Cartesian Distribution

(PSC §4.4)




|dentifying 1D and 2D processor numbering

» Natural column-wise identification for p = MN processors:
P(s,t)=P(s+tM), for 0<s<Mand 0 <t <N.
» This can also be written as
P(s) = P(s mod M,s div M), for 0 <s < p.

> For a Cartesian distribution (¢, ¢1), we map nonzeros ajj to
processors P((i,j)) by

&(i,J) = do(i) + ¢1(j)M, for 0 < i,j < nand a; # 0.

» We use 1D or 2D numbering, whichever is most convenient in
the context. '
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A Cartesian distribution of cage6

n=093, nz=785 p=4 M=N=2.
> The processor row of a matrix element ajj is s = ¢o(/);
the processor column is t = ¢1(j).
» Matrix diagonal assigned in blocks to processors
P(0) = P(0,0), P(1) = P(1,0), P(2) = P(0,1),
P(3) = P(]'? 1) Cartesian distribution E




Advantages of a Cartesian distribution

Advantages:

» Main advantage for sparse matrices is the same as for dense
matrices: row-wise operations require communication only
within processor rows. (Similar for columns.)

> Vector component v; has to be sent to at most M processors,
and vector component u; is computed using contributions
received from at most N processors.

» Simplicity: Cartesian distributions partition the matrix
orthogonally into rectangular submatrices. Non-Cartesian
distributions create arbitrarily shaped matrix parts.

Disadvantage:

> Less general, so may not offer the optimal solution.
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Matching matrix and vector distribution

> Vector component v; is needed only by processors that possess
an a;; # 0, and these processors are contained in processor
column P(x, ¢1(j)).

> Assigning vector component v; to one of the processors in
P(*, ¢1(j)) implies that v; has to be sent to at most M — 1
processors, instead of M.

> If we are lucky (or clever), we may even avoid communication
of v; altogether.

> If v; were assigned to a different processor column, it would
always have to be communicated.

» Assigning u; to a processor in processor row P(¢o(i), *)

reduces the number of contributions sent for u; to at most
N —1.
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A trivial but powerful theorem

Theorem 4.4 Let A be a sparse n x n matrix and u, v vectors of
length n. Assume that:

1. distribution of A is Cartesian, distr(A) = (¢o, ¢1);
2. distribution of u is such that u; resides in P(¢o(i), *);
3. distribution of v is such that v; resides in P(x, ¢1(J)).

Then: if u; and v; are assigned to the same processor, a;; is also
assigned to that processor and does not cause communication.

Proof Component u; is assigned to P(¢q(i), t). Component v; to
P(s,#1(j)). Since this is the same processor, we have
(s,t) = (¢0(i), #1(j)). so that this processor also owns aj;. O
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Special case distr(u) = distr(v)

The conditions

1. distribution of A is Cartesian, distr(A) = (¢o, ¢1);

2. distribution of u is such that u; resides in P(¢o(i), *);

3. distribution of v is such that v; resides in P(x, ¢1(j));

4. distr(u) = distr(v);
imply that u; and v; are assigned to P(¢o(i), #1(i)), which is the
owner of the diagonal element aj;.

» For a fixed M and N, the choice of a Cartesian matrix

distribution determines the vector distribution.

» The reverse is also true.
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Example: 1D Laplacian matrix

-2 1
1 -2 1
1 -2 1
A=
1 -2 1
1 -2 1
1 -2

» This tridiagonal matrix represents a Laplacian operator on a
1D grid of n points.

» a;j #0ifand only if i — j =0, £1.
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Vector distribution for tridiagonal matrix

» a; #0ifand only if i —j =0, £1.

» Assume we require distr(u) = distr(v). Theorem 4.4 says
that it is best to assign u;j and v; (and hence uj) to the same
processor if i = j + 1.

» Therefore, a suitable vector distribution over p processors is
the block distribution,

ui — P(i div [Z—‘), for 0 <i < n.
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Example: 12 x 12 1D Laplacian matrix

Distribution matrix for n=12 and M = N = 2:

"0 0 -
0

o O

= O O
= = O
==

distr(A) =

O = =
N N W
NN N
W NN
w w N

w W w
w W
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Example: 12 x 12 1D Laplacian matrix (cont'd)

Position (7, /) of distr(A) gives 1D identity of the processor that
owns matrix element aj;; distr(A) is obtained by:

» distributing the vectors by the 1D block distribution

» distributing the matrix diagonal in the same way as the vectors

» translating the 1D processor numbers into 2D numbers by
P(0) = P(0,0), P(1) = P(1,0), P(2) = P(0,1),
P(3) = P(1,1).

» determining the owners of the off-diagonal nonzeros: ase is in
the same processor row as ass, owned by P(1) = P(1,0); it is

in the same processor column as agg, owned by
P(2) = P(0,1). Thus, ase is owned by P(1,1) = P(3).
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Cost analysis

Assuming a good spread of nonzeros and vector components over
processors, matrix rows over processor rows, matrix columns over
processor columns:

To) = (M—l)%ﬂ,
2

T(l) = ﬂ-f—/,
p

Ta) = (N—1)%+/,
Nn

T = 21

3) p

2cn n M+N-—-2
Tmv, Mxn < — + — + ————ng + 4l.
p M p
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Efficient computation for M = N = /p

T <2cn n 5 1 1 |
MV,\/EX\/TJ—T—’_%_'_ 7 P ng + 4l.

» Computation is efficient if o > Jpr 1€ € > \/pg.

» Improvement of factor \/p compared to previous general
efficiency criterion.
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Dense matrices

» Dense matrices are the limit of sparse matrices for ¢ — n.
» Analysing the dense case is easier and it can give us insight
into the sparse case as well.

» Substituting ¢ = n in previous cost formula gives

2n? n 1 1

TMV7 dense < — 4+ —=4+2 < _> ng+4l'
p P VP P

» All spreading assumptions must hold.
» Which distribution will yield this cost?
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Square cyclic distribution? No!

» Previously, we have extolled the virtues of the square cyclic
distribution for LU decomposition and all parallel linear
algebra.

> Diagonal element aj; is assigned to P(i mod /p,i mod /p),
so that the matrix diagonal is assigned to the diagonal
processors P(s,s), 0 <s < ,/p.

» Only /p processors have part of the matrix diagonal and the
vectors. The vector spreading assumption fails.

> The trouble is that diagonal processors must send \/p — 1

copies of ﬁ vector components: hs = n — # in (0).

» The total cost for the square cyclic distribution is

2n? 1
TMV, dense, /px,/p cyclic = 7 +n+2(1- % ng + 4.
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Cyclic row distribution? No!

» Communication balance can be improved by choosing a
distribution that spreads the matrix diagonal evenly,
ou(i) = ¢dy(i) = i mod p, and translating from 1D to 2D.

» We still have the freedom to choose M and N, where
MN = p. For the choice M = p and N =1, this gives the
cyclic row distribution ¢o(i) = i mod p and ¢1(j) = 0.

» The total cost for the cyclic row distribution is

2n? 1
7_MV, dense, px1 cyclic = 7 + <]- - P) ng —+ 2.

» This distribution skips supersteps (2) and (3), since each
matrix row is completely contained in one processor.

» The trouble is that the fanout is very expensive: each
processor has to send g vector components to all others.

Cartesian distribution -

16 /18



Square Cartesian distribution? Yes!

N2 ;- OR: : R

0 0 1. 1.0 0 1 1
0| 0

1

= EE=1- ES= -]
—_ S e D e D e
=)

n=238, p=4, M= N = 2. Square Cartesian distribution based on
a cyclic distribution of the matrix diagonal.
» We take the same distribution method,
¢u(i) = ¢u(i) = i mod p, but now we choose M = N = ,/p
when translating from 1D to 2D.

» Et voilal We achieve the optimal BSP cost.
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Summary

» For Cartesian distributions, we use both 1D and 2D processor
numberings to our advantage, with the identification
P(s,t) = P(s + tM).

» We have seen the example of a tridiagonal matrix, where we
obtained a 2D matrix distribution, slightly different from a 1D
block row distribution. For band matrices with a wider band,
this may be advantageous.

» A square Cartesian matrix distribution based on a cyclic
distribution of the matrix diagonal and the input and output
vectors is an optimal data distribution for dense matrices and
for sparse matrices that are relatively dense.

» There exist other optimal data distributions, e.g. based on a
block distribution of the matrix diagonal.
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