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Suppose A is an n×n sparse matrix. An upper triangular matrix U has for all i > j (i, j ∈ [0, n−1]) that
uij = 0. Similarly, a lower triangular matrix L has for all i < j that lij = 0 (note that diagonal entries may
be nonzero). LU-decomposition attempts to construct such matrices L,U so that their product equals A:

A = LU.

Solving linear systems using LU decompositions (or Cholesky-factorisations in the case that A is symmetric
positive definite1 ) fall under the direct methods for solving linear systems; a (mathematically) precise
solution to Ax = b is calculated.

Assignment A. (1 pt.)
Sketch a method to solve x from Lx̃ = b in an efficient way, with L a lower triangular matrix as defined

above. Using this, motivate why decomposing A into L and U hence is useful for solving Ax = b.

Iterative methods solve Ax = b approximately, with (usually) increasing accuracy as more iterations are
performed. Generally, an initial solution x0 is guessed (or taken equal to ~0), and the residual r0 = b− Ax0

of this initial approximation is used to find a better approximation x1. This is applied iteratively (r1 is
used to find x2, and so on), until the norm of the last residual rk is deemed small enough (and the final
approximation xk hence approximates the true solution x well enough).

Example. A (relatively) easy to understand iterative method is, for example, Generalised Conjugate
Residuals (GCR). In this method, update vectors ui are sought such that ri+1 = b−Axi+1 = b−A(xi + ui)
is reduced (according to some norm). GCR chooses the ui to be of the following form: ui = αiri; hence
ri+1 = ri − αiAri = ri − αici, with ci = Ari the so-called correction vector. This means that actually,
ri+1 = r0 − α0c0 − · · · − αici.

Now comes in the main idea. We may choose the αi such that r0−αici is orthogonal to r0; in other words,
we subtract (from r0) the part of the ci upon which r0 was projected. This causes a strict reduction of the
length (or rather, norm) of each subsequent ri, and the residuals will approach norm zero. This works, as
long as the ci are not completely orthogonal to r0; in such case this method would break down.

Assignment B. (1 pt.)
Consider a case in which you would have a matrix A, and right-hand side vectors b0, . . . , bk−1, k ∈ N.

For small dimensions of A and small k, would you rather use a direct or iterative method to solve the systems
Axi = bi, and why? Answer the same for (very) large A with small k, and large A and large k.

1. The algorithm

The LU algorithm is as follows. First, the top row u(0) from A = A(0) is copied to the top (empty) row of
U . Then the leftmost column l(0) from A(0) is copied to the leftmost (empty) column of L, and its entries are
divided by a00. This causes the diagonal entries of L to all equal 1. Note that (LU)0j = u

(0)
j l

(0)
0 = u

(0)
j 1 = a0j

due to this normalisation and the fact that L,U are lower or upper triangular, respectively; the first row of
(LU) is already correct. Also because of this normalisation, (LU)i0 = u

(0)
0 l

(0)
i = a00

ai0
a00

= ai0 and the first
column of (LU) is correct. Define A(1) to be the submatrix of A(0) with both the first row and first column
deleted, thus a matrix of dimensions (n − 1) × (n − 1). The idea is to apply the algorithm recursively on
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1A matrix A is positive definite when for all nonzero z ∈ Rn, zAzT > 0.
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this smaller matrix. However, if we would do this, then when calculating (LU)ij the current recursion step
would add the factor u

(0)
j l

(0)
i (that is, (LU)ij = liuj + . . . ); the second row and column would no longer be

correct. To offset this, we subtract this value u
(0)
j l

(0)
i from each entry a

(0)
ij found in A(1). Now the algorithm

recurses correctly, and terminates at the 1× 1 matrix A(n−1).

Example 1.1. Let us decompose

A = A(0) =

 1 0 3
1 2 0
7 0 5

 .

The first step k = 0 constructs the following L,U :

L =

 1 0 0
1 0
7

 U =

 1 0 3
0
0 0

 .

The submatrix used for the next iteration will be

A(1) =
(

2 −3
0 5−21

)
.

At k = 1, the L,U decomposition matrices are updated:

L =

 1 0 0
1 1 0
7 0

 U =

 1 0 3
0 2 −3
0 0

 ,

and

A(2) = −16

so that l(2) = u(2) = −16 and our decomposition is final:

L =

 1 0 0
1 1 0
7 0 1

 U =

 1 0 3
0 2 −3
0 0 −16

 ;

Assignment C. (1 pt.)
Let L,U and L′, U ′ both be LU-decompositions of A (that is, A = LU = L′U ′). Suppose the diagonal of

both L and L′ consists of entries equal to 1. Prove that the LU decomposition is unique under this assump-
tion, that is: L = L′ and U = U ′.

Assignment D. (1 pt.)
It is important to be able to rely on an algorithm to find proper solutions; that is, not yield arbitrary

answers when no answer is possible, or, on the other hand, not yield any answer while an answer exists.
The following questions focus on the first item:

(1) Is it possible that a singular2 matrix A has an LU decomposition? Give a proof or a small example
in either case.

(2) Can the algorithm execute successfully if the input matrix is singular? Explain why.
(3) Find a non-singular (invertible) matrix B that does not have an LU decomposition. Would the

algorithm execute successfully for this matrix B you found?

In the sparse case3, LU decomposition may result in (relatively) dense L, U factors. This can be caused
when the algorithm subtracts u

(k)
j l

(k)
i where appropriate; for example, such subtraction may occur for some

2A matrix A is singular if and only if A does not have an inverse matrix A−1 (such that AA−1 = I).
3that is, cases where a typically large matrix contains a relatively large amount of zeroes.
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i, j while aij previously was zero. Such effect is called fill-in. Fill-in occurs when at some point, both l
(k)
i

and u
(k)
j are nonzero while a

(k)
ij is zero; in boolean logic, defining 0 to be false and anything nonzero true,

fill-in occurs at the kth recursive step at position i, j when:

l
(k)
i ∧ u

(k)
j ∧ !a(k)

ij

is true. The boldface nonzero in Example 1.1 is the fill in caused by the LU algorithm. Note that fill-in can
recursively again cause fill-in at other locations in the other matrices A(>k), so that, as one can imagine,
exceedingly many nonzeroes will appear in L and U .

2. Row- and column permutations

Instead of applying the LU decomposition algorithm on the matrix A, we could also apply this on row
permutations thereof (PA), column permutations (AQ), or both (PAQ); with P,Q permutation matrices of
the form P = (ep0 |ep1 | . . . |epn−1) with pi a permutation of (0, 1, . . . , n− 1), and similarly for Q.

In general, row permutations are necessary to ensure a nonzero is placed in the top-left of the A(k),
especially so in our sparse case; this was not an issue in the previous example since all entries on the
diagonal of A were, conveniently, nonzero. Usually, a sparse LU algorithm will do these necessary row-
permutations (also called pivoting); perhaps even on the fly, only looking for and swapping rows when a
top-left zero is encountered.

Assignment E. (0.5 pt.)
Is a nonzero diagonal enough to ensure proper execution of the LU decomposition algorithm? Consider

the following matrix:

A =

 1 1 0
1 1 1
0 1 1

 .

Note that the diagonal of A indeed is nonzero. Is the matrix invertible? Apply the LU algorithm on A. Does
it terminate successfully? If not, can you find a row or column permutation (or both) so that the algorithm
runs successfully on PA or AQ (or PAQ)?

Assignment F. (1 pt.)
Assume the following lemma is true.

Lemma 2.1. For any non-singular matrix A, there exists a permutation matrix P such that for the
row-permuted matrix PA the LU decomposition algorithm outlined above executes successfully.

Prove that all linear systems Ax = b with A non-singular can be solved using row permutations and the
algorithm outlined above. Note you can use the above lemma and refer back to earlier questions (even if you
could not prove them).

Does what you prove here contradict with what you proved in Assignment D.3?

Column reordering can be used to reduce fill-in. Let us change the order of the columns of A in the
previous example to (1, 2, 0). We then obtain:

A =

 0 3 1
2 0 1
0 5 7

 .

Now, to ensure proper execution of the decomposition algorithm, a suitable row-permutation has to be
found. Changing the row order to, for example, (1, 0, 2) will fix this ((1, 2, 0) is also possible):

A =

 2 0 1
0 3 1
0 5 7

 .
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In this case, by the simple fact that A(1) is fully dense, no extra fill-in can occur (although the number of
nonzeroes of course equals the amount of those in the original matrix). Column reordering thus completely
eliminated fill-in here.

Assignment G. (0.5 pt.)
Do you think that a method for finding a column permutation to reduce fill-in, should be dependent on

the method used to find a row permutation? Briefly motivate your answer.

3. Sparse LU and GA

How to find column permutations for large sparse matrices such that fill-in is reduced? Here, instead
of more classical graph-based algorithms, we will consider the use of genetic algorithms for finding such a
permutation.

Genetic algorithms iterate on populations of candidate solutions, also called chromosomes. These chro-
mosomes can mutate or yield chromosomes (offspring) through cross-fertilisation. In this case, chromosomes
can be represented as an array of integers, containing a permutation of (0, 1, . . . , n− 1); this is very similar
to chromosomes typically used when solving the Travelling Salesman problem (using GAs).

Besides how to implement mutation or cross-fertilisation, a big issue is how to define the cost function
f : X → R to-be maximised, where X is the space of all possible permutations of (0, 1, . . . , n− 1). Assumed
is that the matrix to be decomposed is readily available. Known from the first section is when fill-in occurs
at some stage k; this rule can be applied recursively to calculate exactly the number of fill-ins for a given
permutation.

This is costly, however, to the point one wonders if the total time spent calculating costs could not have
been better spent actually solving LUx = b, and take possible extra fill-in for granted. An upper bound on
the number of fill-in may be more appropriate, although this is not useful if this bound is not strict enough;
then no difference between ’ok’ solutions and good solutions may be seen through the cost function (in the
worst case there is no difference between good and bad solutions). For the same reasons, using a lower bound
on fill-in may be a bad idea as well; the cost function may make solutions look pretty good while, in fact,
they are not.

3.1. Sparsity structure. Since pivoting is necessary, one could think only column reordering is possible to
reduce fill-in. This is not true, however, if two-sided reordering infers certain sparsity structures. In general,
the sparsity structure of A is that of a single sparse block. Other sparsity structures include, for example,
block diagonal:

A =

 A0 0 0
0 A1 0
0 0 A2

 ,

bordered block diagonal (BBD):

A =

 A00 0 A02

0 A11 A12

A20 A21 A22

 ,

and separated block diagonal (SBD):

A =

 A00 A01 0
A10 A11 A12

0 A21 A22

 ;

where the Aij are, not necessarily square, sparse submatrices of A. The zeroes 0 in this case refer to
submatrices of appropriate size consisting of only zero entries.

If a sparse matrix has enough (hidden) structure, row and column permutations can be used to bring it
in BBD or SBD form. Block diagonal form is quite uncommon, since it would mean the linear system can
be decoupled (A{0,1,2} are independent). Assuming pivoting is not necessary (all diagonal elements were
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nonzero), then it is easy to see that no fill-in can occur in the 0-matrices; the l(k), u(k) cannot have nonzero
entries outside the Aij submatrices, and hence no fill-in can occur there.

Assignment H. (1 pt.)
Assume the LU decomposition algorithm would run successfully on PAQ (without pivoting). Which spar-

sity structure would benefit reduction of fill-in more; BBD or SBD? Motivate your answer.

Given this, we now look at the case where pivoting is needed. To bring nonzeroes on the diagonal, further
row permutations are made; this may cause rows from submatrices to be swapped with those from other
submatrices (either one of the zero submatrices or one of the other sparse blocks). Does this affect the
reason why there was no fill-in in the zero blocks in the case without pivoting? The answer is sometimes, for
example with BBD if rows from the middle matrix parts are permuted to the upper parts, thereby spoiling
the nonzeroes of the first few u(i). Swapping from middle to lower parts is not a problem, however; so if
the pivoting algorithm can live with such restrictions, BBD would reduce fill-in even when pivoting. Similar
considerations would hold for the SBD form.

Summarising, row- (P ) and column-permutations (Q) of A, can be used in LU decomposition, if the
matrix PAQ has some favourable sparsity structure (e.g., SBD or BBD) such that LU without pivoting
would not cause fill-in in some blocks. Then, with some restrictions on further row permutations P̃ due to
pivoting, no extra fill-in is induced. A full (pivoting) LU algorithm run on P̃PAQ (taking into account the
restrictions on P̃ ) reduces fill-in in the same way as a non-pivoting LU on PAQ would.

Assignment I. (3 pt.)
Suppose you would want to use a GA to reorder a sparse matrix A to reduce fill-in during LU decompo-

sition. Think of a cost function for use in this GA to find such a reordering. Write tersely on how the cost
function works and why you expect it to work well. Also, sketch methods to apply mutation or crossover to
candidate solutions (chromosomes) of this problem. No testing (programming) is required for this assignment.

Hint: One possible approach would be to consider band matrices. A banded matrix with bandwidth b has
zero entries aij if |i−j| > b. Again by looking at the l(k), u(k) for each LU step k, no fill-in can occur at those
entries i, j ’outside’ of the band. For the same reasons as with BBD, this also holds after row-permutations
due to pivoting.
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