Graph matching for BSP

Rob H. Bisseling

Mathematical Institute, Utrecht University Joint work with Fredrik Manne (Bergen, Norway)

KU Leuven, October 25, 2013

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Matching](#page-2-0)

[Introduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP algorithm for edge-weighted matching](#page-32-0) [Sequential approximation algorithm](#page-32-0) [BSP approximation algorithm](#page-39-0)

[Conclusion](#page-50-0)

Universiteit Utrecht

[Outline](#page-1-0) [Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0) [BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0) [Conclusion](#page-50-0)

メロト メタト メミト メミト 哇 $2Q$

Matchmaker, Matchmaker, Make me a match

From the film Fiddler on the roof

- \blacktriangleright Hodel: Well, somebody has to arrange the matches. Young people can't decide these things themselves.
- \blacktriangleright Hodel: For Papa, make him a scholar.
- \triangleright Chava: For Mama, make him rich as a king.

Universiteit Utrecht

[Outline](#page-1-0)

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Matching can win you a Nobel prize

Marriage as an Economic Problem

Lloyd Shapley and Alvin Roth win the Nobel Prize for showing the best way to match people with what they really want.

By Matthew Yglesias | Posted Monday, Oct. 15, 2012, at 1:51 PM ET **B** SOCIAL OFF BLIke 963 V Tweet 100 MMC

The Nobel Prize in economics went to Alvin E. Roth and Lloyd S. Shapley "for the theory of stable allocations and the practice of market design"

Source: Slate magazine October 15, 2012

つへへ

4 日 1 4 旬

ALC: YES

Universiteit Utrecht

[Outline](#page-1-0)

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Motivation of graph matching

- \triangleright Graph matching is a pairing of neighbouring vertices within a graph.
- \blacktriangleright Matching has applications in
	- medicine: finding suitable donors for organs
	- social networks: finding friends or partners
	- scientific computing: finding pivot elements in matrix computations
	- graph coarsening in multilevel methods: make the problem smaller by merging similar vertices before partitioning it for parallel computing
	- Finding similarity in Protein-Protein Interaction networks

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Motivation of greedy/approximation graph matching

- \triangleright Optimal solution is possible in polynomial time: not NP-hard.
- \triangleright Time for weighted matching in graph $G = (V, E)$ is $\mathcal{O}(mn + n^2 \log n)$ with $n = |V|$ the number of vertices, and $m = |E|$ the number of edges (Gabow 1990).
- \blacktriangleright The aim is $n=10^9$, and perhaps $m=10^{11}$, so a time of $\mathcal{O}(10^{20})$ is far too long. We need linear-time greedy algorithms, or approximation algorithms.

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Formal definition of graph matching

- A graph is a pair $G = (V, E)$ with vertices V and edges E.
- All edges $e \in E$ are of the form $e = (v, w)$ for vertices $v, w \in V$.
- A matching is a collection $M \subseteq E$ of disjoint edges.
- Here, the graph is undirected, so $(v, w) = (w, v)$.

メロトメ 御 トメ 君 トメ 君 ト

- 그러

 $2Q$

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

7

Maximal matching

[Outline](#page-1-0)

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

A matching is maximal if we cannot enlarge it further by adding another edge to it.

Maximum matching

[Outline](#page-1-0)

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

 \triangleright A matching is maximum if it possesses the largest possible number of edges, compared to all other matchings.

Edge-weighted matching

If the edges are provided with weights $\omega : E \to \mathbb{R}_{>0}$, finding a matching M which maximises

$$
\omega(M)=\sum_{e\in M}\omega(e),
$$

is called edge-weighted matching.

 \triangleright Greedy matching provides us with maximal matchings, but not necessarily with maximum possible weight.

Universiteit Utrecht

[Outline](#page-1-0)

[Matching](#page-2-0)

I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

- \triangleright We will first look at a sequential greedy algorithm which generates a maximal matching.
- In random order, vertices $v \in V$ select and match neighbours one-by-one.
- \blacktriangleright Here, we can pick
	- the first available neighbour w of v (greedy random matching)
	- the neighbour w with maximum $\omega(v, w)$ (greedy weighted matching)
- \triangleright Or: we sort the edges by weight, and successively match the vertices v and w of the heaviest available edge (v, w) (greedy matching)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

Greedy is a $1/2$ -approximation algorithm

- \blacktriangleright Weight $\omega(M) \geq \omega_{\text{optimal}}/2$
- \triangleright Cardinality $|M| \geq |M_{\text{card}-\text{max}}|/2$, because M is maximal.

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

Parallel greedy matching: trouble

Suppose we match vertices simultaneously.

Universiteit Utrecht

[Outline](#page-1-0) [Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0) [BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0) [Conclusion](#page-50-0)

Parallel greedy matching: trouble

Two vertices each find an unmatched neighbour. . .

Universiteit Utrecht

[Outline](#page-1-0) [Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0) [BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0) [Conclusion](#page-50-0)

Parallel greedy matching: trouble

... but generate an *invalid* matching.

[Outline](#page-1-0) [Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0) [BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0) [Conclusion](#page-50-0)

メロトメ 御 トメ 君 トメ 君 ト 哇 299

Dominant-edge algorithm

$$
\begin{array}{ll}\n\text{while } E \neq \emptyset \text{ do} \\
\text{pick dominant edge } (v, w) \in E \\
M := M \cup \{(v, w)\} \\
E := E \setminus \{(x, y) \in E : x = v \vee x = w\} \\
V := V \setminus \{v, w\} \\
\text{return } M\n\end{array}
$$

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0)

[BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

An edge $(v, w) \in E$ is dominant if

$$
\omega(v,w) = \max\{\omega(x,y) : (x,y) \in E \land (x = v \lor x = w)\}
$$

Proof: algorithm is 1/2-approximation

- \triangleright Let M be the matching produced by the dominant-edge algorithm.
- ► Let M^* be a maximum matching with weight ω_{optimal} .
- ► Let $e^* = (a, b) \in M^*$. If both a and b are not matched in M, we could add (a, b) to M. Hence M is not maximal.
- \triangleright Contradiction, because the algorithm only terminates when it produces a maximal matching.
- \blacktriangleright Therefore, a or b is matched in M.

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0)

[BSP algorithm](#page-39-0)

Proof (cont'd)

- ► Let $M^* = \{e_0^*, \ldots, e_{k-1}^*\}$. For each edge $e_i^* \in M^*$, define an edge $e_i \in M$, as follows. If $e_i^* \in M$, $e_i = e_i^*$, otherwise e_i is the edge that removes e_i^* from E in the algorithm.
- \blacktriangleright It may happen that $e_i = e_j$ for $i \neq j.$
- $\blacktriangleright \ \omega(e_i) \geq \omega(e_i^*)$ for all *i*, since e_i is locally dominant in the algorithm and removes e_i^* , or $e_i = e_i^*$.
- Every edge $e \in M$ can occur at most twice in the list of e_i 's, since it can remove from E at most 2 edges from M^* .

$$
2\omega(\textit{M})\geq \sum_{i=0}^{k-1}\omega(e_i)\geq \sum_{i=0}^{k-1}\omega(e_i^*)=\omega_{\rm optimal}
$$

Hence $\omega(M) \geq \omega_{\text{optimal}}/2$.

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0)

[BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

I

Sequential approximation algorithm: initialisation

function $SeqMATCHING(V, E)$ for all $v \in V$ do $pref(v)=null$ $D := \emptyset$ $M := \emptyset$

> { Find dominant edges } for all $v \in V$ do $\{Adj}_v := \{ w \in V : (v, w) \in E \}$ $pref(v):=\arg\max\{\omega(v,w) : w \in Adj_{v}\}\$ if $pref(pref(v))=v$ then $D := D \cup \{v, pref(v)\}$ $M := M \cup \{(v, pref(v))\}$

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0)

[Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

Sequential approximation algorithm: main loop

$$
\begin{aligned}\n\text{while } D \neq \emptyset \text{ do} \\
\text{pick } v \in D \\
D &:= D \setminus \{v\} \\
\text{for all } x \in Adj_x \setminus \{pref(v)\} : (x, pref(x)) \notin M \text{ do} \\
\text{Adj}_x &:= Adj_x \setminus \{v\} \\
\text{pref}(x) &:= \operatorname{argmax}\{ \omega(x, w) : w \in Adj_x\} \\
\text{if } pref(pref(x)) = x \text{ then} \\
D &:= D \cup \{x, pref(x)\} \\
M &:= M \cup \{(x, pref(x))\}\n\end{aligned}
$$

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0)

[BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

return M

Dominant-edge algorithm

 \triangleright Based on dominant edges:

 $v = pref(w)$ and $w = pref(v)$.

- Dominance is a local property: easy to parallelise.
- \triangleright Algorithm keeps going until set of dominant vertices D is empty and matching M is maximal.
- \triangleright Assumption without loss of generality: weights are unique. Otherwise, add $r \cdot \epsilon$ to weight, with $r \in [0,1]$ random, or use vertex numbering to break ties.

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0)

[BSP algorithm](#page-39-0)

Time complexity

- Intear time complexity $\mathcal{O}(|E|)$ if edges of each vertex are sorted by weight.
- \triangleright Sorting costs are

$$
\sum_{v} deg(v) \log deg(v) \leq \sum_{v} deg(v) \log \Delta = 2|E| \log \Delta,
$$

where Δ is the maximum vertex degree.

 \triangleright This algorithm is based on a dominant-edge algorithm by Preis (1999), called LAM, which is linear-time $\mathcal{O}(|E|)$, does not need sorting, and also is a $1/2$ -approximation, but is hard to parallelise.

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0)

[Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Parallel algorithm (Manne & Bisseling, 2007)

 \blacktriangleright Processor $P(s)$ has vertex set V_s , with

$$
\bigcup_{s=0}^{p-1}V_s=V
$$

and $V_s \cap V_t = \emptyset$ if $s \neq t$.

The adjacency set Adj_v of a vertex v may contain vertices w from another processor.

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Halo vertices

 \triangleright We define the set of halo vertices

$$
H_s = \bigcup_{v \in V_s} Adj_v \setminus V_s
$$

- The weights $\omega(v, w)$ are stored with the edges, for all $v \in V_s$ and $w \in V_s \cup H_s$.
- $E_s = \{(v, w) \in E : v \in V_s\}$ is the subset of all the edges connected to V_s .

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Parallel algorithm for $P(s)$: initialisation

function $\text{PARMATCHING}(V_s, H_s, E_s)$, distribution ϕ) for all $v \in V_s$ do $pref(v)=null$ $D_{\mathsf{s}} := \emptyset$ $M_{\mathsf{s}} := \emptyset$ { Find dominant edges } for all $v \in V_s$ do $Adj_{v} := \{ w \in V_{s} \cup H_{s} : (v, w) \in E_{s} \}$ $pref(v):=\arg\max\{\omega(v,w) : w \in Adj_v\}$ if $pref(v)\in V_s$ then if pref(pref(v)) = v then $D_s := D_s \cup \{v, \mathit{pref}(v)\}$ $M_{\mathsf{s}} := M_{\mathsf{s}} \cup \{(\mathsf{v},\mathsf{pref}(\mathsf{v}))\}$ else

put proposal(v, pref(v)) in $P(\phi(\text{pref}(v)))$ SyncK ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ ○ 聖 ◇ 19 Q @

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

How to propose

Source: www.theguardian.com

proposal (v, w) : v proposes to w

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

Parallel algorithm for $P(s)$: main loop

$$
\begin{aligned}\n\text{while } D_s \neq \emptyset \text{ do} \\
\text{pick } v \in D_s \\
D := D \setminus \{v\} \\
\text{for all } x \in Adj_v \setminus \{pref(v)\} : (x, pref(x)) \notin M_s \text{ do} \\
\text{if } x \in V_s \text{ then} \\
\text{Adj}_x := Adj_x \setminus \{v\} \\
\text{pref}(x) := \operatorname{argmax}\{ \omega(x, w) : w \in Adj_x\} \\
\text{if } pref(x) \in V_s \text{ then} \\
\text{if } pref(pref(x)) = x \text{ then} \\
D_s := D_s \cup \{x, pref(x)\} \\
M_s := M_s \cup \{(x, pref(x))\} \\
\text{else} \\
\text{put } proposal(x, pref(x)) \text{ in } P(\phi(pref(x))) \\
\text{else} \\
\{x \in H_s \} \\
\text{put } unavailable(v, x) \text{ in } P(\phi(x)) \\
\text{Sync}\n\end{aligned}
$$

[Outline](#page-1-0) [Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

> [BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

Parallel algorithm for $P(s)$: communication (1)

for all messages *m* received do if $m =$ proposal(x, y) then if $pref(v)=x$ then $D_{\mathsf{s}} := D_{\mathsf{s}} \cup \{y\}$ $M_{s} := M_{s} \cup \{(x, y)\}\$ put accepted(x, y) in $P(\phi(x))$ if $m = accepted(x, y)$ then $D_{\mathsf{s}} := D_{\mathsf{s}} \cup \{x\}$ $M_{s} := M_{s} \cup \{(x, y)\}\$

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

. . .

Parallel algorithm for $P(s)$: communication (2)

for all messages *received do*

if
$$
m = \text{unavailable}(v, x)
$$
 then

\n
$$
Adj_x := Adj_x \setminus \{v\}
$$
\n
$$
pref(x) := \text{argmax}\{\omega(x, w) : w \in Adj_x\}
$$
\nif $pref(x) \in V_s$ then

\nif $pref(pref(x)) = x$ then

\n
$$
D_s := D_s \cup \{x, pref(x)\}
$$
\n
$$
M_s := M_s \cup \{(x, pref(x))\}
$$

else

put proposal(x, pref(x)) in $P(\phi(\text{pref}(x)))$

Sync

[Outline](#page-1-0) [Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0) [BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0) [Conclusion](#page-50-0)

Termination

- \triangleright The algorithm alternates supersteps of computation running the main loop and communication handling the received messages.
- \triangleright The whole algorithm can terminate when no messages have been received by processor $P(s)$ and the local set D_s is empty, for all s.
- \blacktriangleright This can be checked at the every synchronisation point.

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Load balance

- \triangleright Processors can have different amounts of work, even if they have the same number of vertices or edges.
- If Use can be made of a global clock based on ticks, the unit of time needed to handle a vertex x (in $\mathcal{O}(1)$).
- \triangleright After every k ticks, everybody synchronises.
- \triangleright The BSP system takes care that messages are automatically sent, in bulk.
- In the next superstep, all received messages are handled.

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Synchronisation frequency

- \triangleright Guidance for the choice of k is provided by the BSP parameter l: choosing $k > l$ guarantees that at most 50% of the total time is spent in synchronisation.
- \triangleright Choosing k sufficiently small will cause all processors to be busy during most supersteps.
- Good choice: $k = 2l$?

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

Further improvement: edge-based (2D) distribution

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

Communication volume in sparse matrix–vector multiplication and Karp–Sipser matching. Source: Patwary, Bisseling, Manne (2010).すロチ す母チ すきと すきと 299 注

Conclusions and outlook

BSP is extremely suitable for parallel graph computations:

- no need to worry about communication because we buffer messages until the next synchronisation;
- no need for send-receive pairs;
- BSP cost model gives synchronisation frequency;
- correctness proof of algorithm becomes simpler;
- no deadlock possible.

[Outline](#page-1-0)

[Matching](#page-2-0) I[ntroduction](#page-2-0) [Greedy matching](#page-10-0)

[BSP matching](#page-32-0) [Approximation](#page-32-0) [BSP algorithm](#page-39-0)

[Conclusion](#page-50-0)

