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Grid-oriented problems 

♦  PDEs, image processing,… : data set defined on a grid 
local computations with small ‘stencils’ 
�> data dependencies between neighbouring grid points 

♦  grid point : generic name for data associated with 
grid point, pixel, cell, finite element, … 

♦  grid, data set & associated work: partitioned in subdomains 
the subdomains are assigned (mapped) to processors 
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Grid-oriented problems (cont.) 

extra tasks (compared with sequential code) 
–  partitioning & mapping to ensure work load balance and 

communication minimisation 
–  communication between neighbouring subdomains 
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Model problems 
♦  PDEs 

–  explicit time integration (forward Euler) 
–  relaxation methods (Jacobi, Gauss-Seidel, SOR, …) 
on a structured (regular) 2D grid 

♦  cellular automata      (e.g. game of life) 

♦  image processing 
–  convolution on a 2D pixel matrix 

same data-dependency pattern  
�> same parallelisation strategy"
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Explicit time integration & convolution 
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Computational ‘molecules’ 

  5 point stencil     9 point stencil 
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Computational ‘molecules’ (cont.) 

♦  two different 9 point stencils 
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Subdomains & overlap regions 

Note: overlap region can have a width > 1 

ghost cells 
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Skeleton of a typical program 

in every subdomain (processor): 
♦  exchange data in the overlap region 

communication with procs. holding neighbouring subdomains 

♦  do calculations for all grid points in subdomain 

♦  check for stopping criterion (e.g. convergence check) 
global communication    (reduction  or  all-reduce) 
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Exchange overlap regions 

5 point stencil 
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Analysis of communication overhead 
♦  assume p processors;    n = nx x ny points per subdomain; 
♦  only communication overhead; no sequential part; 

no load imbalance 

    
 T(p) : parallel execution time ; T(1) : execution time on 1 proc. 
 Tcalc : calculation time on each proc ; Tcomm : communication time 
  
 Speedup 

 
 
 

 Efficiency 
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pTcalc
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T (p) = Tcalc + Tcomm ; T (1) = pTcalc
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Analysis of communication overhead (cont.) 
♦  Communication overhead 

 relative to calculation cost ! 
 
♦  For the model problem 

tcalc : time to perform a floating point operation 
tcomm: average time to communicate one floating point number 

  

€ 

fc =
Tcomm
Tcalc

Tcalc = cf nx ny tcalc (tcalc =1/ r)
Tcomm = cc2(nx+ ny ) tcomm (tcomm = g)
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Analysis of communication overhead (cont.) 

Communication overhead 

depends on : 
♦  the size of the subdomain: large subdomains have a small 

perimeter to surface ratio  
♦  the machine characteristic tcomm/tcalc :  indicates how fast 

communication can be performed compared with floating point 
operations 

♦  the algorithm via the ratio cc /cf : fc is small when many flops per 
grid point (cf) compared with the amount of data associated with 
a grid point (cc) 

    
fc =

Tcomm

Tcalc
=

cc 2(nx + ny )tcomm

cf nxny tcalc
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Partitioning strategies 

2D   grid: M grid points; n = M/p grid points per proc. 

 2D (blockwise) partitioning       1D (stripwise) partitioning 

 

 

 

 

 n = nx x ny ;   square blockwise partitioning if nx = ny =  

  M x M
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Partitioning strategies (cont.) 
♦  communication volume ~ perimeter of subdomain  

 square subdomains (nx = ny): minimal perimeter (for same area) 
    2D square (blockwise) partitioning is to be preferred 

♦  BUT:  
 1D (stripwise) partitioning: 

–  higher communication volume 
–  fewer neighbours �> fewer messages 

 choice : depends on problem & machine characteristics 
♦  1D partitioning may be better also  when communication mainly 

in one direction   (anisotropic communication) 
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Comm. overhead: dependence on problem size 
♦  2D     grid: M grid points; n = M/p grid points per proc. 

 blockwise partitioning  

     per proc:         points 

  

 

 
♦  fc (and speedup & efficiency) is constant when n (problem size 

per proc) is constant (i.e. M grows linearly with p) 
♦  fc ↑ (speedup & efficiency↓) when M is constant and p grows   
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Comm. overhead: dependence on problem size 
♦  2D     grid: M grid points; n = M/p grid points per proc. 

 stripwise partitioning  

     per proc:            points 

  

 

 

♦  fc ↑(speedup & efficiency ↓) when n is constant and p grows 
♦  fc ↑↑ (speedup & efficiency ↓↓) when M is constant and p grows   
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Comm. overhead: dependence on problem size 

♦  3D problems 
 communication overhead  

" " " "∝ ‘surface to volume’ ratio of the subdomains 

 blockwise partitioning:            points per proc. 
 
 
 

–  fc decreases slower as function of increasing n than in 2D case 
BUT typically n is much larger in 3D than in 2D 

–  For squares (2D) and cubes (3D): fc ∝ 1/(number of points per 
direction)  (1/n1/2, resp. 1/n1/3) 

–  d-dimensional problems : fc ∝ 1/n1/d 

    n = n1/3xn1/3 xn1/3


