Parallelization of Grid-oriented problems

Yaidel Reyes López

KULeuven

November 6, 2013

Adapted from slides by Prof. Dirk Roose See also: BSP book, Section 4.8,p 210

Grid-oriented problems

- data set defined on a grid, local computations with small 'stencils', e.g. PDEs (finite differences), image processing, ...
- grid point: generic name for data associated with grid point, pixel, cell, fine element, ...
- grid, data set and associated work: partitioned in subdomains.
 The subdomains are assigned (mapped) to processors

Grid-oriented problems

Extra tasks (compared to sequential problem):

- partitioning and mapping to ensure work load balance and communication minimisation
- communication between neighbouring subdomains

Model problems

- ► PDEs:
 - explicit time integration
 - relaxation methods (Jacobi, Gauss-Seidel, SOR, ...) on a structured (regular) 2D grid
- cellular automata:
 - game of life
- ► image processing:
 - convolution on a 2D pixel matrix

same data-dependency pattern same parallelisation strategy

Computational molecules

5 point stencil

Computational molecules

Computational molecules

Subdomains and overlap regions

Note: overlap region can have a width > 1.

Skeleton of a typical program

In every subdomain (processor):

- exchange data in the overlap region communication with procs. holding neighbouring subdomains
- do calculations for all grid points in subdomain
- check for stopping criterion (e.g. convergence check)
 global communication (reduction)

Exchange overlap regions

5 point stencil

Exchange overlap regions

5 point stencil

Analysis of communication cost

- assume: p processors, M grid points
- ▶ no load imbalance: M/p grid points per processor

BSP const (assumes one *flop* per grid point):

$$(M/p)/r + bg + 2I$$

- ightharpoonup communication volume \sim perimeter of subdomain
 - **b** depends on the length of the boundary
- ightharpoonup computation volume \sim area of subdomain

Partitioning strategies

Desired partitioning: minimal perimeter for same area

Partitioning strategies

Desired partitioning: minimal perimeter for same area

Which of these is preferred?

