
Alternative parallel programming paradigms and frameworks

Alternative parallel programming paradigms and
frameworks

Albert-Jan Yzelman

10th of December, 2014

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Flynn’s Taxonomy

Single Data Multiple Data
Single Instruction SISD SIMD

Multiple Instruction MISD MIMD

Examples:

classical von Neumann computing; program and data streamed to
processor.

vectorisation (MMX/AVX/. . .), vector computers.

shared-memory programming, i.e.,
ccNUMA architectures,
symmetric multiprocessors,
non-cc NUMA (scratchpad memory, Cell Broadband Engine, . . .)

distributed-memory programming (classical, grids, clouds, . . .).

hybrid parallel programming.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Programming models

A class on parallel computing focuses on MIMD.

Two flavours of MIMD:

Single Program, Multiple Data (SPMD), and
Multiple Program, Multiple Data (MPMD).

Both SPMD and MPMD programs can be in lockstep.

Examples:

GPUs often use stream-based programming. This is SPMD and
employs groupwise lockstepping.

Past and future architectures do allow and even promote MPMD
programming: e.g., the Cell BE and the Epiphany archtictures.

BSP is an SPMD paradigm.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Common HW/OS capabilities

The more common hardware and operating systems support for parallel
computation include:

thread and process execution and control:

spawn,
abort,
wait for,
exit.

mutexes (locks),

synchronisation barriers,

transactional memory

readily available: atomics,
more complex technologies: speculative threading.

In-software equivalents of the above are possible (for instance, the use
of spin-locks instead of barriers).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Common design patterns

Often-used techniques for writing parallel software:

task-based: identify independently executable work and group
them into tasks, then schedule these dynamically. This may
include modeling inter-task dependencies in terms of input- and
output-data. In the extreme: workflows.

divide-and-conquer: concurrently conquer a divided problem.

geometric decomposition: often used in spatial computational
science simulations (e.g., mesh-based computations).

pipelining: like task-based parallelism, but with
serial-dependencies; this pattern sometimes appears in a
subsection of a parallel program.

master/worker: one process assignes work others.

fork/join: after a fork a new process appears, starting at the same
part of the program.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based parallelisation

A task has three states: (1) wait for data, (2) ready, and (3) done. If
Ti is the set of tasks in state i , then a simple scheduler runs a loop
similar to:

While T2 is empty, wait.

Remove a task t from T2.

Execute t.

For all tasks s ∈ T1, if s waits on t,

let s know t is done, and

if s has no further waits, remove it from T1 and add it to T2.

Insert t into T3.

This requires thread-safe datastructures (concurrent removals,
insertions). The orange statement is critical to performance.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

Remark: the sequential running time Tseq =
∑

v∈V w(v).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

Remark: let P ⊂ V be a path from r to a leaf vertex x s.t.

∀v ∈ V , @(x , v) ∈ E ,

then w(P) =
∑

v∈P w(v) is the path weight. The weighted critical
path Pc has for all other possible paths P that w(Pc) ≥ w(P).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p →∞, the minimum amount of computation remains
w(Pc), always. The parallel compute time Tp is bounded by

Tp = O(w(Pc)/r + Tseq/p),

with r the computation speed of a single worker.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p →∞, the minimum amount of computation remains
w(Pc), always. The parallel compute time Tp is bounded by

Tp = O(w(Pc)/r + Tseq/p),

with r the computation speed of a single worker.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Fine-grained parallel computing

Decompose a problem into many small tasks, that run concurrently
(as much as possible). A run-time scheduler assigns tasks to
processes.

What is small? Grain-size.

Performance model? Parallelism and span.

Algorithms can be implemented as graphs either explicitly or
implicitly:

Intel: Threading Building Blocks (TBB),

OpenMP (remember the shared-memory SpMV example),

Intel / MIT / Cilk Arts: Cilk,

Google: Pregel,

. . .

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primitives:
1 (binary) fork, and
2 (binary) join.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primitives:
1 (binary) fork, and
2 (binary) join.

Example: calculate x4 from xn = xn−2 + xn−1 given x0 = x1 = 1:

int f(int n) {
if(n == 0 —— n == 1) return 1;
int x1 = cilk spawn f(n-1); //fork
int x2 = cilk spawn f(n-2); //fork
cilk sync; //join
return x1 + x2;

}
int main() {

int x4 = f(4);
printf(”x 4 = %d\n”, &x4);
return 0;

}
Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primitives:
1 (binary) fork, and
2 (binary) join.

Definition (Overhead)

The overhead of parallel computation is any extra effort expended
over the original amount of work Tseq

To = pTp − Tseq.

The parallel computation time can be expressed in To :

Tp =
Tseq + To

p
.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primitives:
1 (binary) fork, and
2 (binary) join.

Spawned function calls are assigned to one of the available processes
by the Cilk run time scheduler.

The Cilk scheduler guarantees, under some assumptions on the
determinism of the algorithm, that

To = O(pT∞),

resulting in a parallel run-time Tp bounded by

O(T1/p + T∞).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Coarse-grained parallisation: communicating processes

Popular ways for inter-process communication:

message passing (MPI, BSP),

direct remote memory access (BSP, MPI),

collectives (MPI),

global arrays / global address space (GA/PGAS/UPC).

These approaches can be

Blocking or non-blocking,

One-sided or two-sided (and up to p-sided).

Classically,

MPI is a two-sided blocking message passing (send/receive pairs)
paradigm, while

BSP is a one-sided non-blocking direct remote memory access
paradigm.

Naturally, both paradigms have evolved beyond this strict classification.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

History of MPI

1994: Message Passing Interface (MPI) became available as a
standard interface for parallel programming in C and Fortran 77.

Designed by a committee called the MPI Forum consisting of
computer vendors, users, computer scientists.

Based on sending and receiving messages by a pair of processors.
One processor sends; the other receives. Both are active in the
communication.

Underlying model: communicating sequential processes (CSP)
proposed by Hoare in 1978.

MPI itself is not a model. BSP is a model.

MPI is an interface for a communication library, like BSPlib.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Recent history of MPI

1997: MPI-2 standard defined. Added functionality:

one-sided communications (put, get, sum)
dynamic process management
parallel input/output
languages C++ and Fortran 90

2003: first full implementations of MPI-2 arrive, namely MPICH
(Argonne National Labs) and LAM/MPI (Indiana University).

2004–: Open MPI. Open-source project, merges 3 MPI
implementations: LAM/MPI, FT-MPI (University of Tennessee),
LA-MPI (Los Alamos National Laboratory).

Many users still use MPI-1, particularly its latest version MPI-1.3.

2012 MPI-3. Major update. More one-sided communications,
nonblocking collective communications.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Why use MPI?

It is available on almost every parallel computer, often in an
optimised version provided by the vendor. Thus MPI is the most
portable communication library.

Many libraries are available written in MPI, such as the numerical
linear algebra library ScaLAPACK.

You can program in many different ways using MPI, since it is
highly flexible.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Why not?

It is huge: the full standard has about 300 primitives. The user
has to make many choices.

It is not so easy to learn. Usually one starts with a small subset of
MPI. Full knowledge of the standard is hard to attain.

The one-sided communications of MPI-2 and MPI-3 are rather
complicated. If you like one-sided communications you may want
to consider BSPlib as an alternative.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Ping pong benchmark

The cost of communicating a message of length n is

T (n) = tstartup + ntword.

Here, tstartup is a fixed startup cost and tword is the additional
cost per data word communicated.

Communication of a message (in its blocking form) synchronises
the sender and receiver. This is pairwise synchronisation, not
global.

Parameters tstartup and tword are usually measured by sending a
message from one processor to another and back: ping pong.

The message length is varied in the ping pong benchmark.

There is only one ping pong ball on the table.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Send and receive primitives

if (s==2)

MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)

MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

Processor P(2) sends 5 doubles to P(3).

P(2) reads the data from its array x. After transmission, P(3)
writes these data into its array y.

The integer ‘0’ is a tag for distinguishing between different
messages from the same source processor to the same destination
processor.

MPI Send and MPI Recv are of fundamental importance in MPI.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Communicator: the whole processor world

if (s==2)

MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)

MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

A communicator is a subset of processors forming a
communication environment with its own processor numbering.

MPI COMM WORLD is the communicator consisting of all the
processors.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Send/Receive considered harmful

1968: Edsger Dijkstra, guru of structured programming,
considered the Go To statement harmful in sequential
programming.

Go To was widely used in Fortran programming in those days. It
caused spaghetti code: if you pull something here, something
unexpected moves there.

No one dares to use Go To statements any more.

Send/Receive in parallel programming has the same dangers, and
even more, since several diners eat from the same plate.

Pull here, pull there, nothing moves: deadlock.

Deadlock may occur if P(0) wants to send a message to P(1),
and P(1) to P(0), and both processors want to send before they
receive.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product program mpiinprod

int main(int argc, char **argv){

int p, s, n;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&p);

MPI_Comm_rank(MPI_COMM_WORLD,&s);

if (s==0){

printf("Please enter n:\n");

scanf("%d",&n);

if(n<0)

MPI_Abort(MPI_COMM_WORLD,-1);

}

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

...
Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Collective communication: broadcast

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(buf,count,datatype,root,communicator);

Broadcast count data items of a certain datatype from
processor root to all others in the communicator, reading from
location buf and also writing it there.

All processors of the communicator participate.

Extensive set of collective communications available in MPI. Using
these reduces the size of program texts, and allows hardware
vendors to provide optimised algorithms.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product program mpiinprod (cont’d)

...

nl= nloc(p,s,n); //local vector length

x = vecallocd(nl); //allocate and initialise x

for (i=0; i<nl; i++) {

iglob= i*p+s;

x[i]= iglob+1;

}

MPI_Barrier(MPI_COMM_WORLD); // global sync for timing

time0=MPI_Wtime(); // wall clock time

...

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product program mpiinprod (cont’d)

...

//do calculate inner product

alpha= mpiip(p,s,n,x,x);

//sync for timing

MPI_Barrier(MPI_COMM_WORLD);

time1=MPI_Wtime();

...

MPI_Finalize();

exit(0);

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product function mpiip

double mpiip(int p,int s,int n,

double *x,double *y){

double inprod, alpha;

int i;

inprod= 0.0;

for (i=0; i<nloc(p,s,n); i++)

inprod += x[i]*y[i];

MPI_Allreduce(&inprod,&alpha,1,MPI_DOUBLE,

MPI_SUM,MPI_COMM_WORLD);

return alpha;

}

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Collective communication: reduce

MPI_Allreduce(&inprod, &alpha, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(sendbuf, recvbuf, count, datatype,

operation, communicator);

The reduction operation by MPI Allreduce sums the
double-precision local inner products inprod, leaving the result
alpha on all processors.

One can also do this for an array instead of a scalar, by changing
the parameter 1 to the array size count, or perform other
operations, such as taking the maximum, by changing MPI SUM to
MPI MAX.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Collectives

More collective operations:

broadcast,

scatter,

gather,

reduction (also reduce-scatter),

all-gather, and

all-to-all.

For a nice graphical overview, see
www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

MPI directly integrates these patterns by providing primitives:
MPI BCAST, MPI GATHER, MPI SCATTER, . . .

MPI also supports collectives on vectors instead of single entities
(MPI GATHERV. MPI SCATTERV, . . .), thus enabling
optimisations such as the two-phase broadcast.

Albert-Jan Yzelman

www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

Alternative parallel programming paradigms and frameworks

MapReduce

Google Pregel is a successor of MapReduce, a parallel framework that
operates on large data sets of key-value pairs

S ⊆ K × V ,

with K a set of possible keys and V a set of values.

MapReduce defines two operations on S :

map: V → P(K × V);

reduce: P(K × V)→ K × V .

The map operation is embarrasingly parallel: every key-value
pair is mapped to a new key-value pair, an entirely local operation.

The reduction reduces all pairs in S that (may) have the same
key, into one single key-value pair: global communication.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

MapReduce

Google Pregel is a successor of MapReduce, a parallel framework that
operates on large data sets of key-value pairs

S ⊆ K × V ,

with K a set of possible keys and V a set of values.

MapReduce defines two operations on S :

map: V → P(K × V);

reduce: P(K × V)→ K × V .

The map operation is embarrasingly parallel: every key-value
pair is mapped to a new key-value pair, an entirely local operation.

The reduction reduces all pairs in S that (may) have the same
key, into one single key-value pair: global communication.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

MapReduce

Calculating α = xT y using MapReduce:

Let S = {(0, {x0, y0}), (1, {x1, y1}), . . .}.

1 Map: for each pair (i , {a, b}) write (partial, a · b). Applying this
map adds {(partial, x0y0), (partial, x1y1), . . .} to S .

2 Reduce: for all pairs with key ‘partial’, combine their values by
addition and store the result using key α. Applying this reduction
adds (α,

∑n−1
i=0 xiyi) to S .

3 Done: S contains a single entry with key α and value xT y .

The set S is safely stored on a resilient file system to cope with
hardware failures.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Pregel

Consider a graph G = (V ,E). Graph algorithms may be phrased in
an SPMD fashion as follows:

For each vertex v ∈ V , a thread executes a user-defined SPMD
algorithm;

each algorithm consists of successive local compute phases and
global communication phases;

during a communication phase, a vertex v can only send messages
to N(v), where N(v) is the set of neighbouring vertices of v ; i.e.,
N(v) = {w ∈ V | {v ,w} ∈ E}.

MapReduce and Pregel are variants of the BSP algorithm model!

a type of fine-grained BSP.

parallelism in Pregel is slightly odd to think about;
e.g., what does its compute graph look like?

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP

Multi-BSP is the recursive application of the BSP model.

BSP: a computer consists out of p CPUs/processors/cores/...

Multi-BSP: a computer consists out of
1 p other Multi-BSP subcomputers (recursively), or
2 p units of execution (leaves).

Each Multi-BSP computer:
connects its subcomputers or leaves via a network, and

provides local memory.

Reference:

Valiant, Leslie G. “A bridging model for multi-core computing.”
Journal of Computer and System Sciences 77.1 (2011): 154-
166.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

2

ML−1ML−1

pL−1

ML−1 ML−1

0 1

gL−1, lL−1

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

gL−1, lL−1 gL−1, lL−1

0

2

ML−1

1 2

ML−1 ML−1 ML−1 ML−1ML−1

pL−1

ML−1ML−1

0 pL−1

p0

0 1

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

p00

0

0 1 2

ML−1 ML−1ML−1

pL−10 1 2

ML−1 ML−1 ML−1ML−1

pL−1

g0, l0

gL−1, lL−1 gL−1, lL−1

ML−1

M0 M0

∞

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

M2

1 0 0 01 1 1

M2 M2 M2 M2 M2 M2 M2

0

10

1010

0

g2, l2 g2, l2 g2, l2

g1, l1

g0, l0

g2, l2

g1, l1

M1 M1M1M1

M0 M0

∞

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP algorithm model

This change of computer model changes the algorithmic model:

only local communication allowed using the local (lk , gk),

local memory requirements do not exceed the local memory Mk ,

‘local’ is given by the current tree level k .

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP cost model

We require extra notation:

L: number of levels in the tree,

Ni : number of supersteps on the ith level,

hk,i : the maximum of all h-relations within the ith superstep on
level k ,

wk,i : the maximum of all work within the ith superstep on level
k .

The decomposability of Multi-BSP algorithms, just as with the ‘flat’
BSP model, again results in a transparent cost model:

T =
L−1∑
k=0

(
Nk−1∑
i=0

wk,i + hk,igk + lk

)
.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Half-time summary

Multi-BSP is a better model for modern parallel architectures. It
closely resembles

contemporary shared-memory multi-socket machines,
multi-level shared and private cache architectures, and
multi-level network topologies (e.g., fat trees).

Hierarchical modeling also has drawbacks. It is more difficult to

prove optimality of hierarchical algorithms, and

portably implement hierarchical algorithms.

Would you like to:

prove optimality of an algorithm in 16 parameters?

develop algorithms for a four-level machine?

Multi-BSP can actually simplify these issues!

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Half-time summary

Multi-BSP is a better model for modern parallel architectures. It
closely resembles

contemporary shared-memory multi-socket machines,
multi-level shared and private cache architectures, and
multi-level network topologies (e.g., fat trees).

Hierarchical modeling also has drawbacks. It is more difficult to

prove optimality of hierarchical algorithms, and

portably implement hierarchical algorithms.

Would you like to:

prove optimality of an algorithm in 16 parameters?

develop algorithms for a four-level machine?

Multi-BSP can actually simplify these issues!

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Memory embedding (shared address space):

0

0 1 2 3 5 6 74

0 4

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

Start SPMD section, entry at leaf level, leaf 6 is source.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this local BSP computer, communicate val to PID 0 and move up.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this upper level, send val to PID 0, broadcast, and move down.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this level, only PID 0 has val ; broadcast, and done.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this level, only PID 0 has val ; broadcast, and done.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting
Input: val (a value or ∅),

Output: the value that was broadcast.

if val 6= ∅ then
set source = true

else
set source = false

while not on the Multi-BSP root do
if source and bsp pid() 6= 0 then

send val to PID 0
move upwards in the Multi-BSP tree

while not on a leaf node do
if bsp pid() = 0 then

for k = 1 to bsp nprocs() do
send val to PID k

move downwards in the Multi-BSP tree
return val

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Summary

We have seen

various ways on exploiting parallelism on current hardware,

a high-level overview of parallel programming paradigms,

common design patterns used within these paradigms,

what the hardware and OS can do for you,

an overview of communication paradigms,

how to analyse fine-grained parallel applications,

a short introduction to the Message Passing Interface, and
programming using MPI, and

what the future of BSP might look like.

Albert-Jan Yzelman

