
2011!Parallelisation of Grid-oriented Problems 1!

Parallelisation
of Grid-oriented Problems

2011!Parallelisation of Grid-oriented Problems 2!

Grid-oriented problems

♦  PDEs, image processing,… : data set defined on a grid
local computations with small ‘stencils’
�> data dependencies between neighbouring grid points

♦  grid point : generic name for data associated with
grid point, pixel, cell, finite element, …

♦  grid, data set & associated work: partitioned in subdomains
the subdomains are assigned (mapped) to processors

2011!Parallelisation of Grid-oriented Problems 3!

Grid-oriented problems (cont.)

extra tasks (compared with sequential code)
–  partitioning & mapping to ensure work load balance and

communication minimisation
–  communication between neighbouring subdomains

2011!Parallelisation of Grid-oriented Problems 4!

Model problems
♦  PDEs

–  explicit time integration (forward Euler)
–  relaxation methods (Jacobi, Gauss-Seidel, SOR, …)
on a structured (regular) 2D grid

♦  cellular automata (e.g. game of life)

♦  image processing
–  convolution on a 2D pixel matrix

same data-dependency pattern
�> same parallelisation strategy"

2011!Parallelisation of Grid-oriented Problems 5!

Explicit time integration & convolution

2011!Parallelisation of Grid-oriented Problems 6!

Computational ‘molecules’

 5 point stencil 9 point stencil

2011!Parallelisation of Grid-oriented Problems 7!

Computational ‘molecules’ (cont.)

♦  two different 9 point stencils

2011!Parallelisation of Grid-oriented Problems 8!

Subdomains & overlap regions

Note: overlap region can have a width > 1

ghost cells

2011!Parallelisation of Grid-oriented Problems 9!

Skeleton of a typical program

in every subdomain (processor):
♦  exchange data in the overlap region

communication with procs. holding neighbouring subdomains

♦  do calculations for all grid points in subdomain

♦  check for stopping criterion (e.g. convergence check)
global communication (reduction or all-reduce)

2011!Parallelisation of Grid-oriented Problems 10!

Exchange overlap regions

5 point stencil

2011!Parallelisation of Grid-oriented Problems 11!

Analysis of communication overhead
♦  assume p processors; n = nx x ny points per subdomain;
♦  only communication overhead; no sequential part;

no load imbalance

 T(p) : parallel execution time ; T(1) : execution time on 1 proc.
 Tcalc : calculation time on each proc ; Tcomm : communication time

 Speedup

 Efficiency

€

S(p) =
pTcalc

Tcalc + Tcomm
=

p

1+
Tcomm
Tcalc

=
p

1+ fc

E(p) =
1

1+ fc
≈ 1− fc

T (p) = Tcalc + Tcomm ; T (1) = pTcalc

2011!Parallelisation of Grid-oriented Problems 12!

Analysis of communication overhead (cont.)
♦  Communication overhead

 relative to calculation cost !

♦  For the model problem

tcalc : time to perform a floating point operation
tcomm: average time to communicate one floating point number

€

fc =
Tcomm
Tcalc

Tcalc = cf nx ny tcalc (tcalc =1/ r)
Tcomm = cc2(nx+ ny) tcomm (tcomm = g)

2011!Parallelisation of Grid-oriented Problems 13!

Analysis of communication overhead (cont.)

Communication overhead

depends on :
♦  the size of the subdomain: large subdomains have a small

perimeter to surface ratio
♦  the machine characteristic tcomm/tcalc : indicates how fast

communication can be performed compared with floating point
operations

♦  the algorithm via the ratio cc /cf : fc is small when many flops per
grid point (cf) compared with the amount of data associated with
a grid point (cc)

fc =

Tcomm

Tcalc
=

cc 2(nx + ny)tcomm

cf nxny tcalc

2011!Parallelisation of Grid-oriented Problems 14!

Partitioning strategies

2D grid: M grid points; n = M/p grid points per proc.

 2D (blockwise) partitioning 1D (stripwise) partitioning

 n = nx x ny ; square blockwise partitioning if nx = ny =

 M x M

 nx

 ny

nx =

M
p

 ny = M

€

n

2011!Parallelisation of Grid-oriented Problems 15!

Partitioning strategies (cont.)
♦  communication volume ~ perimeter of subdomain

 square subdomains (nx = ny): minimal perimeter (for same area)
 2D square (blockwise) partitioning is to be preferred

♦  BUT:
 1D (stripwise) partitioning:

–  higher communication volume
–  fewer neighbours �> fewer messages

 choice : depends on problem & machine characteristics
♦  1D partitioning may be better also when communication mainly

in one direction (anisotropic communication)

2011!Parallelisation of Grid-oriented Problems 16!

Comm. overhead: dependence on problem size
♦  2D grid: M grid points; n = M/p grid points per proc.

 blockwise partitioning

 per proc: points

♦  fc (and speedup & efficiency) is constant when n (problem size

per proc) is constant (i.e. M grows linearly with p)
♦  fc ↑ (speedup & efficiency↓) when M is constant and p grows

 n
 n

 n x n

fc =

Tcomm

Tcalc
∝

n
n =

1
n
=

p
M

 M x M

2011!Parallelisation of Grid-oriented Problems 17!

Comm. overhead: dependence on problem size
♦  2D grid: M grid points; n = M/p grid points per proc.

 stripwise partitioning

 per proc: points

♦  fc ↑(speedup & efficiency ↓) when n is constant and p grows
♦  fc ↑↑ (speedup & efficiency ↓↓) when M is constant and p grows

M
p

 M

M x M
p

€

fc =
Tcomm
Tcalc

∝
M
n

=
p
n

=
p
M

 M x M

2011!Parallelisation of Grid-oriented Problems 18!

Comm. overhead: dependence on problem size

♦  3D problems
 communication overhead

" " " "∝ ‘surface to volume’ ratio of the subdomains

 blockwise partitioning: points per proc.

–  fc decreases slower as function of increasing n than in 2D case
BUT typically n is much larger in 3D than in 2D

–  For squares (2D) and cubes (3D): fc ∝ 1/(number of points per
direction) (1/n1/2, resp. 1/n1/3)

–  d-dimensional problems : fc ∝ 1/n1/d

 n = n1/3xn1/3 xn1/3

