
Shared-memory parallel computing

Shared-memory parallel computing

Albert-Jan Yzelman

14th of November, 2014

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Shared-memory architectures and paradigms

1 Shared-memory architectures and paradigms

2 Applications

3 Metrics for parallel efficiency

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches

Divide the main memory (RAM) in stripes of size LS .

Main
memory

(RAM)

The ith line in RAM is mapped to the cache line i mod L, where L is
the number of available cache lines.

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches

A smarter cache follows a pre-defined policy instead; for instance, the
‘Least Recently Used (LRU)’ policy:

x1

⇒

Req. x1, . . . , x4

x4

x3

x2

x1

⇒

Req. x2

x2

x4

x3

x1

⇒

Req. x5

x5

x2

x4

x3

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches

Realistic caches combine modulo-mapping and the LRU policy:

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

k is the number of subcaches; there are L/k LRU stacks.

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches

Realistic caches are used within multi-level memory hierarchies:

Main
memory

(RAM)
����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Cache Cache

(L1) (L2)CPU

Intel Core2 (Q6600) AMD Phenom II (945e) Intel Westmere (E7-2830)
L1: 32kB k = 8
L2: 4MB k = 16
L3: - -

S = 64kB k = 2
S = 512kB k = 8
S = 6MB k = 48

S = 256kB k = 8
S = 2MB k = 8
S = 24MB k = 24

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

Dense matrix–vector multiplication


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·


x0

x1

x2

x3

 =


y0

y1

y2

y3


Example with LRU caching:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

Dense matrix–vector multiplication


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·


x0

x1

x2

x3

 =


y0

y1

y2

y3


Example with LRU caching:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

Dense matrix–vector multiplication


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·


x0

x1

x2

x3

 =


y0

y1

y2

y3


Example with LRU caching:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

Dense matrix–vector multiplication


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·


x0

x1

x2

x3

 =


y0

y1

y2

y3


Example with LRU caching:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

Dense matrix–vector multiplication


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·


x0

x1

x2

x3

 =


y0

y1

y2

y3


Example with LRU caching:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

Dense matrix–vector multiplication


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ·


x0

x1

x2

x3

 =


y0

y1

y2

y3


Example with LRU caching:

x0

=⇒

a00

x0

=⇒

y0

a00

x0 =⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A. But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A.

But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A. But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A. But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multicore

Most architectures employ shared caches; (p, r , l , g) = (4, 3GHz, l , g):

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

64kB L1 64kB L1 64kB L1 64kB L1

Core 1 Core 2 Core 3 Core 4

512kB L2512kB L2512kB L2512kB L2

System interface

6MB shared L3 cache

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multicore: NUMA

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

32kB L1 32kB L1 32kB L1 32kB L1

Core 1 Core 2 Core 3 Core 4

4MB L2

System interface

4MB L2

(4, 2.4GHz, l , g), but Non-Uniform Memory Access (NUMA)!

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Dealing with NUMA: distribution types

Implicit distribution, centralised local allocation:

If each processor moves data to the same single memory element, the
bandwidth is limited by that of a single memory controller.

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Dealing with NUMA: distribution types

Implicit distribution, centralised interleaved allocation:

If each processor moves data from all memory elements, the bandwidth
multiplies if accesses are uniformly random.

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Dealing with NUMA: distribution types

Explicit distribution, distributed local allocation:

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies.

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Bandwidth

CPU speeds stall, but Moore’s Law is still alive:

(Illustration by C. Batten, from https://scs.senecac.on.ca/~gpu610/pages/content/intro.html)

Albert-Jan Yzelman

https://scs.senecac.on.ca/~gpu610/pages/content/intro.html

Shared-memory parallel computing > Shared-memory architectures and paradigms

Bandwidth

CPU speeds stall, but Moore’s Law now translates to an increasing
amount of cores per die, i.e., the effective flop rate of processors
still rises as it always has.

But what about bandwidth?

Technology Year Speed

EDO 1970s 27 Mbyte/s
SDRAM early 1990s 53 Mbyte/s
RDRAM mid 1990s 1.2 Gbyte/s

DDR 2000 1.6 Gbyte/s
DDR2 2003 3.2 Gbyte/s
DDR3 2007 6.4 Gbyte/s
DDR3 2013 11 Gbyte/s

Will the effective bandwidth per core keep decreasing?

Albert-Jan Yzelman

Shared-memory parallel computing > Shared-memory architectures and paradigms

Bandwidth

Arithmetic intensity:

1

2

4

8

16

32

64

1/8 1/4 1/2 1 2 4 8 16

at
ta

in
ab

le
 G

F
L

O
P

/s
ec

Arithmetic Intensity FLOP/Byte

peak
 m

em
ory BW

peak floating-point

with
vectorization

If your computation has enough work per data element, it is
compute bound. Otherwise it is bandwidth bound.
If you are bandwidth bound, reducing your memory footprint, i.e.,
compression, directly results in faster execution.

(Image courtesy of Prof. Wim Vanroose, UA)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Applications

1 Shared-memory architectures and paradigms

2 Applications

3 Metrics for parallel efficiency

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α;’ globally allocated:

α = 0.0

for i = s to n step p

α += xiyi
return α

Data race! (for n = p = 2, output can be x0y0, x1y1, or x0y0 + x1y1)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α;’ globally allocated:

α = 0.0

for i = s to n step p

α += xiyi
return α

Data race! (for n = p = 2, output can be x0y0, x1y1, or x0y0 + x1y1)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[p];’ globally allocated:

for i = s to n step p

αs += xiyi
synchronise

return
∑p−1

i=0 αi

False sharing! (processors access and update the same cache lines)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[p];’ globally allocated:

for i = s to n step p

αs += xiyi
synchronise

return
∑p−1

i=0 αi

False sharing! (processors access and update the same cache lines)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[8p];’ globally allocated:

for i = s to n step p
α8s += xiyi

synchronise
return

∑p−1
i=0 α8i

Inefficient cache use!
(All threads access all cache lines associated with x , y)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[8p];’ globally allocated:

for i = s to n step p
α8s += xiyi

synchronise
return

∑p−1
i=0 α8i

Inefficient cache use: Θ(pn) data movement.
(All threads access all cache lines)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Parallel inner product

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[8p];’ globally allocated:

for i = s · dn/pe to (s + 1) · dn/pe
α8s += xiyi

synchronise

return
∑p−1

i=0 α8i

(Now inefficiency only at boundaries; O(n + p − 1) data movement)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Central obstacles for SpMV multiplication

The second example application is the sparse matrix–vector
multiplication

y = Ax .

Three obstacles for an efficient shared-memory parallel sparse
matrix–vector (SpMV) multiplication kernel:

inefficient cache use,

limited memory bandwidth, and

non-uniform memory access (NUMA).

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

SpMV multiplication using CRS, LRU cache perspective:

x?

=⇒

a0?

x?

=⇒

y0

a0?

x? =⇒

x?

y0

a0?

x?
=⇒

a??

x?

y0

a0?

x?

=⇒

y?

a??

x?

y?

a0?

x?

We cannot predict memory accesses in the sparse case:

simple blocking is not possible.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

SpMV multiplication using CRS, LRU cache perspective:

x?

=⇒

a0?

x?

=⇒

y0

a0?

x? =⇒

x?

y0

a0?

x?
=⇒

a??

x?

y0

a0?

x?

=⇒

y?

a??

x?

y?

a0?

x?

We cannot predict memory accesses in the sparse case:

simple blocking is not possible.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

SpMV multiplication using CRS, LRU cache perspective:

x?

=⇒

a0?

x?

=⇒

y0

a0?

x? =⇒

x?

y0

a0?

x?
=⇒

a??

x?

y0

a0?

x?

=⇒

y?

a??

x?

y?

a0?

x?

We cannot predict memory accesses in the sparse case:

simple blocking is not possible.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

SpMV multiplication using CRS, LRU cache perspective:

x?

=⇒

a0?

x?

=⇒

y0

a0?

x? =⇒

x?

y0

a0?

x?
=⇒

a??

x?

y0

a0?

x?

=⇒

y?

a??

x?

y?

a0?

x?

We cannot predict memory accesses in the sparse case:

simple blocking is not possible.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

SpMV multiplication using CRS, LRU cache perspective:

x?

=⇒

a0?

x?

=⇒

y0

a0?

x? =⇒

x?

y0

a0?

x?
=⇒

a??

x?

y0

a0?

x?

=⇒

y?

a??

x?

y?

a0?

x?

We cannot predict memory accesses in the sparse case:

simple blocking is not possible.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

Visualisation of the SpMV multiplication Ax = y with nonzeroes
processed in row-major order:

Accesses on the input vector are completely unpredictable.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Inefficient cache use

Visualisation of the SpMV multiplication Ax = y with nonzeroes
processed in an order defined by the Hilbert curve:

Accesses on both vectors have more temporal locality.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Bandwidth issues

The arithmetic intensity of an SpMV multiply lies between

2

3
and

2

5
flop per byte.

On an 8-core 2.13 GHz (with AVX), and 10.67 GB/s DDR3:

CPU speed Memory speed
1 core 8.5 · 109 nz/s 4.3 · 109 nz/s

8 cores 68 · 109 nz/s 4.3 · 109 nz/s

The SpMV multiplication is clearly bandwidth-bound on modern CPUs.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Sparse matrix storage

The coordinate format stores nonzeroes in arbitrary order:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


COO:

A =


V [7 1 4 1 2 3 3 2 1 1]

J [0 0 0 1 2 2 3 3 3 2]

I [3 2 0 0 1 0 1 2 3 3]

Storage requirements:
Θ(3nz),

where nz is the number of nonzeroes in A.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

SpMV multiplication

Multiplication using COO:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 1 2 3 3 2 1 1]

J [0 0 0 1 2 2 3 3 3 2]

I [3 2 0 0 1 0 1 2 3 3]

Sequential algorithm:
for k = 0 to nz − 1 do

add Vk · xJk to yIk

Is this OK?
Albert-Jan Yzelman

Shared-memory parallel computing > Applications

SpMV multiplication

Multiplication using COO:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 1 2 3 3 2 1 1]

J [0 0 0 1 2 2 3 3 3 2]

I [3 2 0 0 1 0 1 2 3 3]

#omp parallel for private(k) schedule(dynamic, 8)
for k = 0 to nz − 1 do

add Vk · xJk to yIk

Is this OK?
Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Sparse matrix storage

Assuming a row-major order of nonzeroes enables compression:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


CRS:

A =


V [4 1 3 2 3 1 2 7 1 1]

J [0 1 2 2 3 0 3 0 2 3]

Î [0 3 5 7 10]

Storage requirements:
Θ(2nz + m + 1).

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

SpMV multiplication

Multiplication using CRS:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

,

A =


V [4 1 3 2 3 1 2 7 1 1]

J [0 1 2 2 3 0 3 0 2 3]

Î [0 3 5 7 10]

Sequential kernel:
for i = 0 to m − 1 do

for k = Îi to Îi+1 − 1 do
add Vk · xJk to yi

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

SpMV multiplication

Multiplication using CRS:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

,

A =


V [4 1 3 2 3 1 2 7 1 1]

J [0 1 2 2 3 0 3 0 2 3]

Î [0 3 5 7 10]

#omp parallel for private(i, k) schedule(dynamic, 8)
for i = 0 to m − 1 do

for k = Îi to Îi+1 − 1 do
add Vk · xJk to yi

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Fine-grained parallelisation

The OpenMP SpMV multiplication algorithm was fine-grained.

typically there are more rows than processes m� p, thus

there are more tasks than processes.

The idea is that load-balancing, and scalability, are automatically
attained by run-time scheduling.

scalability is limited only by the amount of parallelism (i.e., the
algorithmic span, or the critical path length).

Requires implicit (interleaved) allocation of all data. But this
does not play well with NUMA. Alternatives:

1D SpMV: distribute A and y rowwise.

2D SpMV: distribute A, x , and y .

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Fine-grained parallelisation

The OpenMP SpMV multiplication algorithm was fine-grained.

typically there are more rows than processes m� p, thus

there are more tasks than processes.

The idea is that load-balancing, and scalability, are automatically
attained by run-time scheduling.

scalability is limited only by the amount of parallelism (i.e., the
algorithmic span, or the critical path length).

Requires implicit (interleaved) allocation of all data.

But this
does not play well with NUMA. Alternatives:

1D SpMV: distribute A and y rowwise.

2D SpMV: distribute A, x , and y .

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Fine-grained parallelisation

The OpenMP SpMV multiplication algorithm was fine-grained.

typically there are more rows than processes m� p, thus

there are more tasks than processes.

The idea is that load-balancing, and scalability, are automatically
attained by run-time scheduling.

scalability is limited only by the amount of parallelism (i.e., the
algorithmic span, or the critical path length).

Requires implicit (interleaved) allocation of all data. But this
does not play well with NUMA. Alternatives:

1D SpMV: distribute A and y rowwise.

2D SpMV: distribute A, x , and y .

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 1D SpMV

Distribute rows to processes, do local blocking and Hilbert ordering:

Allows for explicit (local) allocation of the sparse matrix A and the
output vector y ; x is implicitly distributed and interleaved.
Ref.: Yzelman and Roose, “High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector
Multiplication”, IEEE Trans. Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2013).

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 1D SpMV

The SPMD code is still very simple. Initialisation:

find which rows I ⊂ {0, . . . ,m − 1} are ours;

order nonzeroes blockwise;

impose a Hilbert-curve ordering on these blocks;

allocate and store the local matrix A(s) (in the above order) using
a compressed data structure;

allocate a local y (s) (intialise to 0).

The input vector x is kept in global memory.

Multiplication:

Execute y (s) = A(s)x .

Implemented in POSIX Threads.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 1D SpMV

The SPMD code is still very simple. Initialisation:

find which rows I ⊂ {0, . . . ,m − 1} are ours;

order nonzeroes blockwise;

impose a Hilbert-curve ordering on these blocks;

allocate and store the local matrix A(s) (in the above order) using
a compressed data structure;

allocate a local y (s) (intialise to 0).

The input vector x is kept in global memory. Multiplication:

Execute y (s) = A(s)x .

Implemented in POSIX Threads.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 2D SpMV

2D SpMV

Input vector communication:

retrieving values from x is called fan-out, and

is implemented by using bsp get.

Elements from x are communicated in a one-to-many fashion.

Output vector communication:

sending contributions to non-local y is fan-in.

Implementation happens through Bulk Synchronous Message
Passing (BSMP).

Elements from y are communicated in a many-to-one fashion.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 2D SpMV

Do sparse matrix partitioning as a pre-processing step. Then, in BSP:

1: for each aij that is local to s do
2: if xj is not local then
3: bsp get xj from remote process
4: bsp sync()

5: for each aij that is local to s do
6: add aij · xj to yi
7: if yi is not local then
8: bsp send (yi , i) to the owner of yi
9: bsp sync()

10: while bsp qsize() > 0 do
11: (α, i) = bsp move()
12: add α to yi

explicit allocation of thread-local data!

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 2D SpMV

Do sparse matrix partitioning as a pre-processing step. Then, in BSP:

1: for each aij that is local to s do
2: if xj is not local then
3: bsp get xj from remote process
4: bsp sync()
5: for each aij that is local to s do
6: add aij · xj to yi

7: if yi is not local then
8: bsp send (yi , i) to the owner of yi
9: bsp sync()

10: while bsp qsize() > 0 do
11: (α, i) = bsp move()
12: add α to yi

explicit allocation of thread-local data!

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 2D SpMV

Do sparse matrix partitioning as a pre-processing step. Then, in BSP:

1: for each aij that is local to s do
2: if xj is not local then
3: bsp get xj from remote process
4: bsp sync()
5: for each aij that is local to s do
6: add aij · xj to yi
7: if yi is not local then
8: bsp send (yi , i) to the owner of yi
9: bsp sync()

10: while bsp qsize() > 0 do
11: (α, i) = bsp move()
12: add α to yi

explicit allocation of thread-local data!

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

NUMA: Parallel 2D SpMV

Do sparse matrix partitioning as a pre-processing step. Then, in BSP:

1: for each aij that is local to s do
2: if xj is not local then
3: bsp get xj from remote process
4: bsp sync()
5: for each aij that is local to s do
6: add aij · xj to yi
7: if yi is not local then
8: bsp send (yi , i) to the owner of yi
9: bsp sync()

10: while bsp qsize() > 0 do
11: (α, i) = bsp move()
12: add α to yi

explicit allocation of thread-local data!
Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Results

0

2

4

6

8

10

FS1 ldr cg15 adap wiki

G
f
l
o
p
/
s

SpMV multiplication speeds -- DL980

OpenMP CRS
Cilk CSB

PThread 1D
BSP 2D

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘direct get’

The ‘direct get’ is a blocking one-sided get instruction.

bypasses the BSP model, but is consistent with bsp hpget.

Its intended case is within supersteps that

contain only BSP ‘get’ primitives,

guarantee source data remains unchanged.

Replacing those primitives with calls to bsp direct get allows
merging this superstep with its following one, thus

saving a synchronisation step.

Ref.: Yzelman and Bisseling, “An Object-Oriented Bulk Synchronous Parallel Library for Multicore
Programming”, Concurrency and Computation: Practice and Experience 24(5), pp. 533-553 (2012).

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘direct get’

The ‘direct get’ is a blocking one-sided get instruction.

bypasses the BSP model, but is consistent with bsp hpget.

Its intended case is within supersteps that

contain only BSP ‘get’ primitives,

guarantee source data remains unchanged.

Replacing those primitives with calls to bsp direct get allows
merging this superstep with its following one, thus

saving a synchronisation step.

Ref.: Yzelman and Bisseling, “An Object-Oriented Bulk Synchronous Parallel Library for Multicore
Programming”, Concurrency and Computation: Practice and Experience 24(5), pp. 533-553 (2012).

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘direct get’

The ‘direct get’ is a blocking one-sided get instruction.

bypasses the BSP model, but is consistent with bsp hpget.

Its intended case is within supersteps that

contain only BSP ‘get’ primitives,

guarantee source data remains unchanged.

Replacing those primitives with calls to bsp direct get allows
merging this superstep with its following one, thus

saving a synchronisation step.

Ref.: Yzelman and Bisseling, “An Object-Oriented Bulk Synchronous Parallel Library for Multicore
Programming”, Concurrency and Computation: Practice and Experience 24(5), pp. 533-553 (2012).

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘hp send’

BSP programming is transparent and safe because of

1 buffering on destination,

2 buffering on source.

This costs memory.

Alternative: high-performance (hp) variants.

bsp move; copies a message from its incoming communications
queue into local memory.

bsp hpmove; evades this by returning the user a pointer into the
queue.

bsp hpsend; delays reading source data until the message is sent.
Local source data should remain unchanged!

(bsp hpput and bsp hpget also exist.)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘hp send’

BSP programming is transparent and safe because of

1 buffering on destination,

2 buffering on source.

This costs memory. Alternative: high-performance (hp) variants.

bsp move; copies a message from its incoming communications
queue into local memory.

bsp hpmove; evades this by returning the user a pointer into the
queue.

bsp hpsend; delays reading source data until the message is sent.
Local source data should remain unchanged!

(bsp hpput and bsp hpget also exist.)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘hp send’

BSP programming is transparent and safe because of

1 buffering on destination,

2 buffering on source.

This costs memory. Alternative: high-performance (hp) variants.

bsp move; copies a message from its incoming communications
queue into local memory.

bsp hpmove; evades this by returning the user a pointer into the
queue.

bsp hpsend; delays reading source data until the message is sent.
Local source data should remain unchanged!

(bsp hpput and bsp hpget also exist.)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP ‘hp send’

BSP programming is transparent and safe because of

1 buffering on destination,

2 buffering on source.

This costs memory. Alternative: high-performance (hp) variants.

bsp move; copies a message from its incoming communications
queue into local memory.

bsp hpmove; evades this by returning the user a pointer into the
queue.

bsp hpsend; delays reading source data until the message is sent.
Local source data should remain unchanged!

(bsp hpput and bsp hpget also exist.)

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP 2D SpMV

Step 1: fan-out. Request contiguous ranges of x .

typedef std::vector< fanQuadlet >::const_iterator IT;

for(IT it = fanIn.begin(); it != fanIn.end(); ++it) {

const size_t src_P = it->remoteP;

const size_t src_ind = it->remoteStart;

const size_t dest_ind = it->localStart;

const size_t length = it->length;

bsp_direct_get(src_P,

x,

src_ind * sizeof(double),

x + dest_ind,

length * sizeof(double)

);

}

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP 2D SpMV

Step 2: local SpMV multiplication:

if(A != NULL)

A->zax(x, y); //(‘zax’ stands for z=Ax)

We use Compressed BICRS storage with the nonzeroes in row-major
order. A is a pointer to an instance of a C++ sparse matrix class.

Yzelman and Roose, “High-level strategies for parallel shared-memory sparse matrix–vector
multiplication”, IEEE TPDS, 2013 (in press); paper: http://dx.doi.org/10.1109/TPDS.2013.31,
software: http://albert-jan.yzelman.net/software/#SL

Albert-Jan Yzelman

http://dx.doi.org/10.1109/TPDS.2013.31
http://albert-jan.yzelman.net/software/#SL

Shared-memory parallel computing > Applications

BSP 2D SpMV

Step 3: fan-in (I). Send chunks of row contributions.

//the tagsize is initialised to 2*sizeof(size_t)

//fanOut[i] has the following layout:

//{ size_t remoteP, localStart, remoteStart, length; }

typedef unsigned long int size_t;

for(size_t i = 0; i < fanOut.size(); ++i) {

const size_t dest_P = fanOut[i].remoteP;

const size_t src_ind = fanOut[i].localStart;

const size_t length = fanOut[i].length;

bsp_hpsend(dest_P,

&(fanOut[i].remoteStart),

y + src_ind, length * sizeof(double));

}

bsp_sync();

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

BSP 2D SpMV

Step 4: fan-in (II). Handle incoming contributions.

size_t *msg_tag;

double *msg_payload;

while(bsp_hpmove((void**)&msg_tag,

(void**)&msg_payload

) != SIZE_MAX) {

const size_t y_dest = msg_tag[0];

const size_t length = msg_tag[1];

for(size_t i = 0; i < length; ++i)

y[y_dest + i] += msg_payload[i];

}

This finishes our implementation of the 2D SpMV multiply.

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Results – new primitives

We test the new primitives using the BSP 2D SpMV multiply:

0

10

20

30

40

50

FS1 ldr cg15 adap road wiki

S
p
e
e
d
u
p

Usefulness of the new primitives -- DL980

Non-hp
Full hp

Albert-Jan Yzelman

Shared-memory parallel computing > Applications

Summary

We have seen

hardware properties of modern shared-memory architectures,

how this affects shared-memory programming and data locality,

common pitfalls of non-BSP shared-memory programming like
data races and false sharing (in OpenMP, Cilk, and PThreads),

how shared-memory BSP programming avoids these issues, and

how to attain high performance algorithms using BSP.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Metrics for parallel efficiency

1 Shared-memory architectures and paradigms

2 Applications

3 Metrics for parallel efficiency

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Sources

Rob H. Bisseling; Parallel Scientific Computing, Oxford Press.

Grama, Gupta, Karypis, Kumar; Parallel Computing, Addison Wesley.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (Parallel overhead)

let Tseq be the time taken by a sequential algorithm;

let Tp be the time taken by a parallelisation of that algorithm,
using p processes.

Then, the parallel overhead To is given by

To = pTp − Ts .

(Effort is proportional to the number of workers multiplied with the
duration of their work, that is, equal to pTp.)

Best case: To = 0, such that Tp = Tseq/p.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (Speedup)

Let Tseq, p, and Tp be as before. Then, the speedup S is given by

S(p) = Tseq/Tp.

• Target: S = p (no overhead; To = 0).

• Best case: S > p (superlinear speedup).

• Worst case: S < 1 (slowdown).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (Speedup)

Let Tseq, p, and Tp be as before. Then, the speedup S is given by

S(p) = Tseq/Tp.

• Target: S = p (no overhead; To = 0).

• Best case: S > p (superlinear speedup).

• Worst case: S < 1 (slowdown).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

What is Tseq?

Many sequential algorithms solving the same problem.

When determining the speedup S ,
compare against the best sequential algorithm
(that is available on your architecture).

When determining the overhead To ,
compare against the most similar algorithm
(maybe even take Tseq = T1).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

What is Tseq?

Many sequential algorithms solving the same problem.

When determining the speedup S ,
compare against the best sequential algorithm
(that is available on your architecture).

When determining the overhead To ,
compare against the most similar algorithm
(maybe even take Tseq = T1).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

What is Tseq?

Many sequential algorithms solving the same problem.

When determining the speedup S ,
compare against the best sequential algorithm
(that is available on your architecture).

When determining the overhead To ,
compare against the most similar algorithm
(maybe even take Tseq = T1).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (strong scaling)

S(p) = Tseq/Tp = Ω(p) (i.e., lim supp→∞|S(p)/p| > 0)

0

1

2

3

4

5

6

1 2 3 4 5 6 7

l
o
g
2

s
p
e
e
d
u
p

log2 p

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
512k-length vector

Question: is it reasonable to expect strong scalability for solving a
problem using (good) parallel algorithms?

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (strong scaling)

S(p) = Tseq/Tp = Ω(p) (i.e., lim supp→∞|S(p)/p| > 0)

0

1

2

3

4

5

6

1 2 3 4 5 6 7

l
o
g
2

s
p
e
e
d
u
p

log2 p

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
512k-length vector
32M-length vector

Answer: not as p →∞. You cannot efficiently clean a table with 50
people, or paint a single wall with 500 painters.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (weak scaling)

S(n) = Tseq(n)/Tp(n) = Ω(1), n→∞, with p fixed.

0

20

40

60

80

100

10 12 14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

BSPlib: FFT on two different parallel machines

Perfect speedup
Lynx (distributed-memory)
HP DL980 (shared-memory)

For large enough problems, we do expect to make maximum use of our
parallel computer.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance: example

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes

This processor advertises 64 processors,

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance: example

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes

This processor advertises 64 processors, but only has 32 FPUs.

We oversubscribed!

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes
32 processes

This processor advertises 64 processors, but only has 32 FPUs.

Be careful with oversubscription! (Including hyperthreading!)

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes
32 processes

This processor advertises 64 processors, but only has 32 FPUs.

Q: would you say this algorithm scales on the Sun Ultrasparc T2?

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

A: if the speedup stabilises around 16x, then

yes,

since the relative efficiency is stable.

Definition (Parallel efficiency)

Let Tseq, p, Tp, and S as before. The parallel efficiency E equals

E =
Tseq

p
/Tp = Tseq/pTp = S/p.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

What is parallelism?

Defining Tseq and Tp enables a precise definition of how ‘parallel’
certain algorithms are:

Definition (Parallelism)

Consider a parallel algorithm that runs in Tp time. Let Tseq the time
taken by the best sequential algorithm that solves the same problem.
Then the parallelism is given by

Tseq

T∞
= lim

p→∞

Tseq

Tp
.

This kind of analysis is fundamental for fine-grained parallelisation
schemes.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. 1995. Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30, 8 (August 1995), pp. 207-216.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

If there is no overhead (To = pTp − Tseq = 0), the efficiency
E = 1; decreasing the overhead increases the efficiency.

Weak scalability asks what happens if the problem size increases...

...but what is a sensible definition of the ‘problem size’?

Consider the following applications:

inner-product calculation;

binary search;

sorting (quicksort).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

If there is no overhead (To = pTp − Tseq = 0), the efficiency
E = 1; decreasing the overhead increases the efficiency.

Weak scalability asks what happens if the problem size increases...

...but what is a sensible definition of the ‘problem size’?

Consider the following applications:

inner-product calculation;

binary search;

sorting (quicksort).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Problem Size Run-time

Inner-product Θ(n) bytes Θ(n) flops
Binary search Θ(n) bytes Θ(log2 n) comparisons
Sorting Θ(n) bytes Θ(n log2 n) swaps
FFT Θ(n) bytes Θ(n log2 n) flops

Hence the problem size is best identified by Tseq.

Question:

How should the ratio To/Tseq behave as Tseq →∞, for the
algorithm to scale in a weak sense?

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

If To/Tseq = c , with c ∈ R≥0 constant, then

pTp − Tseq

Tseq
= pS−1 − 1 = c, so

S =
p

c + 1
, which is constant when p is fixed.

Note that here, E = S/p = 1
c+1

Question:

How should the ratio To/Tseq behave as p →∞, for the
algorithm to scale in a strong sense?

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

If To/Tseq = c , with c ∈ R≥0 constant, then

pTp − Tseq

Tseq
= pS−1 − 1 = c, so

S =
p

c + 1
.

Note that here, E = S/p = 1
c+1 which is still constant!

Answer:

Exactly the same! Both strong and weak scalability are
iso-efficiency constraints (E remains constant).

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Measuring performance

Definition (iso-efficiency)

Let E be as before. Suppose To = f (Tseq, p) is a known function.
Then the iso-efficiency relation is given by

Tseq =
1

1
E − 1

f (Tseq, p).

This follows from the definition of E :

E−1 = pTp/Tseq + 1− Tseq

Tseq

= 1 +
pTp − Tseq

Tseq

= 1 +
To

Tseq
, so Tseq(E−1 − 1) = To .

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Questions

Does this scale? Yes! (It’s again an FFT)

-2

0

2

4

6

8

10

5 10 15 20 25 30

T
i
m
e

Problem size

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Questions

Does this scale? Yes! (It’s again an FFT)

-2

0

2

4

6

8

10

5 10 15 20 25 30

E
x
e
c
u
t
i
o
n

t
i
m
e

(
l
o
g
a
r
i
t
h
m
i
c
)

log2 n

Measured running time
Theoretical optimum (asymptotic)

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

Questions

Better use speedups when investigating scalability.

0

10

20

30

40

50

60

70

10 12 14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

HP DL980

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

In summary...

A BSP algorithm is scalable when

T = O(Tseq/p + p).

This considers scalability of the speedup and includes parallel
overhead.

It does not include memory scalability:

M = O(Mseq/p + p),

where M is the memory taken by one BSP process and Mseq the
memory requirement of the best sequential algorithm.

Albert-Jan Yzelman

Shared-memory parallel computing > Metrics for parallel efficiency

In summary...

A BSP algorithm is scalable when

T = O(Tseq/p + p).

This considers scalability of the speedup and includes parallel
overhead. It does not include memory scalability:

M = O(Mseq/p + p),

where M is the memory taken by one BSP process and Mseq the
memory requirement of the best sequential algorithm.

Albert-Jan Yzelman

	Shared-memory architectures and paradigms
	Applications
	Metrics for parallel efficiency

