Parallelisation of Grid-oriented Problems

Parallelisation of Grid-oriented Problems

Grid-oriented problems

- PDEs, image processing,...: data set defined on a *grid* local computations with small 'stencils'
 -> data dependencies between *neighbouring* grid points
- grid point : generic name for data associated with grid point, pixel, cell, finite element, ...
- grid, data set & associated work: *partitioned in subdomains* the subdomains are assigned (*mapped*) to processors

2

2011

1

2011

Grid-oriented problems (cont.)

extra tasks (compared with sequential code)

- *partitioning & mapping* to ensure work load balance and communication minimisation
- communication between neighbouring subdomains

Parallelisation of Grid-oriented Problems

2011

3

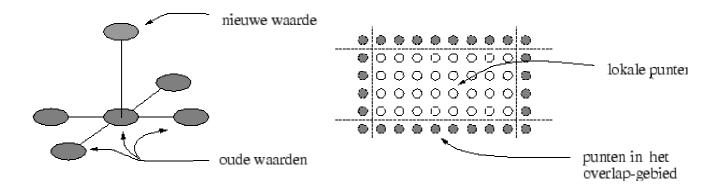
Model problems

- PDEs
 - explicit time integration (forward Euler)
 - relaxation methods (Jacobi, Gauss-Seidel, SOR, ...)
 - on a structured (regular) 2D grid
- cellular automata (e.g. game of life)
- image processing
 - convolution on a 2D pixel matrix

same data-dependency pattern

-> same parallelisation strategy

Explicit time integration & convolution

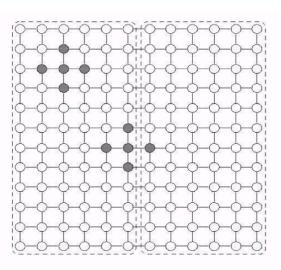


Parallelisation of Grid-oriented Problems

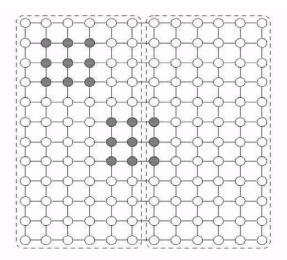
2011 5

Computational 'molecules'

5 point stencil



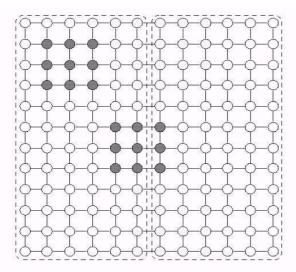
9 point stencil

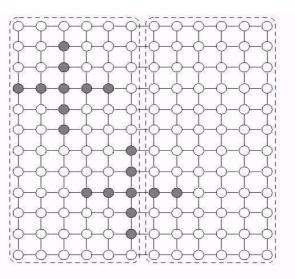


6

Computational 'molecules' (cont.)

• two different 9 point stencils



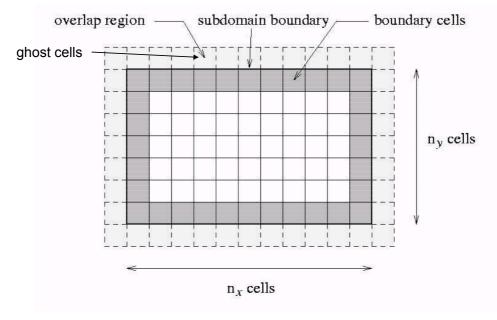


Parallelisation of Grid-oriented Problems

2011

7

Subdomains & overlap regions



Note: overlap region can have a width > 1

2011

8

Skeleton of a typical program

in every subdomain (processor):

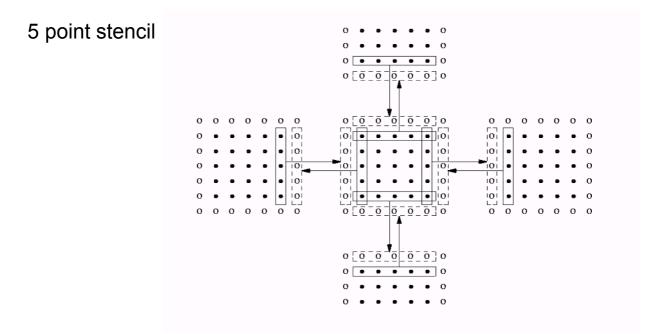
- exchange data in the overlap region
 communication with procs. holding neighbouring subdomains
- do calculations for all grid points in subdomain
- check for stopping criterion (e.g. convergence check) global communication (reduction or all-reduce)

Parallelisation of Grid-oriented Problems

2011

9

Exchange overlap regions



Analysis of communication overhead

- assume *p* processors; $n = n_x x n_y$ points per subdomain;
- only communication overhead; no sequential part; no load imbalance

$$T(p) = T_{calc} + T_{comm}; \quad T(1) = pT_{calc}$$

T(p) : parallel execution time ; T(1) : execution time on 1 proc.

 T_{calc} : calculation time on *each* proc ; T_{comm} : communication time

Speedup
$$S(p) = \frac{pT_{calc}}{T_{calc} + T_{comm}} = \frac{p}{1 + \frac{T_{comm}}{T_{calc}}} = \frac{p}{1 + f_c}$$
Efficiency
$$E(p) = \frac{1}{1 + f_c} \approx 1 - f_c$$

Parallelisation of Grid-oriented Problems

2011 11

Analysis of communication overhead (cont.)

- Communication overhead $f_c = \frac{T_{comm}}{T_{calc}}$
- For the model problem $T_{calc} = c_f n_x n_y t_{calc}$ $(t_{calc} = 1/r)$ $T_{comm} = c_c 2(n_x + n_y) t_{comm}$ $(t_{comm} = g)$

 t_{calc} : time to perform a floating point operation t_{comm} : average time to communicate one floating point number

Analysis of communication overhead (cont.)

Communication overhead

$$f_c = \frac{T_{comm}}{T_{calc}} = \frac{c_c \ 2(n_x + n_y) \ t_{comm}}{c_f \ n_x n_y \ t_{calc}}$$

depends on :

- the size of the subdomain: large subdomains have a small perimeter to surface ratio
- the machine characteristic t_{comm}/t_{calc} indicates how fast communication can be performed compared with floating point operations
- the algorithm via the ratio c_c /c_f: f_c is small when many flops per grid point (c_f) compared with the amount of data associated with a grid point (c_c)

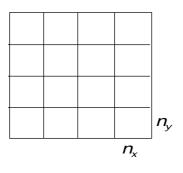
Parallelisation of Grid-oriented Problems

2011 13

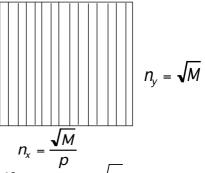
Partitioning strategies

2D $\sqrt{M} x \sqrt{M}$ grid: *M* grid points; n = M/p grid points per proc.

2D (blockwise) partitioning



1D (stripwise) partitioning



 $n = n_x x n_y$; square blockwise partitioning if $n_x = n_y = \sqrt{n}$

Partitioning strategies (cont.)

- communication volume ~ perimeter of subdomain square subdomains (n_x = n_y): minimal perimeter (for same area)
 2D square (blockwise) partitioning is to be preferred
- BUT:

1D (stripwise) partitioning:

- higher communication volume
- fewer neighbours –> fewer messages

choice : depends on problem & machine characteristics

 1D partitioning may be better also when communication mainly in one direction (anisotropic communication)

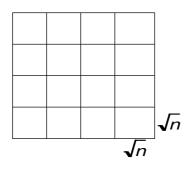
Parallelisation of Grid-oriented Problems

2011 15

Comm. overhead: dependence on problem size

• 2D $\sqrt{M} x \sqrt{M}$ grid: *M* grid points; n = M/p grid points per proc.

blockwise partitioning



per proc: $\sqrt{n} x \sqrt{n}$ points

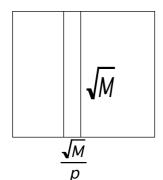
$$f_c = \frac{T_{comm}}{T_{calc}} \propto \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} = \frac{\sqrt{p}}{\sqrt{M}}$$

- *f_c* (and speedup & efficiency) is constant when *n* (problem size per proc) is constant (i.e. *M* grows linearly with *p*)
- $f_c \uparrow (\text{speedup \& efficiency})$ when *M* is constant and *p* grows

Comm. overhead: dependence on problem size

• 2D $\sqrt{M} x \sqrt{M}$ grid: *M* grid points; n = M/p grid points per proc.

stripwise partitioning



per proc:
$$\sqrt{M} x \frac{\sqrt{M}}{p}$$
 points
 $f_c = \frac{T_{comm}}{T_{calc}} \propto \frac{\sqrt{M}}{n} = \frac{\sqrt{p}}{\sqrt{n}} = \frac{p}{\sqrt{M}}$

- $f_c \uparrow (\text{speedup & efficiency })$ when *n* is constant and *p* grows
- $f_c \uparrow \uparrow$ (speedup & efficiency $\downarrow \downarrow$) when *M* is constant and *p* grows

Parallelisation of Grid-oriented Problems

2011 17

Comm. overhead: dependence on problem size

3D problems

communication overhead

 \propto 'surface to volume' ratio of the subdomains

blockwise partitioning: $n = n^{1/3} x n^{1/3} x n^{1/3}$ points per proc.

- f_c decreases slower as function of increasing *n* than in 2D case BUT typically n is much larger in 3D than in 2D
- For squares (2D) and cubes (3D): $f_c \propto 1/(number of points per direction)$ (1/n^{1/2}, resp. 1/n^{1/3})
- d-dimensional problems : $f_c \propto 1/n^{1/d}$