Data Distribution

Albert-Jan Yzelman

7th of November, 2014

Derived from the book slides by Prof. dr. Rob H. Bisseling, found at www.math.uu.nl/people/bisseling/Education/PA/pa.html

Parallel sparse matrix-vector multiplication $\mathbf{u} := A\mathbf{v}$, with

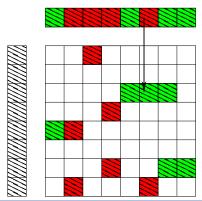
- A sparse $m \times n$ matrix,
- **u** dense *m*-vector,
- v dense n-vector;

computes

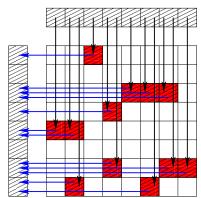
$$u_i := \sum_{j=0}^{n-1} a_{ij} v_j$$

- communicate (fan-out),
- compute (local SpMV),
- communicate (fan-in),
- 4 compute (handle remote contributions).

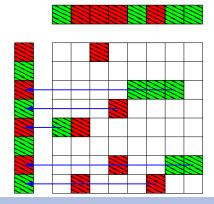
- fan-out,
- local SpMV,
- fan-in,
- 4 handle remote contributions.



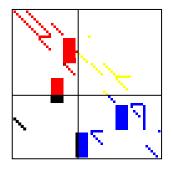
- fan-out,
- local SpMV,
- fan-in,
- 4 handle remote contributions.



- fan-out,
- local SpMV,
- fan-in,
- handle remote contributions.

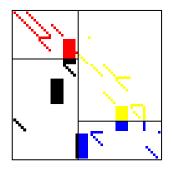


Cartesian matrix partitioning



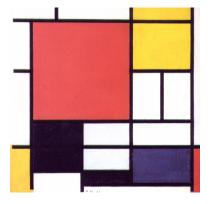
- Block distribution of 59×59 matrix impcol_b from Harwell-Boeing collection with 312 nonzeros, for p = 4
- #nonzeros per processor: 126, 28, 128, 30
- Each separate split has optimal balance (for blocks)

Non-Cartesian matrix partitioning



- Block distribution of 59×59 matrix impcol_b from Harwell-Boeing collection with 312 nonzeros, for p = 4
- #nonzeros per processor: 76, 76, 80, 80
- Each separate split has optimal balance (for blocks)

Composition with Red, Yellow, Blue and Black



Piet Mondriaan 1921

Sparse matrix partitioning

Sparse matrix partitioning

2 Hypergraph partitioning

Matrix distributions

Definition (Matrix distribution)

Let A an $m \times n$ sparse matrix, $I = \{0, 1, ..., m-1\}$, and $J = \{0, 1, ..., n-1\}$. A distribution of this matrix over p processes is a function

$$\phi: I \times J \to \{0, 1, \dots, p-1\}.$$

Definition (Matrix distribution over a process grid)

Let A, I, J as before. Let M, N be integers. If the p processes are organised in an $M \times N$ grid such that $p = M \cdot N$, then a matrix distribution over this grid is a function

$$\phi: I \times J \to \{0, 1, \dots, M-1\} \times \{0, 1, \dots, N-1\}.$$

Matrix distributions

You have seen matrix distributions before (dense LU decomposition):

Definition (2D cyclic distribution over a process grid)

Let p = MN, A, I, J as before. A **2D cyclic distribution** is given by

$$\phi(i,j) = (i \mod M, j \mod N).$$

Any distribution on a process grid can be reduced to a distribution unrelated to a process grid, e.g., by mapping (s_i, s_j) to $s = s_i N + s_j M$.

Definition (2D cyclic distribution)

Let p, A, I, J as before. Assume additionally that $p = M \cdot N$ for integer M, N. Then, a 2D cyclic distribution is given by

$$\phi(i,j) = (i \mod M) \cdot N + j \mod N.$$

Matrix distributions

Definition (Cartesian distribution over a process grid)

Let p = MN, A, I, J as before. Let $\phi_i : I \to \{0, 1, \dots, M-1\}$ and $\phi_j : J \to \{0, 1, \dots, N-1\}$. Then, a 2D Cartesian distribution over an $M \times N$ process grid has the following form:

$$\phi(i,j)=(\phi_i(i),\phi_j(i)).$$

Again, there is no difference with the following definition:

Definition (Cartesian distribution)

Let $p = MN, A, I, J, \phi_i, \phi_j$ as before. A 2D Cartesian distribution has the form

$$\phi(i,j) = \phi_i(i)N + \phi_j(j).$$

p-way sparse matrix partitioning

For sparse matrix partitioning, we identify:

- nonzero ≡ index pair;
- sparse matrix ≡ set of index pairs.

Instead of thinking about functions, we can also think about sets:

ullet Define the **process-local sparse matrix** A_s

$$A_s = \{(i,j) : 0 \le i,j < n \land \phi(i,j) = s\}$$

as the set of nonzeroes local to process s, $0 \le s < p$.

• The sets A_0, \ldots, A_{p-1} form a *p*-way partitioning of

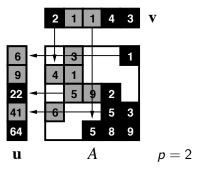
$$A = \{(i,j) : 0 \le i, j < n \land a_{ij} \ne 0\}$$

if all parts are mutually disjoint and include all nonzeroes:

- $\bullet \cup_{k=0}^{p-1} A_k = A$, and
- $\forall 0 \le q, r < p$ we have that $A_q \cap A_r = \emptyset$.

Aims of sparse matrix partitioning

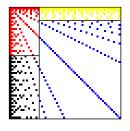
Parallel sparse matrix–vector multiplication $\mathbf{u} := A\mathbf{v}$



- 4 supersteps: communicate, compute, communicate, compute. Aims:
 - balance main computation step, and
 - minimise communication volume.

Here, the total communication volume V equals 5.

Communication volume for partitioned matrix



$$V(A_0, A_1, A_2, A_3) = V(A_0, A_1, A_2 \cup A_3) + V(A_2, A_3)$$

- $V(A_0, A_1, A_2, A_3)$ is the total matrix–vector communication volume corresponding to the partitioning A_0, A_1, A_2, A_3 .
- $V(A_2, A_3)$ is the volume corresponding to the partitioning A_2, A_3 of the matrix $A_2 \cup A_3$.

Motivation of the Mondriaan splitting

Theorem. Given an $m \times n$ sparse matrix A, and mutually disjoint subsets A_0, \ldots, A_k of A, where $k \ge 1$, it holds that

$$V(A_0,\ldots,A_k) = V(A_0,\ldots,A_{k-2},A_{k-1}\cup A_k) + V(A_{k-1},A_k).$$

Meaning: k parts $\Rightarrow k+1$ parts can be done locally, independently, by looking at just one split. This greedily minimises the total communication volume.

Computational load balance

• Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!

• A load balance criterion must therefore be satisfied:

$$\max_{0 \le s < p} nz(A_s) \le (1+\epsilon) \frac{nz(A)}{p}.$$

ullet is specified allowable imbalance; ϵ' is imbalance achieved by partitioning.

BSP cost determines ϵ

We now have a parameter ϵ . What is its best value?

- Communication cost is $\frac{Vg}{p}$, assuming balanced communication.
- Total BSP cost is

$$2(1+\epsilon')\frac{nz(A)}{p}+\frac{Vg}{p}+4I.$$

 To get a good trade-off between computation imbalance and communication, we require

$$2\epsilon' \frac{nz(A)}{p} \approx \frac{Vg}{p}$$
, i.e., $\epsilon' \approx \frac{Vg}{2nz(A)}$.

ullet If necessary, we adjust ϵ and run the partitioner again.

Bipartitioning: splitting into 2 parts

$$A = \left[\begin{array}{ccccc} 0 & 3 & 0 & 0 & 1 \\ 4 & 1 & 0 & 0 & 0 \\ 0 & 5 & 9 & 2 & 0 \\ 6 & 0 & 0 & 5 & 3 \\ 0 & 0 & 5 & 8 & 9 \end{array} \right].$$

- The number of possible 2-way partitionings is $2^{nz(A)-1} = 2^{12} = 4096$. (Symmetry saved a factor of 2.)
- Finding the best solution by enumeration, trying all possibilities and choosing the best, works only for small problems. Thus, we need heuristic methods.
- Splitting by columns restricts the search space to $2^{n-1} = 2^4 = 16$ possibilities. An optimal column split for $\epsilon = 0.1$ is $\{0, 1, 2\}$ $\{3, 4\}$, with V = 4.

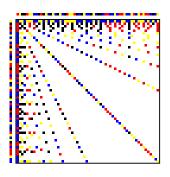
Repeated splits

Recursive bipartitioning: starts with a complete matrix, splits it into 2 submatrices, and recurses on each submatrix (until p parts are created). The maximum number of nonzeroes in one part is at most $(1+\epsilon)^{nz}_2$. The 1:1 load balance ratio might shift if $p \neq 2^q$!

- Rows and columns in the submatrix need not be consecutive.
- A split in the column in direction can cause empty rows to appear in the submatrix (and vice versa).
- The final result for processor P(s) is a local matrix A_s . This matrix is a submatrix of A that corresponds to the rows and columns of $\bar{I}_s \times \bar{J}_s$.
- Removing empty rows and columns from $\bar{I}_s \times \bar{J}_s$ gives $I_s \times J_s$. Thus

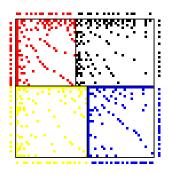
$$A_s \subset I_s \times J_s \subset \overline{I}_s \times \overline{J}_s$$
.

Global view of matrix prime60



- Distribution of 60 \times 60 matrix prime60 with 462 nonzeros, for p=4, obtained by Mondriaan partitioning with $\epsilon=3\%$.
- Maximum number of nonzeros per processor is 117; average is 462/4=115.5. Achieved imbalance is $\epsilon' \approx 1.3\%$.
- Communication volume is: fanout 51; fanin 47; V = 98.

Local view of matrix prime60



- The local submatrix $\bar{I}_s \times \bar{J}_s$ of processor P(s) has size:
 - 29×26 for P(0); 29×34 for P(1)
 - 31×31 for P(2); 31×29 for P(3)
- Note that $\bar{l}_1 \times \bar{J}_1$ has 6 empty rows and 9 empty columns, giving a size of 23 \times 25 for $l_1 \times J_1$.

Growth of load imbalance by splitting

- If the growth factor at each recursion level is $1 + \delta$, the overall growth factor is $(1 + \delta)^q \approx 1 + q\delta$. Here, $p = 2^q$. This motivates starting with $q\delta = \epsilon$, i.e., $\delta = \epsilon/q$.
- ullet After the first split, one part has at least half the nonzeros, and the other part at most half. We recompute the ϵ values for both halves based on the new situation.
- The less-loaded part can increase the allowed load imbalance as its farther from its maximum load. This results in more freedom for the partitioner to reduce communication.

Recursive, adaptive bipartitioning algorithm

```
MatrixPartition(A, p, \epsilon)
input:
                   p=2^q, \epsilon= allowed load imbalance, \epsilon>0.
output: p-way partitioning of A with imbalance < \epsilon.
if p > 1 then
          maxnz := (1 + \epsilon) \frac{nz(A)}{r};
          (B_0^{\text{row}}, B_1^{\text{row}}) := split(A, \text{row}, \frac{\epsilon}{a});
          (B_0^{\mathrm{col}}, B_1^{\mathrm{col}}) := split(A, \mathrm{col}, \frac{\epsilon}{a});
         if V(B_0^{\text{row}}, B_1^{\text{row}}) \leq V(B_0^{\text{col}}, B_1^{\text{col}}) then
                    (B_0, B_1) := (B_0^{\text{row}}, B_1^{\text{row}}):
          else
                    (B_0, B_1) := (B_0^{\text{col}}, B_1^{\text{col}}):
```

Recursive, adaptive bipartitioning algorithm

```
MatrixPartition(A, p, \epsilon)
                 p=2^q, \epsilon= allowed load imbalance, \epsilon>0.
input:
output: p-way partitioning of A with imbalance < \epsilon.
if p > 1 then
        \epsilon_0 := \frac{\max nz}{nz(B_0)} \cdot \frac{p}{2} - 1; \ \epsilon_1 := \frac{\max nz}{nz(B_1)} \cdot \frac{p}{2} - 1;
         (A_0, \ldots, A_{p/2-1}) := \text{MatrixPartition}(B_0, \frac{p}{2}, \epsilon_0);
         (A_{p/2},\ldots,A_{p-1}):=\operatorname{MatrixPartition}(B_1,\frac{p}{2},\epsilon_1);
else
         A_0 := A:
```

The magic split function

This clarifies the limitations of what the split can do;

- either rowwise or columnwise splits, and
- ullet cannot return a bipartitioning that deviates more than ϵ from
- an ideal 1:1 split in terms of load-balance.

But how does it work, and how does it minimise communication?

Graphs and hypergraphs

To solve this multi-constraint optimisation problem, we use **hypergraphs**. We first introduce graphs:

Definition (Graph)

Let V be a set of **vertices** and $E = \{ \{v_i, v_j\} \mid v_{i,j} \in V \}$ a set of **edges**. Then G = (V, E) is an **undirected graph**.

Graphs and hypergraphs

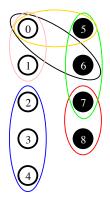
Each edge $e \in E$ of a graph connects but two vertices. Hypergraphs allow for **larger connectivities**.

Definition (Hypergraph)

Let $\mathcal V$ be a set of vertices and $\mathcal N\subseteq\mathcal P(\mathcal V)$ a set of **hyperedges** (also called **nets**). Then $\mathcal H=(\mathcal V,\mathcal N)$ is a hypergraph.

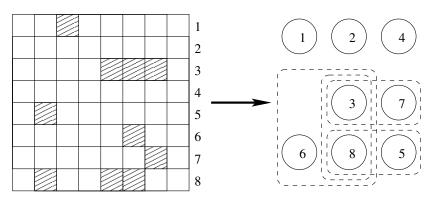
Note that $\mathcal{N}\ni n\subseteq\mathcal{V}$, so |n|>2 is possible.

Example hypergraph



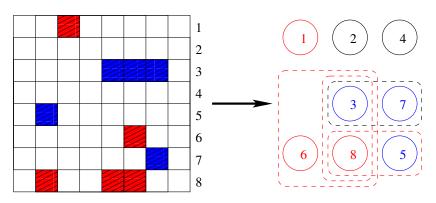
Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned over 2 processors

"Shared" columns: communication during fan-out



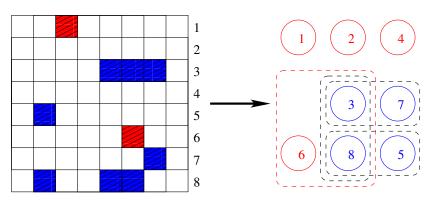
Column-net model; a cut net means a shared column

"Shared" columns: communication during fan-out



Column-net model; a cut net means a shared column

"Shared" columns: communication during fan-out



Column-net model; a cut net means a shared column

Definition (Column-net model of a sparse matrix)

Let A be an $m \times n$ sparse matrix, $I = \{0, 1, \ldots, m-1\}$, and $J = \{0, 1, \ldots, n-1\}$. Define $\mathcal{V} = I$, and $\forall i \in I$ define a net $n_i \in \mathcal{N}$ with

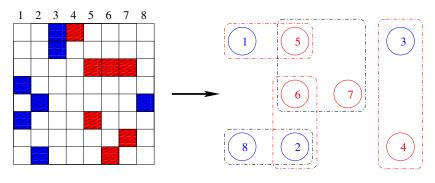
$$n_i = \{j \in J \mid a_{ij} \neq 0\}.$$

Then $(\mathcal{V}, \mathcal{N})$ is the **column-net model** of A.

"Shared" rows: communication during fan-in



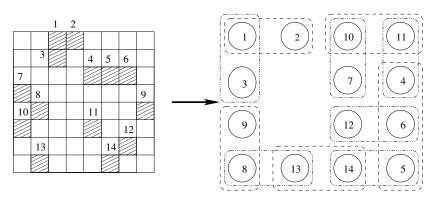
"Shared" rows: communication during fan-in



Row-net model; a cut net means a shared row. Definition is analogous to that of the column-net model, but with the roles of matrix rows and columns in reverse.

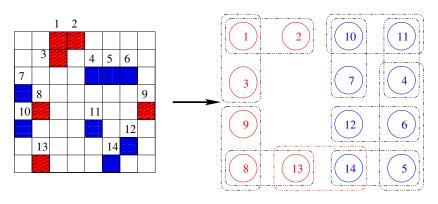
KU LEUVEN

Catch all communication:



From matrix to hypergraph

Catch all communication:



Fine-grain model; a cut net means either fan-out or fan-in.

Matrix communication costs via hypergraphs

Do hypergraph models allow precise modeling of the communication volumes?

Definition (Connectivity of a hyperedge)

Let $\mathcal{H}=(\mathcal{V},\mathcal{N})$ be a hypergraph. Let $\mathcal{P}_k=\{\mathcal{V}_0,\ldots,\mathcal{V}_{k-1}\}$ be a k-way partitioning of \mathcal{H} . Then, the connectivity λ_i of the hyperedge $n_i\in\mathcal{N}$ is given by

$$\lambda_i = |\{\mathcal{V}_i \in \mathcal{P}_k \mid n_i \cap \mathcal{V}_i \neq \emptyset\}|.$$

Matrix communication costs via hypergraphs

Given a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N})$ and a partitioning \mathcal{P}_k of \mathcal{V} :

• a net is **cut** precisely if its connectivity is larger than 1.

Definition (Cut-net metric)

The cost of a partitioning according to the cut-net metric is given by

$$\sum_{n_i \in \mathcal{N}} \begin{cases} 1, & \text{if } \lambda_i > 1 \\ 0, & \text{otherwise.} \end{cases}$$

Question: does this model the communication volume?

Matrix communication to hypergraph costs

Answer: no. But we can:

Definition $((\lambda - 1)$ -metric)

Let $\mathcal{H}=(\mathcal{V},\mathcal{N}),~\mathcal{P}_k$, and λ_i be as before. Then, the $(\lambda-1)$ -metric is given by

$$\sum_{n_i\in\mathcal{N}}(\lambda_i-1).$$

This models the communication model exactly. It counts

- the amount of fan-out communication in the column-net model,
- the amount of fan-in communication in the row-net model, and
- the total amount of communication in the fine-grain model.

Hypergraph partitioning

Sparse matrix partitioning

2 Hypergraph partitioning

General data partitioning

Definition (Hypergraph partitioning)

Let $\mathcal{H} = (\mathcal{V}, \mathcal{N})$. A **partitioning** of \mathcal{H} into p parts is a partitioning $\mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_{p-1}$ of \mathcal{V} into p parts such that

(1)
$$\mathcal{V} = \cup_{s=0}^{p-1} \mathcal{V}_s$$
, and

(2)
$$\forall i,j \in \{0,1,\ldots,p-1\}, \mathcal{V}_i \cap \mathcal{V}_j = \emptyset.$$

Hypergraphs models of sparse matrices, combined with hypergraph partitioning, directly results in sparse matrix partitionings.

• A partitioning of a column-net model of A corresponds to a partitioning of the rows of A (a 1D row-wise distribution).

Hypergraph partitioner

Following the example of sparse matrix partitioning:

- Model the sparse matrix using a hypergraph.
- Partition the vertices of that hypergraph.

State-of-the-art hypergraph partitioning is a multi-level scheme:

- First coarsen the input hypergraph.
- If the hypergraph remains too large, call this multi-level scheme recursively; otherwise, do random partitioning or optimal partitioning.
- Undo coarsening.
- Refine the resulting partitioning refinement (e.g., local search).

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Definition (Coarsened hypergraph)

Let $\mathcal{H}=(\mathcal{V},\mathcal{N})$ be a hypergraph. Let V_0,V_1,\ldots,V_{k-1} be a k-way partitioning of \mathcal{V} . Let $\mathcal{V}_c=\{V_0,\ldots,V_{k-1}\}$. For each $n_i\in\mathcal{N}$, there is a $n_i^c\in\mathcal{N}_c$ with

$$n_i^c = \{V_i \in \mathcal{V}_c \mid n_i \cap V_i \neq \emptyset\}.$$

Then $\mathcal{H}_c = (\mathcal{V}_c, \mathcal{N}_c)$ is a coarsened hypergraph of $\mathcal{H}.$

Coarsened hypergraphs should be structurally 'similar' to the original hypergraph.

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Wanted: a measure for similarity.

- Assume a row-net model, where
- coarsening means combining matrix columns into 'supercolumns'.
- Hence, 'similar' columns should be combined:

Definition (structural inner product)

Let A, m, n, and I as before. Write $A_j^{\rm col}$, $A_k^{\rm col}$ for the jth and kth column of A, respectively. The **structural inner-product** $\langle j,k\rangle_{I_A}$ is

$$|\{i \in I \mid a_{ij} \neq 0 \text{ and } a_{ik} \neq 0\}|.$$

Step 1: hypergraph coarsening

Many similarity metrics are based on this structural inner product, and arise by using different normalisation or scaling techniques. Consider, for example, the row-net model:

- are matching nonzeroes from two columns on highly-occupied rows just as important as those on more sparse rows?
- are 50 out of 100 matching nonzeroes better than matching on 2 out of 2 nonzeros? Normalisation:
 - use the minimum of $|A_i^{col}|$ and $|A_k^{col}|$;
 - use the maximum;
 - **3** use the cosine $(\sqrt{\min \cdot \max})$;
 - **4** use the Jaccard metric (min + max $-\langle j, k \rangle_A$).

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

A valid coarsening strategy is based on matching:

- Let $V = \{A_0^{\text{col}}, A_1^{\text{col}}, \dots, A_{n-1}^{\text{col}}\}.$
- Let the edge $e_i(A_i^{\text{col}}, A_j^{\text{col}}) \in E$ have weight w(i) equal to the similarity measure of the two columns.
- G = (V, E, w) forms a fully connected edge-weighted graph.
- Let M be a weighted maximum matching of G.
- ullet coarsen according to M

Step 1: hypergraph coarsening

Merging similar columns in pairs to reduce the problem size (repeat this until the problem is small):

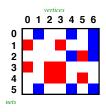
```
 \begin{bmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & 1 & \cdot & 1 & \cdot \\ 1 & 1 & 1 & 1 & \cdot & \cdot & \cdot & 1 \\ \cdot & 1 & 1 & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & 1 & 1 \\ \end{bmatrix} \xrightarrow{\text{merge}} \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & 1 & 1 \\ 1 & 1 & \cdot & 1 \\ 1 & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix}
```

Step 4: refinement

After uncoarsening, reduce communication through local search methods.

- E.g., Kernighan-Lin, with improved implementation by Fiduccia and Mattheyses (KLFM).
- ullet The cost function to minimise during local search is the $(\lambda-1)$ -metric.
- Moves that violate the load-balance criterion are marked invalid.

Partitioning: HKLFM



Sketch of refinement using the row-net model:

- HKLFM tries to improve initial uncoarsened partitioning by moving vertices (columns) to the other part.
- The vertex with the largest gain (communication reduction) is moved. If the best possible move increases the communication, it is still accepted.
- Several passes are carried out. Vertices are never moved twice in a pass. Best solution encountered is kept.

KU LEUVEN

Partitioning

References:

Catalyürek & Aykanat, *Hypergraph-partitioning-based decomposition for* parallel sparse-matrix vector multiplication, IEEE Transactions on Parallel Distributed Systems 10 (1999), pp. 673-693

Kernighan & Lin, An efficient heuristic procedure for partitioning graphs, Bell Systems Technical Journal 49 (1970): pp. 291-307

Fiduccia & Mattheyses, *A linear-time heuristic for improving network partitions*, Proceedings of the 19th IEEE Design Automation Conference (1982), pp. 175-181.

Example software: Mondriaan (Bisseling et al., UU), Zoltan (Devine et al., Sandia), PaToH (Çatalyürek & Aykanat, OSU), and Scotch (Pellegrini, Bordelais).

Communication volume and time: 1D vs. 2D

(Vastenhouw and Bisseling, SIAM Review 47 (2005) pp.67-95.)

· p	Volume (in data words)			Time (in ms)		
ρ	1D row	1D col	2D	1D row	1D col	2D
1	0	0	0	67.55	67.61	74.15
2	15764	24463	15764	36.65	32.26	32.16
4	42652	54262	30444	14.06	12.22	12.14
8	90919	96038	49120	6.49	6.35	6.62
16	177347	155604	75884	5.22	4.22	4.20
32	297658	227368	106563	4.32	4.08	3.23

Term-by-document matrix tbdlinux:

112,757 rows; 20,167 columns; 2,157,675 nonzeros.

Timings obtained on an SGI Origin 3800.

Summary

- We have derived a recursive partitioning algorithm for a sparse matrix. It is greedy (minimises splits separately without looking ahead).
- The result is a p-way matrix partitioning A_0, \ldots, A_{p-1} .
- We used hypergraphs $\mathcal{H}=(\mathcal{V},\mathcal{N})$, which generalise the notion of a graph.
- Multilevel methods for hypergraph partitioning find good splits of a sparse matrix in reasonable time.
- The sparse matrix partitioner introduced here optimises communication **volume**. Other possible metrics:
 - h-relations, or
 - number of messages.
- In the book, the vector distribution is used to balance communication, i.e., uses the minimised communication volume to get minimised h-relations.