
Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

1

Graph matching for BSP

Rob H. Bisseling

Mathematical Institute, Utrecht University
Joint work with Fredrik Manne (Bergen, Norway)

KU Leuven, October 25, 2013

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

2

Matching
Introduction
Greedy matching

BSP algorithm for edge-weighted matching
Sequential approximation algorithm
BSP approximation algorithm

Conclusion

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

3

Matchmaker, Matchmaker, Make me a match

From the film Fiddler on the roof

I Hodel: Well, somebody has to arrange the matches.
Young people can’t decide these things themselves.

I Hodel: For Papa, make him a scholar.

I Chava: For Mama, make him rich as a king.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

4

Matching can win you a Nobel prize

Source: Slate magazine October 15, 2012

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

5

Motivation of graph matching

I Graph matching is a pairing of neighbouring vertices within
a graph.

I Matching has applications in
• medicine: finding suitable donors for organs
• social networks: finding friends or partners
• scientific computing: finding pivot elements in matrix

computations
• graph coarsening in multilevel methods:

make the problem smaller by merging similar vertices before
partitioning it for parallel computing

• Finding similarity in Protein-Protein Interaction networks

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

6

Motivation of greedy/approximation graph
matching

I Optimal solution is possible in polynomial time: not
NP-hard.

I Time for weighted matching in graph G = (V ,E) is
O(mn + n2 log n) with n = |V | the number of vertices,
and m = |E | the number of edges (Gabow 1990).

I The aim is n = 109, and perhaps m = 1011, so a time of
O(1020) is far too long. We need linear-time greedy
algorithms, or approximation algorithms.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

7

Formal definition of graph matching

I A graph is a pair G = (V ,E) with vertices V and edges E .

I All edges e ∈ E are of the form e = (v ,w) for vertices
v ,w ∈ V .

I A matching is a collection M ⊆ E of disjoint edges.

I Here, the graph is undirected, so (v ,w) = (w , v).

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

8

Maximal matching

I A matching is maximal if we cannot enlarge it further by
adding another edge to it.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

9

Maximum matching

I A matching is maximum if it possesses the largest possible
number of edges, compared to all other matchings.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

10

Edge-weighted matching

I If the edges are provided with weights ω : E → R>0,
finding a matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called edge-weighted matching.

I Greedy matching provides us with maximal matchings,
but not necessarily with maximum possible weight.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

11

Sequential greedy matching

I We will first look at a sequential greedy algorithm which
generates a maximal matching.

I In random order, vertices v ∈ V select and match
neighbours one-by-one.

I Here, we can pick
• the first available neighbour w of v

(greedy random matching)
• the neighbour w with maximum ω(v ,w)

(greedy weighted matching)

I Or: we sort the edges by weight, and successively match
the vertices v and w of the heaviest available edge (v ,w)
(greedy matching)

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

12

Sequential greedy matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

13

Greedy is a 1/2-approximation algorithm

I Weight ω(M) ≥ ωoptimal/2

I Cardinality |M| ≥ |Mcard−max|/2, because M is maximal.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Suppose we match vertices simultaneously.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Two vertices each find an unmatched neighbour. . .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

. . . but generate an invalid matching.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

15

Dominant-edge algorithm

while E 6= ∅ do
pick dominant edge (v ,w) ∈ E
M := M ∪ {(v ,w)}
E := E \ {(x , y) ∈ E : x = v ∨ x = w}
V := V \ {v ,w}

return M

I An edge (v ,w) ∈ E is dominant if

ω(v ,w) = max{ω(x , y) : (x , y) ∈ E ∧ (x = v ∨ x = w)}

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

16

Proof: algorithm is 1/2-approximation

I Let M be the matching produced by the dominant-edge
algorithm.

I Let M∗ be a maximum matching with weight ωoptimal.

I Let e∗ = (a, b) ∈ M∗. If both a and b are not matched in
M, we could add (a, b) to M. Hence M is not maximal.

I Contradiction, because the algorithm only terminates when
it produces a maximal matching.

I Therefore, a or b is matched in M.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

17

Proof (cont’d)

I Let M∗ = {e∗0 , . . . , e∗k−1}. For each edge e∗i ∈ M∗, define
an edge ei ∈ M, as follows. If e∗i ∈ M, ei = e∗i , otherwise
ei is the edge that removes e∗i from E in the algorithm.

I It may happen that ei = ej for i 6= j .

I ω(ei) ≥ ω(e∗i) for all i , since ei is locally dominant in the
algorithm and removes e∗i , or ei = e∗i .

I Every edge e ∈ M can occur at most twice in the list of
ei ’s, since it can remove from E at most 2 edges from M∗.

I

2ω(M) ≥
k−1∑
i=0

ω(ei) ≥
k−1∑
i=0

ω(e∗i) = ωoptimal

I Hence ω(M) ≥ ωoptimal/2.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

18

Sequential approximation algorithm: initialisation

function SeqMatching(V ,E)
for all v ∈ V do

pref (v) = null
D := ∅
M := ∅

{ Find dominant edges }
for all v ∈ V do

Adjv := {w ∈ V : (v ,w) ∈ E}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

19

Sequential approximation algorithm: main loop

while D 6= ∅ do
pick v ∈ D
D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ M do

Adjx := Adjx \ {v}
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)}
M := M ∪ {(x , pref (x))}

return M

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

20

Dominant-edge algorithm

I Based on dominant edges:
v = pref (w) and w = pref (v).

I Dominance is a local property: easy to parallelise.

I Algorithm keeps going until set of dominant vertices D is
empty and matching M is maximal.

I Assumption without loss of generality: weights are unique.
Otherwise, add r · ε to weight, with r ∈ [0, 1] random, or
use vertex numbering to break ties.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

21

Time complexity

I Linear time complexity O(|E |) if edges of each vertex are
sorted by weight.

I Sorting costs are∑
v

deg(v) log deg(v) ≤
∑
v

deg(v) log ∆ = 2|E | log ∆,

where ∆ is the maximum vertex degree.

I This algorithm is based on a dominant-edge algorithm by
Preis (1999), called LAM, which is linear-time O(|E |),
does not need sorting, and also is a 1/2-approximation, but
is hard to parallelise.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

22

Parallel algorithm (Manne & Bisseling, 2007)

I Processor P(s) has vertex set Vs , with

p−1⋃
s=0

Vs = V

and Vs ∩ Vt = ∅ if s 6= t.

I The adjacency set Adjv of a vertex v may contain vertices
w from another processor.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

23

Halo vertices

I We define the set of halo vertices

Hs =
⋃

v∈Vs

Adjv \ Vs

I The weights ω(v ,w) are stored with the edges, for all
v ∈ Vs and w ∈ Vs ∪ Hs .

I Es = {(v ,w) ∈ E : v ∈ Vs}
is the subset of all the edges connected to Vs .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

24

Parallel algorithm for P(s): initialisation

function ParMatching(Vs ,Hs ,Es , distribution φ)
for all v ∈ Vs do

pref (v) = null
Ds := ∅
Ms := ∅

{ Find dominant edges }
for all v ∈ Vs do

Adjv := {w ∈ Vs ∪ Hs : (v ,w) ∈ Es}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (v) ∈ Vs then

if pref (pref (v)) = v then
Ds := Ds ∪ {v , pref (v)}
Ms := Ms ∪ {(v , pref (v))}

else
put proposal(v , pref (v)) in P(φ(pref (v)))

Sync

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

25

How to propose

Source: www.theguardian.com

proposal(v ,w): v proposes to w

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

26

Parallel algorithm for P(s): main loop

while Ds 6= ∅ do
pick v ∈ Ds

D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ Ms do

if x ∈ Vs then
Adjx := Adjx \ {v}
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (x) ∈ Vs then

if pref (pref (x)) = x then
Ds := Ds ∪ {x , pref (x)}
Ms := Ms ∪ {(x , pref (x))}

else
put proposal(x , pref (x)) in P(φ(pref (x)))

else {x ∈ Hs }
put unavailable(v , x) in P(φ(x))

Sync

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

27

Parallel algorithm for P(s): communication (1)

for all messages m received do
if m = proposal(x , y) then

if pref (y) = x then
Ds := Ds ∪ {y}
Ms := Ms ∪ {(x , y)}
put accepted(x , y) in P(φ(x))

if m = accepted(x , y) then
Ds := Ds ∪ {x}
Ms := Ms ∪ {(x , y)}

. . .

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

28

Parallel algorithm for P(s): communication (2)

for all messages m received do
. . .
if m = unavailable(v , x) then

Adjx := Adjx \ {v}
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (x) ∈ Vs then

if pref (pref (x)) = x then
Ds := Ds ∪ {x , pref (x)}
Ms := Ms ∪ {(x , pref (x))}

else
put proposal(x , pref (x)) in P(φ(pref (x)))

Sync

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

29

Termination

I The algorithm alternates supersteps of computation running the
main loop and communication handling the received messages.

I The whole algorithm can terminate when no messages have
been received by processor P(s) and the local set Ds is empty,
for all s.

I This can be checked at the every synchronisation point.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

30

Load balance

I Processors can have different amounts of work, even if they
have the same number of vertices or edges.

I Use can be made of a global clock based on ticks, the unit of
time needed to handle a vertex x (in O(1)).

I After every k ticks, everybody synchronises.

I The BSP system takes care that messages are automatically
sent, in bulk.

I In the next superstep, all received messages are handled.

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

31

Synchronisation frequency

I Guidance for the choice of k is provided by the BSP parameter
l : choosing k ≥ l guarantees that at most 50% of the total
time is spent in synchronisation.

I Choosing k sufficiently small will cause all processors to be busy
during most supersteps.

I Good choice: k = 2l?

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

32

Further improvement: edge-based (2D) distribution

SpMV Matching
Name 1D 2D 1D 2D

rw9 (af shell10) 113 105 169 150
rw10 (boneS10) 150 145 228 189
rw11 (Stanford) 340 141 479 234
rw12 (gupta3) 710 44 1,305 61
rw13 (St Berk.) 716 448 1,152 812
rw14 (F1) 139 130 148 139
sw1 (small world) 1,007 417 2,111 303
sw2 1,957 829 3,999 563
sw3 2,017 832 4,255 528
er1 (random) 1,856 1,133 1,788 1,157
er2 3,451 1,841 3,721 1,635
er3 5,476 2,569 6,350 1,990

Communication volume in sparse matrix–vector multiplication
and Karp–Sipser matching.
Source: Patwary, Bisseling, Manne (2010).

Outline

Matching

Introduction

Greedy matching

BSP matching

Approximation

BSP algorithm

Conclusion

33

Conclusions and outlook

I BSP is extremely suitable for parallel graph computations:

• no need to worry about communication because we buffer
messages until the next synchronisation;

• no need for send-receive pairs;

• BSP cost model gives synchronisation frequency;

• correctness proof of algorithm becomes simpler;

• no deadlock possible.

	Outline
	Matching
	Introduction
	Greedy matching

	BSP algorithm for edge-weighted matching
	Approximation
	BSP algorithm

	Conclusion

