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Data Distribution

Sparse matrix—vector multiplication

Parallel sparse matrix—vector multiplication u := Av, with
@ A sparse m X n matrix,

@ u dense m-vector,

@ v dense n-vector;

computes
n—1
uj ‘= E ajjVvj
j=0

Four supersteps:
© communicate (fan-out),
@ compute (local SpMV),
© communicate (fan-in),

@ compute (handle remote contributions).
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Data Distribution

Cartesian matrix partitioning

@ Block distribution of 59 x 59 matrix impcol_b from
Harwell-Boeing collection with 312 nonzeros, for p = 4

!"-_-.

T

"

@ F#nonzeros per processor: 126,

@ Each separate split has optimal balance (for blocks)

, 128, 30
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Data Distribution

Non-Cartesian matrix partitioning

@ Block distribution of 59 x 59 matrix impcol_b from
Harwell-Boeing collection with 312 nonzeros, for p = 4

@ Fnonzeros per processor: 76, , 80, 80

@ Each separate split has optimal balance (for blocks)
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Data Distribution

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921
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Sparse matrix partitioning

@ Sparse matrix partitioning
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Matrix distributions

Definition (Matrix distribution)
Let A an m x n sparse matrix, / = {0,1,...,m— 1}, and
J=1{0,1,...,n—1}. A distribution of this matrix over p processes is

a function
¢:1xJ—{0,1,...,p—1}.

Definition (Matrix distribution over a process grid)

Let A, I, J as before. Let M, N be integers. If the p processes are
organised in an M x N grid such that p = M - N, then a matrix
distribution over this grid is a function

¢:1xJ—{0,1,....M—1}yx{0,1,...,N—1}.
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Matrix distributions

You have seen matrix distributions before (dense LU decomposition):

Definition (2D cyclic distribution over a process grid)
Let p= MN, A, I, J as before. A 2D cyclic distribution is given by

¢(i,j) = (i mod M,j mod N).

Any distribution on a process grid can be reduced to a distribution
unrelated to a process grid, e.g., by mapping (s;,s;) to s = s;N + s;M.

Definition (2D cyclic distribution)

Let p, A, I, J as before. Assume additionally that p = M - N for integer
M, N. Then, a 2D cyclic distribution is given by

é(i,j) = (i mod M)- N+ j mod N.
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Matrix distributions

Definition (Cartesian distribution over a process grid)

Let p= MN, A, I, J as before. Let ¢; : | — {0,1,...,M — 1} and
¢j:J—{0,1,...,N —1}. Then, a 2D Cartesian distribution over an
M x N process grid has the following form:

o(i,J) = (0i(i), ¢(1))-

Again, there is no difference with the following definition:

Definition (Cartesian distribution)

Let p= MN,A, I, J, ¢i,¢; as before. A 2D Cartesian distribution has
the form

¢(i,4) = ¢i(IN + ¢;())-
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p-way sparse matrix partitioning

For sparse matrix partitioning, we identify:
@ nonzero = index pair;
@ sparse matrix = set of index pairs.

Instead of thinking about functions, we can also think about sets:

@ Define the process-local sparse matrix A
As ={(i,j): 0<i,j<n A ¢(ij)=s}

as the set of nonzeroes local to process s, 0 < s < p.
@ The sets Ap,...,Ap—1 form a p-way partitioning of

A={(i,j):0<i,j<nA aj#0}

if all parts are mutually disjoint and include all nonzeroes:

o U JAr=A and
e V0 < g,r < p we have that A, N A, = 0.
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Aims of sparse matrix partitioning

Parallel sparse matrix—vector multiplication u := Av

i ¢ o K

6
(9] |4
22
41|=16
64

u A p=2

4 supersteps: communicate, compute, communicate, compute. Aims:
© balance main computation step, and
@ minimise communication volume.

Here, the total communication volume V equals 5.
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Communication volume for partitioned matrix

m

T

V(A07A17 aA3) = V(AOaAla U A3) + V( 7A3)

e V(Ao, A1, ,As) is the total matrix—vector communication
volume corresponding to the partitioning Ag, A1, , As.

e V( ,Aj3)is the volume corresponding to the partitioning | A3
of the matrix = U As.
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Motivation of the Mondriaan splitting

Theorem. Given an m x n sparse matrix A, and mutually disjoint
subsets Ag, ..., Ak of A, where kK > 1, it holds that

V(AOa s 7Ak) = V(AOa vy Ak—2, Ak U Ak) + V(Ak—la Ak)

Meaning: k parts = k 4 1 parts can be done locally, independently, by
looking at just one split. This greedily minimises the total
communication volume.

k|

1]
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Computational load balance

@ Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!

@ A load balance criterion must therefore be satisfied:

nz(A)
< —_—.
omax nz(As) < (1+¢)

@ ¢ is specified allowable imbalance;
¢’ is imbalance achieved by partitioning.

m AIbert_Jan Yzelman



Data Distribution > Sparse matrix partitioning

BSP cost determines ¢

We now have a parameter e. What is its best value?
@ Communication cost is %, assuming balanced communication.
@ Total BSP cost is

2(1+¢€) +41.

nz(A Vi
nz(A) | Ve
p
@ To get a good trade-off between computation imbalance and
communication, we require
,nz(A) ~ @ . ’ Vg

2 .e. 2 .
€ > D ie., € 2n2(A)

@ If necessary, we adjust € and run the partitioner again.
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Bipartitioning: splitting into 2 parts

0 3001
4 1 000
A=(105 9 2 0
6 0 0 5 3
0 0589

@ The number of possible 2-way partitionings is
2rz(A)=1 — 212 — 4006. (Symmetry saved a factor of 2.)

@ Finding the best solution by enumeration, trying all possibilities
and choosing the best, works only for small problems. Thus, we
need heuristic methods.

@ Splitting by columns restricts the search space to 2"~! = 2* = 16
possibilities. An optimal column split for e = 0.1 is {0,1,2} —
{3,4}, with V = 4.
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Repeated splits

Recursive bipartitioning: starts with a complete matrix, splits it into
2 submatrices, and recurses on each submatrix (until p parts are
created). The maximum number of nonzeroes in one part is at most
(1+e)%.
@ Rows and columns in the submatrix need not be consecutive.
@ A split in the column in direction can cause empty rows to appear
in the submatrix (and vice versa).
@ The final result for processor P(s) is a local matrix As. This
matrix is a submatrix of A that corresponds to the rows and
columns of I5 x Js.

@ Removing empty rows and columns from I x Jg gives Is x Js.

Thus B B
As Cls x Js C Is x Js.
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Global view of matrix prime60
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@ Distribution of 60 x 60 matrix prime60 with 462 nonzeros, for

p = 4, obtained by Mondriaan partitioning with € = 3%.

@ Maximum number of nonzeros per processor is 117; average is

462/4=115.5. Achieved imbalance is ¢ ~ 1.3%.
@ Communication volume is: fanout 51; fanin 47; V = 98.
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Local view of matrix prime60
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@ The local submatrix I5 x Js of processor P(s) has size:
e 29 x 26 for P(0); 29 x 34 for P(1)
e 31 x 31 for ; 31 x 29 for P(3)
@ Note that /; x J; has 6 empty rows and 9 empty columns, giving
a size of 23 x 25 for 1 x 1.
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Growth of load imbalance by splitting

@ If the growth factor at each recursion level is 1 + 4, the overall
growth factor is (1 +0)9 &~ 1+ gd. Here, p = 29. This motivates
starting with gd = ¢, i.e., § = €/q.

o After the first split, one part has at least half the nonzeros, and
the other part at most half. We recompute the € values for both
halves based on the new situation.

@ The less-loaded part can increase the allowed load imbalance as
its farther from its maximum load. This results in more freedom
for the partitioner to reduce communication.
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Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, €)
input: p =29, € = allowed load imbalance, € > 0.
output:  p-way partitioning of A with imbalance < e.

if p > 1 then

maxnz .= (1 +¢)

(B, BoY) := split(A, row, £);

(BS', BSOY) := split(A, col, o)

if V(BEW, BIov) < V(BSY, B°') then
(BO> Bl) = (B(gowv B{OW);

else
(Bo, B1) == (B§®, B{);

m AIbert_Jan Yzelman
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Data Distribution > Sparse matrix partitioning

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, €)
input: p =29, ¢ = allowed load imbalance, € > 0.
output:  p-way partitioning of A with imbalance <.

if p > 1 then

.__ maxnz p _ 1. .__ maxnz p _ 1.
€ = nz(By) 2 Le = nz(B1) 2 L

(Ao, - -+, Apja—1) := MatrixPartition(Bo, 5, €o);
(Ap/2,- -, Ap—1) := MatrixPartition(By, §, €1);
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The magic split function

This clarifies the limitations of what the split can do;

@ either rowwise or columnwise splits, and
@ cannot return a bipartitioning that deviates more than € from

@ an ideal 1:1 split in terms of load-balance.

But how does it work, and how does it minimise
communication?
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Graphs and hypergraphs

To solve this multi-constraint optimisation problem, we use
hypergraphs. We first introduce graphs:

Definition (Graph)

Let V be a set of vertices and E = { {v;,v;} | v;j € V} a set of
edges. Then G = (V, E) is an undirected graph.
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Graphs and hypergraphs

Each edge e € E of a graph connects but two vertices. Hypergraphs
allow for larger connectivities.

Definition (Hypergraph)

Let V be a set of vertices and N C P(V) a set of hyperedges (also
called nets). Then H = (V, ) is a hypergraph.

Note that '3 n CV, so |n| > 2 is possible.
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Example hypergraph

@@@@/@
/

@@’/0

Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors
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From matrix to hypergraph

“Shared” columns: communication during fan-out

(=)
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Column-net model; a cut net means a shared column
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From matrix to hypergraph

“Shared” columns: communication during fan-out

B

0 N N L BN

B |

Column-net model; a cut net means a shared column
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From matrix to hypergraph

“Shared” columns: communication during fan-out

B

0 N N L BN

|

Column-net model; a cut net means a shared column
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From matrix to hypergraph

Definition (Column-net model of a sparse matrix)

Let A be an m x n sparse matrix, /| = {0,1,...,m — 1}, and
J=1{0,1,...,n—1}. Define V =1, and Vi € | define a net n; € N/
with

m={jeJ| a#0}.

Then (V,N) is the column-net model of A.
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From matrix to hypergraph

“Shared” rows: communication during fan-in

1 2 3 4 5 6 7 8

0. 0
— OO
©}(© O]
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” rows: communication during fan-in

1 2345678 I R

Row-net model; a cut net means a shared row. Definition is analogous
to that of the column-net model, but with the roles of matrix rows and
columns in reverse.
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From matrix to hypergraph

Catch all communication:

12

5

14

11

13

10
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From matrix to hypergraph

Catch all communication:

Fine-grain model; a cut net means either fan-out or fan-in.
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Matrix communication costs via hypergraphs

Do hypergraph models allow precise modeling of the communication
volumes?

Definition (Connectivity of a hyperedge)

Let # = (V,N) be a hypergraph. Let Px = {Vo,...,Vk_1} be a
k-way partitioning of 7. Then, the connectivity \; of the hyperedge
n; € N is given by

Ai=[{Vi € P | niN Vi # 0}].
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Matrix communication costs via hypergraphs

Given a hypergraph H = (V, ) and a partitioning Py of V:
@ a net is cut precisely if its connectivity is larger than 1.

Definition (Cut-net metric)

The cost of a partitioning according to the cut-net metric is given by

1, ifa>1
3 {

e otherwise.

Question: does this model the communication volume?
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Matrix communication to hypergraph costs

Answer: no. But we can:

Definition ((A — 1)-metric)
Let H = (V,N), Pk, and \; be as before. Then, the (A — 1)-metric is

given by

> (ni-1).

n;j eN

This models the communication model exactly. It counts
@ the amount of fan-out communication in the column-net model,
@ the amount of fan-in communication in the row-net model, and

@ the total amount of communication in the fine-grain model.
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Hypergraph partitioning

© Hypergraph partitioning
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General data partitioning

Let H = (V,N). A partitioning of H into p parts is a partitioning
Vo, V1,...,Vp—1 of Vinto p parts such that

(1) V=UP3Vs, and

(2) Vi,je{0,1,...,p—1}L,ViNnV; =0.

Hypergraphs models of sparse matrices, combined with hypergraph
partitioning, directly results in sparse matrix partitionings.

@ A partitioning of a column-net model of A corresponds to a
partitioning of the rows of A (a 1D row-wise distribution).
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Hypergraph partitioner

Following the example of sparse matrix partitioning:
@ Model the sparse matrix using a hypergraph.

e Partition the vertices of that hypergraph.

State-of-the-art hypergraph partitioning is a multi-level scheme:
© First coarsen the input hypergraph.

@ If the hypergraph remains too large, call this multi-level scheme
recursively; otherwise, do random partitioning or optimal
partitioning.

© Undo coarsening.

@ Refine the resulting partitioning refinement (e.g., local search).
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Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Let # = (V,N) be a hypergraph. Let Vg, V4,..., Vi1 be a k-way
partitioning of V. Let V. = {Vo,..., Vk_1}. For each n; € N, there is
a n§ € N with

nf={V; eV | ninV; #0}.

Then He = (Ve, N) is a coarsened hypergraph of .

Coarsened hypergraphs should be structurally 'similar’ to the original
hypergraph.
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Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Wanted: a measure for similarity.
@ Assume a row-net model, where
@ coarsening means combining matrix columns into ‘supercolumns’.

@ Hence, ‘similar’ columns should be combined:

Let A, m, n, and /| as before. Write AJ°-°',A‘,:(°I for the jth and kth
column of A, respectively. The structural inner-product (j, k)

[{i € 1| aj # 0 and aj # 0}|.

m AIbert_Jan Yzelman
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Data Distribution > Hypergraph partitioning

SpMV multiplication (parallel)

Step 1: hypergraph coarsening

Many similarity metrics are based on this structural inner product, and

arise by using different normalisation or scaling techniques. Consider,
for example, the row-net model:

© are matching nonzeroes from two columns on highly-occupied
rows just as important as those on more sparse rows?

@ are 50 out of 100 matching nonzeroes better than matching on 2
out of 2 nonzeros? Normalisation:

use the minimum of |A5°'| and [A![;

use the maximum;

use the cosine (v/min - max);

use the Jaccard metric (min+max— (j, k) 4).
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Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

A valid coarsening strategy is based on matching:
o Let V = {A5° Al ... Al 1
@ Let the edge e,-(A‘,?°',Af°') € E have weight w(i) equal to the
similarity measure of the two columns.

G = (V, E,w) forms a fully connected edge-weighted graph.

Let M be a weighted maximum matching of G.

coarsen according to M
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Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Merging similar columns in pairs to reduce the problem size (repeat
this until the problem is small):

F . ] . T M1 P
1 - 11 1 11
1111 1 11 1
111 : merge | 1 1
11 = 1
11 - - 1
: 11 1
i 11 1 1] -1 1]
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Partitioning: HKLFM

Step 4: refinement

After uncoarsening, reduce communication through local search

methods.
e E.g., Kernighan-Lin, with improved implementation by Fiduccia

and Mattheyses (KLFM).
@ The cost function to minimise during local search is the
(A — 1)-metric.
@ Moves that violate the load-balance criterion are marked invalid.
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Partitioning: HKLFM

vertices

0123456

aOhWN=O

nets

Sketch of refinement using the row-net model:

@ HKLFM tries to improve initial uncoarsened partitioning by
moving vertices (columns) to the other part.

@ The vertex with the largest gain (communication reduction) is
moved. If the best possible move increases the communication, it
is still accepted.

@ Several passes are carried out. Vertices are never moved twice in a
pass. Best solution encountered is kept.
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Partitioning

References:

Catalyiirek & Aykanat, Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication, IEEE Transactions on Parallel
Distributed Systems 10 (1999), pp. 673-693

Kernighan & Lin, An efficient heuristic procedure for partitioning graphs, Bell
Systems Technical Journal 49 (1970): pp. 291-307

Fiduccia & Mattheyses, A linear-time heuristic for improving network
partitions, Proceedings of the 19th IEEE Design Automation Conference
(1982), pp. 175-181.

Example software: Mondriaan (Bisseling et al., UU), Zoltan (Devine et al.,
Sandia), PaToH (Catalyiirek & Aykanat, OSU), and Scotch (Pellegrini,
Bordelais).
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Communication volume and time: 1D vs. 2D

(Vastenhouw and Bisseling, SIAM Review 47 (2005) pp.67-95.)
Volume (in data words) Time (in ms)
1D row 1D col 2D 1D row 1D col 2D
1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 1406 1222 1214
8 90919 96038 49120 6.49 6.35 6.62
16 177347 155604 75384 5.22 422 420
32 297658 227368 106563 4.32 4.08 3.23
Term-by-document matrix tbdlinux:
112,757 rows; 20,167 columns; 2,157,675 nonzeros.
Timings obtained on an SGI Origin 3800.
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Summary

@ We have derived a recursive partitioning algorithm for a sparse
matrix. It is greedy (minimises splits separately without looking
ahead).

@ The result is a p-way matrix partitioning Ao, ..., Ap_1.

@ We used hypergraphs H = (V, ), which generalise the notion of
a graph.

@ Multilevel methods for hypergraph partitioning find good splits of
a sparse matrix in reasonable time.

@ The sparse matrix partitioner introduced here optimises
communication volume. Other possible metrics:

e h-relations, or
e number of messages.

@ In the book, the vector distribution is used to balance
communication, i.e., uses the minimised communication volume
to get minimised h-relations.
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