Graph matching for BSP

Rob H. Bisseling

Mathematical Institute, Utrecht University Joint work with Fredrik Manne (Bergen, Norway)

KU Leuven, October 25, 2013

Dutline

Introduction
Greedy matching

Approximation
BSP algorithm

Matching

Introduction Greedy matching

BSP algorithm for edge-weighted matching Sequential approximation algorithm BSP approximation algorithm

Conclusion

Outline

Introduction
Greedy matching

Approximation

Matchmaker, Matchmaker, Make me a match

From the film *Fiddler on the roof*

- ▶ Hodel: Well, somebody has to arrange the matches. Young people can't decide these things themselves.
- ► Hodel: For Papa, make him a scholar.
- Chava: For Mama, make him rich as a king.

Introduction

Matching can win you a Nobel prize

Marriage as an Economic Problem

Lloyd Shapley and Alvin Roth win the Nobel Prize for showing the best way to match people with what they really want.

By Matthew Yglesias | Posted Monday, Oct. 15, 2012, at 1:51 PM ET

The Nobel Prize in economics went to Alvin E. Roth and Lloyd S. Shapley "for the theory of stable allocations and the practice of market design"

Introduction

Greedy matching

Approximation BSP algorithm

Motivation of graph matching

- Graph matching is a pairing of neighbouring vertices within a graph.
- Matching has applications in
 - medicine: finding suitable donors for organs
 - social networks: finding friends or partners
 - scientific computing: finding pivot elements in matrix computations
 - graph coarsening in multilevel methods:
 make the problem smaller by merging similar vertices before partitioning it for parallel computing
 - Finding similarity in Protein-Protein Interaction networks

Outline

Introduction

BSP matching
Approximation
BSP algorithm

Motivation of greedy/approximation graph matching

- Optimal solution is possible in polynomial time: not NP-hard.
- ► Time for weighted matching in graph G = (V, E) is $O(mn + n^2 \log n)$ with n = |V| the number of vertices, and m = |E| the number of edges (Gabow 1990).
- ▶ The aim is $n = 10^9$, and perhaps $m = 10^{11}$, so a time of $\mathcal{O}(10^{20})$ is far too long. We need linear-time greedy algorithms, or approximation algorithms.

Jutiine

iviatching

Introduction Greedy matching

BSP matching
Approximation

Formal definition of graph matching

Outline

Introduction
Greedy matchine

Approximation
BSP algorithm

- A graph is a pair G = (V, E) with vertices V and edges E.
- ▶ All edges $e \in E$ are of the form e = (v, w) for vertices $v, w \in V$.
- ▶ A matching is a collection $M \subseteq E$ of disjoint edges.
- ▶ Here, the graph is undirected, so (v, w) = (w, v).

Maximal matching

► A matching is maximal if we cannot enlarge it further by adding another edge to it.

Outline

Introduction

Greedy matchin

Approximation BSP algorithm

Maximum matching

Dutline

Matching Introduction

Greedy matchin

Approximation BSP algorithm

Conclusion

A matching is maximum if it possesses the largest possible number of edges, compared to all other matchings.

Edge-weighted matching

▶ If the edges are provided with weights $\omega : E \to \mathbb{R}_{>0}$, finding a matching M which maximises

$$\omega(M) = \sum_{e \in M} \omega(e),$$

is called edge-weighted matching.

► Greedy matching provides us with maximal matchings, but not necessarily with maximum possible weight.

Outline

Matching

Introduction

BSP matching Approximation

- ► We will first look at a sequential greedy algorithm which generates a maximal matching.
- In random order, vertices v ∈ V select and match neighbours one-by-one.
- ► Here, we can pick
 - the first available neighbour w of v (greedy random matching)
 - the neighbour w with maximum $\omega(v, w)$ (greedy weighted matching)
- Or: we sort the edges by weight, and successively match the vertices v and w of the heaviest available edge (v, w) (greedy matching)

Outline

Matching

Greedy matching

BSP matching Approximation BSP algorithm

)utline

Matching

Greedy matching

Approximation BSP algorithm

Jutline

Matching

Greedy matching

Approximation BSP algorithm

)utline

Matching

Greedy matching

Approximation BSP algorithm

Outline

Matching

Greedy matching

Approximation BSP algorithm

Jutline

Matching

Greedy matching

Approximation BSP algorithm

Jutline

Matching

Greedy matching

Approximation BSP algorithm

Jutline

Matching

Greedy matching

Approximation BSP algorithm

)utline

Matching

Greedy matching

Approximation BSP algorithm

)utline

Matching

Greedy matching

Approximation BSP algorithm

Greedy is a 1/2-approximation algorithm

Outline

Matching

Greedy matching

Approximation

Conclusion

• Weight $\omega(M) \ge \omega_{\text{optimal}}/2$

▶ Cardinality $|M| \ge |M_{\text{card}-\text{max}}|/2$, because M is maximal.

Parallel greedy matching: trouble

Suppose we match vertices simultaneously.

Outline

Matching

Greedy matching

Approximation
BSP algorithm

Parallel greedy matching: trouble

Two vertices each find an unmatched neighbour...

Matching Introduction

Greedy matching

Approximation
BSP algorithm

Parallel greedy matching: trouble

... but generate an invalid matching.

Matching

Greedy matching

Approximation
BSP algorithm

Dominant-edge algorithm

```
while E \neq \emptyset do

pick dominant edge (v, w) \in E

M := M \cup \{(v, w)\}

E := E \setminus \{(x, y) \in E : x = v \lor x = w\}

V := V \setminus \{v, w\}

return M
```

Jutime

Introduction
Greedy matching

Approximation BSP algorithm

Conclusion

▶ An edge $(v, w) \in E$ is dominant if

$$\omega(v,w) = \max\{\omega(x,y) : (x,y) \in E \land (x=v \lor x=w)\}$$

Proof: algorithm is 1/2-approximation

- ▶ Let *M* be the matching produced by the dominant-edge algorithm.
- ▶ Let M^* be a maximum matching with weight ω_{optimal} .
- Let $e^* = (a, b) \in M^*$. If both a and b are not matched in M, we could add (a, b) to M. Hence M is not maximal.
- Contradiction, because the algorithm only terminates when it produces a maximal matching.
- ▶ Therefore, a or b is matched in M.

Outline

Matching
Introduction
Greedy matching

Approximation

Proof (cont'd)

- Let $M^* = \{e_0^*, \dots, e_{k-1}^*\}$. For each edge $e_i^* \in M^*$, define an edge $e_i \in M$, as follows. If $e_i^* \in M$, $e_i = e_i^*$, otherwise e_i is the edge that removes e_i^* from E in the algorithm.
- ▶ It may happen that $e_i = e_i$ for $i \neq j$.
- ▶ $\omega(e_i) \ge \omega(e_i^*)$ for all i, since e_i is locally dominant in the algorithm and removes e_i^* , or $e_i = e_i^*$.
- ▶ Every edge $e \in M$ can occur at most twice in the list of e_i 's, since it can remove from E at most 2 edges from M^* .

$$2\omega(M) \geq \sum_{i=0}^{k-1} \omega(e_i) \geq \sum_{i=0}^{k-1} \omega(e_i^*) = \omega_{\text{optimal}}$$

▶ Hence $\omega(M) \ge \omega_{\text{optimal}}/2$.

Outline

Matching Introduction

Approximation

RSP algorithm

Sequential approximation algorithm: initialisation

```
function SEQMATCHING(V, E)
   for all v \in V do
       pref(v) = null
    D := \emptyset
    M := \emptyset
    { Find dominant edges }
    for all v \in V do
       Adj_{v} := \{ w \in V : (v, w) \in E \}
       pref(v) := argmax\{\omega(v, w) : w \in Adj_v\}
       if pref(pref(v)) = v then
           D := D \cup \{v, pref(v)\}
            M := M \cup \{(v, pref(v))\}
```

Jutline

Introduction
Greedy matching

Approximation BSP algorithm

Sequential approximation algorithm: main loop

```
while D \neq \emptyset do
    pick v \in D
    D := D \setminus \{v\}
    for all x \in Adi_{v} \setminus \{pref(v)\} : (x, pref(x)) \notin M do
         Adi_{\times} := Adi_{\times} \setminus \{v\}
         pref(x) := argmax\{\omega(x, w) : w \in Adi_x\}
         if pref(pref(x)) = x then
              D := D \cup \{x, pref(x)\}
             M := M \cup \{(x, pref(x))\}
return M
```

utline |

Matching Introduction Greedy matching

Approximation
BSP algorithm

Dominant-edge algorithm

- ▶ Based on dominant edges: v = pref(w) and w = pref(v).
- Dominance is a local property: easy to parallelise.
- ► Algorithm keeps going until set of dominant vertices *D* is empty and matching *M* is maximal.
- Assumption without loss of generality: weights are unique. Otherwise, add $r \cdot \epsilon$ to weight, with $r \in [0,1]$ random, or use vertex numbering to break ties.

Jutline

Introduction
Greedy matching

Approximation

Time complexity

- ▶ Linear time complexity $\mathcal{O}(|E|)$ if edges of each vertex are sorted by weight.
- ► Sorting costs are

$$\sum_{v} deg(v) \log deg(v) \le \sum_{v} deg(v) \log \Delta = 2|E| \log \Delta,$$

where Δ is the maximum vertex degree.

▶ This algorithm is based on a dominant-edge algorithm by Preis (1999), called LAM, which is linear-time $\mathcal{O}(|E|)$, does not need sorting, and also is a 1/2-approximation, but is hard to parallelise.

Outline

Matching
Introduction
Greedy matching

Approximation
BSP algorithm

Parallel algorithm (Manne & Bisseling, 2007)

▶ Processor P(s) has vertex set V_s , with

$$\bigcup_{s=0}^{p-1} V_s = V$$

and $V_s \cap V_t = \emptyset$ if $s \neq t$.

► The adjacency set Adj_v of a vertex v may contain vertices w from another processor. Jutline

Introduction

Approximation BSP algorithm

Halo vertices

We define the set of halo vertices

$$H_s = \bigcup_{v \in V_s} Adj_v \setminus V_s$$

- ► The weights $\omega(v, w)$ are stored with the edges, for all $v \in V_s$ and $w \in V_s \cup H_s$.
- ▶ $E_s = \{(v, w) \in E : v \in V_s\}$ is the subset of all the edges connected to V_s .

Outline

Matching Introduction Greedy matchin

Approximation
BSP algorithm

Parallel algorithm for P(s): initialisation

```
function PARMATCHING(V_s, H_s, E_s, distribution \phi)
    for all v \in V_s do
        pref(v) = null
    D_c := \emptyset
    M_c := \emptyset
    { Find dominant edges }
    for all v \in V_s do
        Adj_{v} := \{ w \in V_{s} \cup H_{s} : (v, w) \in E_{s} \}
        pref(v) := argmax\{\omega(v, w) : w \in Adj_v\}
        if pref(v) \in V_s then
            if pref(pref(v)) = v then
                D_s := D_s \cup \{v, pref(v)\}
                M_s := M_s \cup \{(v, pref(v))\}
        else
            put proposal(v, pref(v)) in P(\phi(pref(v)))
    Sync
```

Outline

Matching
Introduction
Greedy matching

BSP matching Approximation BSP algorithm

Conclusion

Universiteit Utrecht

How to propose

Source: www.theguardian.com

proposal(v, w): v proposes to w

Outline

Matching Introduction Greedy matching

Approximation
BSP algorithm

Parallel algorithm for P(s): main loop

```
while D_s \neq \emptyset do
    pick v \in D_s
    D := D \setminus \{v\}
    for all x \in Adi_{v} \setminus \{pref(v)\}: (x, pref(x)) \notin M_s do
         if x \in V_s then
              Adi_{\times} := Adi_{\times} \setminus \{v\}
              pref(x) := argmax\{\omega(x, w) : w \in Adi_x\}
              if pref(x) \in V_s then
                  if pref(pref(x)) = x then
                       D_s := D_s \cup \{x, pref(x)\}
                       M_{\mathfrak{s}} := M_{\mathfrak{s}} \cup \{(x, pref(x))\}
              else
                   put proposal(x, pref(x)) in P(\phi(pref(x)))
         else \{x \in H_s\}
              put unavailable(v,x) in P(\phi(x))
Sync
```

Outline

Matching Introduction

BSP matching Approximation BSP algorithm

Conclusion

Universiteit Utrecht

Parallel algorithm for P(s): communication (1)

```
for all messages m received do

if m = proposal(x, y) then

if pref(y) = x then

D_s := D_s \cup \{y\}
M_s := M_s \cup \{(x, y)\}
put accepted(x, y) in P(\phi(x))

if m = accepted(x, y) then
D_s := D_s \cup \{x\}
M_s := M_s \cup \{(x, y)\}
```

Outline

Matching
Introduction
Greedy matching
BSP matching
Approximation
BSP algorithm

Parallel algorithm for P(s): communication (2)

```
for all messages m received do
    if m = unavailable(v, x) then
        Adi_{\times} := Adi_{\times} \setminus \{v\}
        pref(x) := argmax\{\omega(x, w) : w \in Adj_x\}
        if pref(x) \in V_s then
             if pref(pref(x)) = x then
                 D_s := D_s \cup \{x, pref(x)\}
                 M_{\varepsilon} := M_{\varepsilon} \cup \{(x, pref(x))\}
        else
             put proposal(x, pref(x)) in P(\phi(pref(x)))
Sync
```

Outline

Matching
Introduction
Greedy matching
BSP matching

Approximation BSP algorithm

Termination

Dutline

Matching Introduction Greedy matching

Approximation
BSP algorithm

- ► The algorithm alternates supersteps of computation running the main loop and communication handling the received messages.
- ▶ The whole algorithm can terminate when no messages have been received by processor P(s) and the local set D_s is empty, for all s.
- ▶ This can be checked at the every synchronisation point.

Load balance

- Processors can have different amounts of work, even if they have the same number of vertices or edges.
- ▶ Use can be made of a global clock based on ticks, the unit of time needed to handle a vertex x (in $\mathcal{O}(1)$).
- ► After every *k* ticks, everybody synchronises.
- ► The BSP system takes care that messages are automatically sent, in bulk.
- ▶ In the next superstep, all received messages are handled.

Outline

Matching Introduction Greedy matching

Approximation
BSP algorithm

Synchronisation frequency

Guidance for the choice of k is provided by the BSP parameter I: choosing k ≥ I guarantees that at most 50% of the total time is spent in synchronisation.

Outline

Matching Introduction Greedy matching

BSP matching Approximation BSP algorithm

- ► Choosing *k* sufficiently small will cause all processors to be busy during most supersteps.
- Good choice: k = 21?

Further improvement: edge-based (2D) distribution

	SpMV		Mato	Matching	
Name	1 <i>D</i>	2 <i>D</i>	1 <i>D</i>	2 <i>D</i>	
rw9 (af_shell10)	113	105	169	150	
rw10 (boneS10)	150	145	228	189	
$rw11 \; ext{(Stanford)}$	340	141	479	234	
$rw12\ ({\tt gupta3})$	710	44	1,305	61	
$rw13 (St_Berk.)$	716	448	1,152	812	
$rw14_{\ (F1)}$	139	130	148	139	
${\sf SW1}$ (small world)	1,007	417	2,111	303	
sw2	1,957	829	3,999	563	
sw3	2,017	832	4,255	528	
er1 (random)	1,856	1,133	1,788	1,157	
er2	3,451	1,841	3,721	1,635	
er3	5,476	2,569	6,350	1,990	

Communication volume in sparse matrix—vector multiplication and Karp—Sipser matching.

Source: Patwary, Bisseling, Manne (2010).

Outline

Matching
Introduction
Greedy matching

BSP matching Approximation BSP algorithm

Jonetusion

Conclusions and outlook

- ▶ BSP is extremely suitable for parallel graph computations:
 - no need to worry about communication because we buffer messages until the next synchronisation;
 - no need for send-receive pairs;
 - BSP cost model gives synchronisation frequency;
 - · correctness proof of algorithm becomes simpler;
 - no deadlock possible.

Outline

Matching
Introduction
Greedy matching

Approximation
BSP algorithm

