
Parallel sparse matrix–vector multiplication

Parallel Sparse Matrix–Vector Multiplication
(PSC §4.3)

1 / 21



Parallel sparse matrix–vector multiplication

Option 1: represent first, distribute later

First build a global data structure to represent the sparse matrix,
then distribute it over the processors:

I A parallelising compiler would do this.

I Requires global collaboration between the processors.

I Simple operations become complicated: in a linked list, 3
processors must work together and communicate to insert a
new nonzero.

2 / 21



Parallel sparse matrix–vector multiplication

Option 2: distribute first, represent later

Distribute the matrix first, and then let each processor represent
the local nonzeros:

I This assigns subsets of nonzeros to processors.

I The subsets form a partitioning of the nonzero set: subsets
are disjoint and together they contain all nonzeros.

I Sequential sparse data structures can be used.

I Simple operations remain simple: insertion and deletion are
local operations without communication.

I This is the preferred approach.

3 / 21



Parallel sparse matrix–vector multiplication

Most general matrix distribution

I The most general scheme maps nonzeros to processors,

aij 7−→ P(φ(i , j)), for 0 ≤ i , j < n and aij 6= 0,

where 0 ≤ φ(i , j) < p.

I Zeros are not assigned to processors. For convenience, we
define φ(i , j) = −1 if aij = 0.

I Here, we use a 1D processor numbering.

4 / 21



Parallel sparse matrix–vector multiplication

Distribution of matrix and vectors

Global view Local view

4

(a)

9

1

1
3

4

6
5

8
4

6

41
22

1 2

3

1

6
5 9

4 1
3

5 88

2

5
2

(b)

3

2

1

0 0

9

0

64

9

3 4

3

2

12

2

1

3
9

5
5

3 v

A P(0)u P(1)

p = 2, n = 5, nz = 13. P(0) grey cells, P(1) black cells.
Matrix distribution is non-Cartesian.

5 / 21



Parallel sparse matrix–vector multiplication

Where to compute aij · vj?

I Usually, there are many more nonzeros than vector
components, nz(A) � n, so move the vector components vj

to the nonzeros aij , not vice versa.

I Add local products aijvj belonging to the same row i . Result
on P(s) is the local contribution uis to ui

I Result uis is sent to the owner of ui .

I Thus, we do not communicate elements of A, but only
components of v and contributions to components of u.

6 / 21



Parallel sparse matrix–vector multiplication

How to distribute the vectors?

I In many iterative solvers, the same vector is repeatedly
multiplied by a matrix A.

I Usually, a few vector operations are interspersed, such as
DAXPYs y := αx + y or inner products α := xTy.

I All vectors should then be distributed in the same way:
distr(u) = distr(v) for the operation u := Av.

I Sometimes, however, we compute ATAv. The output vector
for A is then taken as the input vector for AT .

I Now, we do not need to revert immediately to the input
distribution. We allow distr(u) 6= distr(v).

I We map vector components to processors by

ui 7−→ P(φu(i)), for 0 ≤ i < n.

7 / 21



Parallel sparse matrix–vector multiplication

Deriving a parallel algorithm

I Once we have chosen the data distribution and decided to
compute the products aijvj on the processor that owns aij , the
parallel algorithm follows naturally.

I The main computation for processor P(s) is multiplying each
local nonzero element aij by vj and adding the result into a
local partial sum,

uis =
∑

0≤j<n, φ(i ,j)=s

aijvj .

I Sparsity is exploited:
I only terms with aij 6= 0 are summed;
I only local partial sums uis are computed for which
{j : 0 ≤ j < n ∧ φ(i , j) = s} 6= ∅.

8 / 21



Parallel sparse matrix–vector multiplication

Row index set

4

(a)

9

1

1
3

4

6
5

8
4

6

41
22

1 2

3

1

6
5 9

4 1
3

5 88

2

5
2

(b)

3

2

1

0 0

9

0

64

9

3 4

3

2

12

2

1

3
9

5
5

3 v

A P(0)u P(1)

I On P(0), row 4 is empty. On P(1), row 1 is empty.

I Index set Is of rows that are locally nonempty in P(s) is

Is = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i , j) = s)}

I I0 = {0, 1, 2, 3} and I1 = {0, 2, 3, 4}.
9 / 21



Parallel sparse matrix–vector multiplication

Local sparse matrix–vector multiplication

Is = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i , j) = s)}

(1) { Local sparse matrix–vector multiplication }
for all i ∈ Is do

uis := 0;
for all j : 0 ≤ j < n ∧ φ(i , j) = s do

uis := uis + aijvj ;

10 / 21



Parallel sparse matrix–vector multiplication

Data structure for local sparse matrix

I Compressed row storage (CRS) suits row-oriented local
matrix–vector multiplication.

I CRS must be adapted to avoid overhead of many empty rows,
which typically occurs if c � p.

I We number the nonempty local rows from 0 to |Is | − 1. The
corresponding indices i are the local indices.

I The original global indices from the set Is are stored in
increasing order in an array rowindex of length |Is |:

i = rowindex [i].

I Address of first local nonzero of row i is start[i].

11 / 21



Parallel sparse matrix–vector multiplication

Column index set

4

(a)

9

1

1
3

4

6
5

8
4

6

41
22

1 2

3

1

6
5 9

4 1
3

5 88

2

5
2

(b)

3

2

1

0 0

9

0

64

9

3 4

3

2

12

2

1

3
9

5
5

3 v

A P(0)u P(1)

I Index set Js of columns that are locally nonempty in P(s) is

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i , j) = s)}

I J0 = {0, 1, 2} and J1 = {2, 3, 4}.

12 / 21



Parallel sparse matrix–vector multiplication

Fanout

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i , j) = s)}

(0) { Fanout }
for all j ∈ Js do

get vj from P(φv(j));

I The receiver knows (from its index set Js) that it needs the
vector component vj . The sender is unaware of this. Thus,
the receiver initiates the communication by using a ‘get’.

I In dense algorithms, communication patterns are predictable
and thus known to every processor, so that we only need ‘put’
primitives.

I In sparse algorithms, we also have to use ‘get’ primitives.

13 / 21



Parallel sparse matrix–vector multiplication

Fanin and final summation

(2) { Fanin }
for all i ∈ Is do

put uis in P(φu(i));

(3) { Summation of nonzero partial sums }
for all i : 0 ≤ i < n ∧ φu(i) = s do

ui := 0;
for all t : 0 ≤ t < p ∧ uit 6= 0 do

ui := ui + uit ;

14 / 21



Parallel sparse matrix–vector multiplication

Communication

1

22

2 3

5
5

9

1
3

4

6
5

8

4

6

41 3

1

9 2

64

9
1

u

v

A

I Vertical arrows: communication of components vj .

I v0 is sent from P(1) to P(0), because of the nonzeros a10 = 4
and a30 = 6 owned by P(0).

I v1, v3, v4 need not be sent.

I Horizontal arrows: communication of partial sums uis .

15 / 21



Parallel sparse matrix–vector multiplication

Cost analysis

Wat kost het? (Dutch for: How much does it cost?)

I Answer depends on matrix A and distributions φ, φv, φu.
I We can obtain an upper bound on the BSP cost, assuming:

I the matrix nonzeros are evenly spread over the processors,
each processor having cn

p nonzeros;
I the vector components are also evenly spread, each processor

having n
p components.

I Bound may be far too pessimistic for particular distributions
that are well-tailored to the matrix.

16 / 21



Parallel sparse matrix–vector multiplication

Cost of separate supersteps

(0): P(s) must receive at most all n components vj , but not the n
p

local components, so that hr = n − n
p . hs = n

p (p − 1), because the
n
p local components must be sent to all the other p − 1 processors.

T(0) = (1− 1

p
)ng + l .

(1): 2 flops are needed for each local nonzero.

T(1) =
2cn

p
+ l .

17 / 21



Parallel sparse matrix–vector multiplication

Cost of separate supersteps (cont’d)

(2): Similar to (0).

T(2) = (1− 1

p
)ng + l .

(3): Each of the n
p local vector components is computed by adding

at most p partial sums.

T(3) = n + l .

Total BSP cost is bounded by

TMV ≤ 2cn

p
+ n + 2(1− 1

p
)ng + 4l .

18 / 21



Parallel sparse matrix–vector multiplication

Efficient computation

TMV ≤ 2cn

p
+ n + 2(1− 1

p
)ng + 4l .

I Computation is efficient if 2cn
p > 2ng , i.e., c > pg . But this

happens rarely: only for very dense matrices.

I The number of nonzeros per row c , and not the density d ,
determines the efficiency directly.

I To make the computation efficient for smaller c , we can:
I use a Cartesian distribution and exploit its 2D nature;
I refine the general distribution using an automatic procedure to

detect the underlying matrix structure;
I exploit properties of specific matrix classes, such as random

sparse matrices and Laplacian matrices.

19 / 21



Parallel sparse matrix–vector multiplication

Communication volume

I Communication volume V of an algorithm is the total number
of data words sent. It depends on φ, φu, φv.

I For a given φ, obtain a lower bound Vφ on V by counting:
I the number of processors pi that have a nonzero aij in matrix

row i ; at least pi − 1 processors must send a contribution uis .
I the number of processors qj that has a nonzero aij in matrix

column j .

Vφ =
∑

0≤i<n, pi≥1

(pi − 1) +
∑

0≤j<n, qj≥1

(qj − 1).

I An upper bound is Vφ + 2n, because in the worst case all n
components ui are owned by processors without a nonzero in
row i , and similar for the components vj .

20 / 21



Parallel sparse matrix–vector multiplication

Summary

I Distribute first, represent later.

I Most general mapping of nonzeros and vector components to
processors:

aij 7−→ P(φ(i , j)), for 0 ≤ i , j < n and aij 6= 0,

ui 7−→ P(φu(i)), for 0 ≤ i < n.

I We have derived a parallel algorithm with 4 supersteps:
fanout, local matrix–vector multiplication, fanin, summation
of partial sums.

I The row index set Is and column index set Js are used for
exploiting the sparsity in the algorithm.

I We encountered the first absolutely necessary use of a ‘get’
primitive.

21 / 21


