Alternative parallel programming paradigms and frameworks

Alternative parallel programming paradigms and

frameworks

Albert-Jan Yzelman

10th of December, 2014

_

Alternative parallel programming paradigms and frameworks

Flynn's Taxonomy

Single Data Multiple Data
Single Instruction SISD SIMD
Multiple Instruction

Examples:
@ classical von Neumann computing; program and data streamed to
processor.
@ vectorisation (MMX/AVX/...), vector computers.
°

o ccNUMA architectures,
e symmetric multiprocessors,
e non-cc NUMA (scratchpad memory, Cell Broadband Engine, .. .)

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Programming models

A class on parallel computing focuses on MIMD.

@ Two flavours of MIMD:

e Single Program, Multiple Data (SPMD), and
e Multiple Program, Multiple Data (MPMD).

@ Both SPMD and MPMD programs can be in lockstep.

Examples:

@ GPUs often use stream-based programming. This is SPMD and
employs groupwise lockstepping.

@ Past and future architectures do allow and even promote MPMD
programming: e.g., the Cell BE and the Epiphany archtictures.

@ BSP is an SPMD paradigm.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Common HW/OS capabilities

The more common hardware and operating systems support for parallel
computation include:
@ thread and process execution and control:

e spawn,
e abort,

e wait for,
e exit.

@ mutexes (locks),
@ synchronisation barriers,

@ transactional memory

o readily available: atomics,
e more complex technologies: speculative threading.

In-software equivalents of the above are possible (for instance, the use
of spin-locks instead of barriers).

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Common design patterns

Often-used techniques for writing parallel software:

@ task-based: identify independently executable work and group
them into tasks, then schedule these dynamically. This may
include modeling inter-task dependencies in terms of input- and
output-data. In the extreme: workflows.

@ divide-and-conquer: concurrently conquer a divided problem.

@ geometric decomposition: often used in spatial computational
science simulations (e.g., mesh-based computations).

@ pipelining: like task-based parallelism, but with
serial-dependencies; this pattern sometimes appears in a
subsection of a parallel program.

@ master/worker: one process assignes work others.

e fork/join: after a fork a new process appears, starting at the same
part of the program.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based parallelisation

A task has three states: (1) wait for data, (2) ready, and (3) done. If
Ti is the set of tasks in state i, then a simple scheduler runs a loop
similar to:

e While 7 is empty, wait.

° from 7>.

o Execute t.

@ For all tasks s € Tq, if s waits on t,

° let s know t is done, and

° if s has no further waits, remove it from 77 and add it to 7.
@ Insert t into 73.

This requires thread-safe datastructures (concurrent removals,
insertions). The orange statement is critical to performance.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v,w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

Remark: the sequential running time Tseq = >, o\ w(v).

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V/, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v, w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

Remark: let P C V be a path from r to a leaf vertex x s.t.
YveV, B(x,v)eE,

then w(P) = > cp w(v) is the path weight. The weighted critical
path P, has for all other possible paths P that w(P.) > w(P).

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V/, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v, w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

e find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p — oo, the minimum amount of computation remains
w(P;), always.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V/, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v, w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

e find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p — oo, the minimum amount of computation remains
w(P.), always. The parallel compute time T, is bounded by

Tp = OW(Pc)/r + Tseq/P);

with r the computation speed of a single worker.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Fine-grained parallel computing

Decompose a problem into many small tasks, that run concurrently
(as much as possible). A run-time scheduler assigns tasks to
processes.

@ What is small? Grain-size.

@ Performance model? Parallelism and span.

Algorithms can be implemented as graphs either explicitly or
implicitly:

@ Intel: Threading Building Blocks (TBB),
OpenMP (remember the shared-memory SpMV example),
Intel / MIT / Cilk Arts: Cilk,

Google: Pregel,

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primjti
O (binary) fork, and
@ (binary) join.

m Albert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primitives:
O (binary) fork, and
@ (binary) join.

Example: calculate x4 from x, = xp_2 + xp—1 given'xg = x1 = 1:
int f(int n){]]
ifln==20 n==1)return\l;
int xI = cilk_spawn f(n-1); //fork
int x2) = cilk_spawn f(n-2); //fork
cilkzsync; //join
return/x1 4 x2;

}

int main() {
int x4 = f(4);
printf("x_4 = %d\n", &x4-);
return O;

1

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Cilk
Only two parallel programming prlm}tﬂges
@ (binary) fork, and /.
@ (binary) join. <~ —

| y

Definition (Overhead)
The overhead of parallel computation is any extra effort expended
over the original amount of work Tgeq

To=pTp — Tseq.

The parallel computation time can be expressed in T,:

7_seq + 71,

p v
\‘/V»r\‘\
)

m AIbert_Jan YZEIman

T, =

Alternative parallel programming paradigms and frameworks

Cilk

Only two parallel programming primitives:
O (binary) fork, and
@ (binary) join.

Spawned function calls are/assigned to one of the avallable processes

by the Cilk run time scheduler.

The Cilk scheduler guarantees, under some assumptions on the
determinism/of the algorithm, that

To = O(PToo)y
resulting in a parallel run-time T, bounded by

O(Ti/p+ To).

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Coarse-grained parallisation: communicating processes

Popular ways for inter-process communication:
@ message passing (MPI, BSP),
@ direct remote memory access (BSP, MPI),
@ collectives (MPI),
@ global arrays / global address space (GA/PGAS/UPC).
These approaches can be
@ Blocking or non-blocking,
@ One-sided or two-sided (and up to p-sided).
Classically,
@ MPI is a two-sided blocking message passing (send/receive pairs)
paradigm, while
@ BSP is a one-sided non-blocking direct remote memory access
paradigm.

Naturally, both paradigms have evolved beyond this strict classification.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

History of MPI

@ 1994: Message Passing Interface (MPI) became available as a
standard interface for parallel programming in C and Fortran 77.

@ Designed by a committee called the MPI Forum consisting of
computer vendors, users, computer scientists.

@ Based on sending and receiving messages by a pair of processors.
One processor sends; the other receives. Both are active in the
communication.

e Underlying model: communicating sequential processes (CSP)
proposed by Hoare in 1978.

@ MPI itself is not a model. BSP is a model.

@ MPI is an interface for a communication library, like BSPIib.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Recent history of MPI

@ 1997: MPI-2 standard defined. Added functionality:
e one-sided communications (put, get, sum)
e dynamic process management
parallel input/output
e languages C++ and Fortran 90
@ 2003: first full implementations of MPI-2 arrive, namely MPICH
(Argonne National Labs) and LAM/MPI (Indiana University).

@ 2004—: Open MPI. Open-source project, merges 3 MPI
implementations: LAM/MPI, FT-MPI (University of Tennessee),
LA-MPI (Los Alamos National Laboratory).

@ Many users still use MPI-1, particularly its latest version MPI-1.3.

@ 2012 MPI-3. Major update. More one-sided communications,
nonblocking collective communications.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Why use MPI?

@ It is available on almost every parallel computer, often in an
optimised version provided by the vendor. Thus MPI is the most
portable communication library.

@ Many libraries are available written in MPI, such as the numerical
linear algebra library ScaLAPACK.

@ You can program in many different ways using MPI, since it is
highly flexible.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Why not?

@ It is huge: the full standard has about 300 primitives. The user
has to make many choices.

@ It is not so easy to learn. Usually one starts with a small subset of
MPI. Full knowledge of the standard is hard to attain.

@ The one-sided communications of MPI-2 and MPI-3 are rather
complicated. If you like one-sided communications you may want
to consider BSPIib as an alternative.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Ping pong benchmark

@ The cost of communicating a message of length n is
T(n) - tstartup + ntyord-

Here, tstartup is a fixed startup cost and tyerq is the additional
cost per data word communicated.

e Communication of a message (in its blocking form) synchronises
the sender and receiver. This is pairwise synchronisation, not
global.

@ Parameters tsiartup and tyorg are usually measured by sending a
message from one processor to another and back: ping pong.

@ The message length is varied in the ping pong benchmark.

@ There is only one ping pong ball on the table.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Send and receive primitives

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD) ;
if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,
&status);

@ Processor P(2) sends 5 doubles to P(3).

@ P(2) reads the data from its array x. After transmission, P(3)
writes these data into its array y.

@ The integer ‘0" is a tag for distinguishing between different
messages from the same source processor to the same destination
processor.

@ MPI_Send and MPI_Recv are of fundamental importance in MPI.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Communicator: the whole processor world

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD) ;
if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,
&status);

@ A communicator is a subset of processors forming a
communication environment with its own processor numbering.

@ MPI_COMM_WORLD is the communicator consisting of all the
processors.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Send/Receive considered harmful

@ 1968: Edsger Dijkstra, guru of structured programming,
considered the Go To statement harmful in sequential
programming.

@ Go To was widely used in Fortran programming in those days. It
caused spaghetti code: if you pull something here, something
unexpected moves there.

@ No one dares to use Go To statements any more.

@ Send/Receive in parallel programming has the same dangers, and
even more, since several diners eat from the same plate.

@ Pull here, pull there, nothing moves: deadlock.

@ Deadlock may occur if P(0) wants to send a message to P(1),
and P(1) to P(0), and both processors want to send before they
receive.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product program mpiinprod

int main(int argc, char **argv){
int p, s, n;

MPI_Init(&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD,&p) ;
MPI_Comm_rank (MPI_COMM_WORLD,&s) ;

if (s==0){
printf ("Please enter n:\n");
scanf ("%d",&n) ;
if (n<0)
MPI_Abort (MPI_COMM_WORLD,-1);
}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Collective communication: broadcast

MPI_Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD);

MPI_Bcast (buf,count,datatype,root,communicator) ;

@ Broadcast count data items of a certain datatype from
processor root to all others in the communicator, reading from
location buf and also writing it there.

@ All processors of the communicator participate.

@ Extensive set of collective communications available in MPI. Using
these reduces the size of program texts, and allows hardware
vendors to provide optimised algorithms.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product program mpiinprod (cont'd)

nl= nloc(p,s,n); //local vector length
x = vecallocd(nl); //allocate and initialise x
for (i=0; i<nl; i++) {

iglob= ix*p+s;

x[i]= iglob+1;

MPI_Barrier (MPI_COMM_WORLD); // global sync for timing
time0=MPI_Wtime () ; // wall clock time

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product program mpiinprod (cont'd)

//do calculate inner product
alpha= mpiip(p,s,n,x,x);

//sync for timing

MPI_Barrier (MPI_COMM_WORLD) ;
timel=MPI_Wtime();

MPI_Finalize();
exit (0);

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Inner product function mpiip

double mpiip(int p,int s,int n,
double *x,double *y){

double inprod, alpha;
int i;

inprod= 0.0;
for (i=0; i<nloc(p,s,n); i++)
inprod += x[il*y[i];
MPI_Allreduce(&inprod,&alpha,1,MPI_DOUBLE,
MPI_SUM,MPI_COMM_WORLD) ;

return alpha;

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Collective communication: reduce

MPI_Allreduce(&inprod, &alpha, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD) ;

MPI_Allreduce(sendbuf, recvbuf, count, datatype,
operation, communicator);

@ The reduction operation by MPT_Allreduce sums the
double-precision local inner products inprod, leaving the result
alpha on all processors.

@ One can also do this for an array instead of a scalar, by changing
the parameter 1 to the array size count, or perform other
operations, such as taking the maximum, by changing MPI_SUM to
MPI _MAX.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Collectives

More collective operations:

broadcast,

scatter,

gather,

reduction (also reduce-scatter),
all-gather, and

all-to-all.

For a nice graphical overview, see
www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

MPI directly integrates these patterns by providing primitives:
MPI_BCAST, MPI_GATHER, MPI_SCATTER, ...

MPI also supports collectives on vectors instead of single entities
(MPI_.GATHERV. MPI_SCATTERY, ...), thus enabling
optimisations such as the two-phase broadcast.

m AIbert_Jan Yzelman

www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

Alternative parallel programming paradigms and frameworks

MapReduce

Google Pregel is a successor of MapReduce, a parallel framework that
operates on large data sets of key-value pairs

SCKxV,

with K a set of possible keys and V' a set of values.

MapReduce defines two operations on S:
map: V — P(K x V);
reduce: P(K x V) — K x V.

@ The map operation is embarrasingly parallel: every key-value
pair is mapped to a new key-value pair, an entirely local operation.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

MapReduce

Google Pregel is a successor of MapReduce, a parallel framework that
operates on large data sets of key-value pairs

SCKxV,
with K a set of possible keys and V' a set of values.
MapReduce defines two operations on S:
map: V — P(K x V);
reduce: P(K x V) — K x V.

@ The map operation is embarrasingly parallel: every key-value
pair is mapped to a new key-value pair, an entirely local operation.

@ The reduction reduces all pairs in S that (may) have the same
key, into one single key-value pair: global communication.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

MapReduce

Calculating o = x Ty using MapReduce:

Let S = {(0, {x0,¥0}), (1, {x1,)1}),...}.

@ Map: for each pair (i, {a, b}) write (partial, a- b). Applying this
map adds {(partial, xoyp), (partial, x1y1),...} to S.

@ Reduce: for all pairs with key ‘partial’, combine their values by
addition and store the result using key . Applying this reduction
adds (o, 32775 xiyi) to S.

@ Done: S contains a single entry with key o and value x7y.

The set S is safely stored on a resilient file system to cope with
hardware failures.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Pregel

Consider a graph G = (V, E). Graph algorithms may be phrased in
an SPMD fashion as follows:
@ For each vertex v € V, a thread executes a user-defined SPMD
algorithm;
@ each algorithm consists of successive local compute phases and
global communication phases;

@ during a communication phase, a vertex v can only send messages
to N(v), where N(v) is the set of neighbouring vertices of v; i.e.,
N(v)={we V |{v,w} e E}

MapReduce and Pregel are variants of the BSP algorithm model!
@ a type of fine-grained BSP.

@ parallelism in Pregel is slightly odd to think about;
e.g., what does its compute graph look like?

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP

Multi-BSP is the recursive application of the BSP model.

@ BSP: a computer consists out of p CPUs/processors/cores/ ...
o Multi-BSP: a computer consists out of

© p other Multi-BSP subcomputers (recursively), or

@ p units of execution (leaves).
e Each Multi-BSP computer:

e connects its subcomputers or leaves via a network, and

e provides local memory.

Reference:

Valiant, Leslie G. “A bridging model for multi-core computing.”
Journal of Computer and System Sciences 77.1 (2011): 154-
166.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

A BSP computer (po, 80, lo, Mo) - - - (Pr—1, 8.-1, lL—1, M1 _1).

m Albert_Jan YZEIman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

A BSP computer (po, 8o, lo, Mo) - -

m Albert_Jan YZEIman

PL 1,8-1, -1, M — 1)

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

A BSP computer (po, 8o, lo, Mo) - - - (Pr—1, 8L-1, lL—1, Mi—1).

m AIbert_Jan YZEIman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

CPUs, memory, network.

A BSP computer (po, 8o, lo, Mo) - - - (Pr—1, 8L-1, lL—1, Mi—1).

m AIbert_Jan YZEIman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP computer model

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP algorithm model

This change of computer model changes the algorithmic model:

@ only local communication allowed using

@ local memory requirements do not exceed

the local (/k, g«),

the local memory My,

@ ‘local’ is given by the current tree level k.

->< I

=00 =

-
e
KU LEUVEN|

X —
=
*—

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP cost model

We require extra notation:
@ L: number of levels in the tree,
@ N;: number of supersteps on the ith level,

@ hy ;: the maximum of all h-relations within the ith superstep on
level k,

@ wy ;: the maximum of all work within the ith superstep on level
k.

The decomposability of Multi-BSP algorithms, just as with the ‘flat’
BSP model, again results in a transparent cost model:

[-1 /N, -1
T=>) (Z Wi,i + hi,igk + /k> -

i=0

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Half-time summary

@ Multi-BSP is a better model for modern parallel architectures. It
closely resembles

e contemporary shared-memory multi-socket machines,
o multi-level shared and private cache architectures, and
e multi-level network topologies (e.g., fat trees).

@ Hierarchical modeling also has drawbacks. It is more difficult to
e prove optimality of hierarchical algorithms, and
e portably implement hierarchical algorithms.

Would you like to:
@ prove optimality of an algorithm in 16 parameters?

@ develop algorithms for a four-level machine?

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Half-time summary

@ Multi-BSP is a better model for modern parallel architectures. It
closely resembles

e contemporary shared-memory multi-socket machines,
o multi-level shared and private cache architectures, and
e multi-level network topologies (e.g., fat trees).

@ Hierarchical modeling also has drawbacks. It is more difficult to
e prove optimality of hierarchical algorithms, and
e portably implement hierarchical algorithms.

Would you like to:
@ prove optimality of an algorithm in 16 parameters?
@ develop algorithms for a four-level machine?
Multi-BSP can actually simplify these issues!

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Memory embedding (shared address space):

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

Start SPMD section, entry at leaf level, leaf 6 is source.

m Albert_Jan YZEIman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

I I

On this local BSP computer, communicate val to PID 0 and move up.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

I I
1 1

On this upper level, send val to PID 0, broadcast, and move down.

m AIbert_Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

On this level, only PID 0 has val; broadcast, and done.

m Albert_Jan YZEIman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

On this level, only PID 0 has val; broadcast, and done.

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Multi-BSP: broadcasting

Input: val (a value or (),
Output: the value that was broadcast.

if val # () then
set source = true
else
set source = false
while not on the Multi-BSP root do
if source and bsp_pid() # 0 then
send val to PID 0
move upwards in the Multi-BSP tree
while not on a leaf node do
if bsp_pid() = 0 then
for k =1 to bsp_nprocs() do
send val to PID k
move downwards in the Multi-BSP tree
return val

Albert-Jan Yzelman

Alternative parallel programming paradigms and frameworks

Summary

We have seen

@ various ways on exploiting parallelism on current hardware,

@ a high-level overview of parallel programming paradigms,

@ common design patterns used within these paradigms,

@ what the hardware and OS can do for you,

@ an overview of communication paradigms,

@ how to analyse fine-grained parallel applications,

@ a short introduction to the Message Passing Interface, and
programming using MPI, and

@ what the future of BSP might look like.

m AIbert_Jan Yzelman

