness proof of algorithm becomes simpler;
• no deadlock possible.

	Outline
	Matching
	Introduction
	Greedy matching

	BSP algorithm for edge-weighted matching
	Approximation
	BSP algorithm

	Conclusion

