
Lecture 12: Partitioning and Load Balancing ∗

G63.2011.002/G22.2945.001 · November 16, 2010

∗thanks to Schloegel,Karypis and Kumar survey paper and Zoltan website
for many of today’s slides and pictures

Partitioning
• Decompose computation into tasks to equi-distribute the

data and work, minimize processor idle time.

applies to grid points, elements, matrix rows, particles,
VLSI layout, ,...

• Map to processors to keep interprocessor communication
low.

communication to computation ratio comes from both the
partitioning and the algorithm.

Partitioning

Data decomposition + Owner computes rule:

• Data distributed among the processors
• Data distribution defines work assignment
• Owner performs all computations on its data.
• Data dependencies for data items owned by different

processors incur communication

Partitioning

• Static - all information available before computation starts

use off-line algorithms to prepare before execution time; run
as pre-processor, can be serial, can be slow and expensive,
starts.

• Dynamic - information not known until runtime, work
changes during computation (e.g. adaptive methods), or
locality of objects change (e.g. particles move)

use on-line algorithms to make decisions mid-execution;
must run side-by-side with application, should be parallel,
fast, scalable. Incremental algorithm preferred (small
changes in input result in small changes in partitions)

will look at some geometric methods, graph-based methods,
spectral methods, multilevel methods, diffusion-based
balancing,...

Recursive Coordinate Bisection

Divide work into two equal parts using cutting plane orthogonal
to coordinate axis For good aspect ratios cut in longest
dimension.

1st cut

2nd

2nd

3rd

3rd 3rd

3rd

Geometric Partitioning

Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Can generalize to k-way partitions. Finding optimal partitions is
NP hard. (There are optimality results for a class of graphs as a
graph partitioning problem.)

Recursive Coordinate Bisection

+ Conceptually simple, easy to implement, fast.

+ Regular subdomains, easy to describe

– Need coordinates of mesh points/particles.

– No control of communication costs.

– Can generate disconnected subdomains

Recursive Coordinate Bisection

Implicitly incremental - small changes in data result in small
movement of cuts

Recursive Inertial Bisection

For domains not oriented along coordinate axes can do better if
account for the angle of orientation of the mesh.

Use bisection line orthogonal to principal inertial axis (treat
mesh elements as point masses). Project centers-of-mass onto
this axis; bisect this ordered list. Typically gives smaller
subdomain boundary.

Space-filling Curves
Linearly order a multidimensional mesh (nested hierarchically,
preserves locality)

Peano-Hilbert ordering

Morton ordering

Space-filling Curves

Easily extends to adaptively refined meshes

1

3

2827

26 25
24 23
22
2120

19 18
17
1615

13 14
1211

10

98

7
65

4

2

Space-filling Curves

1 25 50 75 100

Partition work into equal chunks.

Space-filling Curves

+ Generalizes to uneven work loads - incorporate weights.
+ Dynamic on-the-fly partitioning for any number of nodes.
+ Good for cache performance

Space-filling Curves

– Red region has more communication - not compact
– Need coordinates

Space-filling Curves

Generalizes to other non-finite difference problems, e.g.
particle methods, patch-based adaptive mesh refinement,
smooth particle hydro.,

Space-filling Curves

Implicitly incremental - small changes in data results in small
movement of cuts in linear ordering

Graph Model of Computation

• for computation on mesh nodes, graph of the mesh is the
graph of the computation; if there is an edge between
nodes there is an edge between the vertices in the graph.

• for computation on the mesh elements the element is a
vertex; put an edge between vertices if the mesh elements
share an edge . This is the dual of the node graph.

Partition vertices into disjoint subdomains so each has same
number. Estimate total communication by counting number of
edges that connect vertices in different subdomains (the
edge-cut metric).

Graph Model of Computation

• for computation on mesh nodes, graph of the mesh is the
graph of the computation; if there is an edge between
nodes there is an edge between the vertices in the graph.

• for computation on the mesh elements the element is a
vertex; put an edge between vertices if the mesh elements
share an edge . This is the dual of the node graph.

Partition vertices into disjoint subdomains so each has same
number. Estimate total communication by counting number of
edges that connect vertices in different subdomains (the
edge-cut metric).

Greedy Bisection Algorithm (also LND)

Put connected components together for min communication.

• Start with single vertex
(peripheral vertex, lowest
degree, endpoints of graph
diameter)

• Incrementally grow
partition by adding
adjacent vertices (bfs)

• Stop when half the vertices
counted (n/p for p
partitions)

+ At least one component connected

– Not best quality partitioning; need multiple trials.

Greedy Bisection Algorithm (also LND)

Put connected components together for min communication.

• Start with single vertex
(peripheral vertex, lowest
degree, endpoints of graph
diameter)

• Incrementally grow
partition by adding
adjacent vertices (bfs)

• Stop when half the vertices
counted (n/p for p
partitions)

+ At least one component connected

– Not best quality partitioning; need multiple trials.

Breadth First Search

• All edges between nodes in same level or adjacent levels.
• Partitioning the graph into nodes <= level L and >= L+1

breaks only tree and interlevel edges; no ”extra” edges.

Breadth First Search

BFS of two dimensional grid starting at center node.

Graph Partitioning for Sparse Matrix Vector Mult.

Compute y = Ax , A sparse symmetric matrix,
Vertices vi represent xi , yi .
Edge (i,j) for each nonzero Aij

Black lines represent communication.

Graph Partitioning for Sparse Matrix Factorization

Nested dissection for fill-reducing orderings for sparse matrix
factorizations.
Recursively repeat:

• Compute vertex separator, bisect graph,
edge separator = smallest subset of edges such that removing
them divided graph into 2 disconnected subgraphs)
vertex separator = can extend edge separator by connecting
each edge to one vertex, or compute directly.

• Split a graph into roughly equal halves using the vertex separator

At each level of recursion number the vertices of the partitions,
number the separator vertices last. Unknowns ordered from n to 1.

Smaller separators⇒ less fill and less factorization work

Spectral Bisection

Gold standard for graph partitioning (Pothen, Simon, Liou, 1990)

Let

xi =

{
−1 i ∈ A
1 i ∈ B

∑
(i,j)∈E

(xi − xj)
2 = 4 · # cut edges

Goal: find x to minimize quadratic objective function (edge cuts) for
integer-valued x = ±1. Uses Laplacian L of graph G:

lij =

d(i) i = j
−1 i 6= j , (i , j) ∈ E
0 otherwise

Spectral Bisection

1

2

3

5

4

L =

2 −1 −1 0 0
−1 2 0 0 −1
−1 0 3 −1 −1

0 0 −1 1 0
0 −1 −1 0 2

 = D−A

• A = adjacency matrix; D diagonal matrix

• L is symmetric, so has real eigenvalues and orthogonal evecs.

• Since row sum is 0, Le = 0, where e = (111 . . . 1)t

• Think of second eigenvector as first ”vibrational” mode

Spectral Bisection

Note that

x tLx = x tDx − x tAx =
n∑

i=1

dix2
i − 2

∑
(i,j)∈E

xixj =
∑

(i,j)∈E

(xi − xj)
2

Using previous example, x tAx = (x1 x2 x3 x4 x5)

x2 + x3
x1 + x5

x1 + x4 + x5
x3 + x4

x2 + x3 + x5

So finding x to minimize cut edges looks like minimizing x tLx over
vectors x = ±1 and

∑n
i=1 xi = 0 (balance condition).

Spectral Bisection
• Integer programming problem difficult.

• Replace xi = ±1 with
∑n

i=1 x2
i = n

min∑
xi=0∑
x2

i =n

x tLx = x t
2Lx2

= λ2 x t
2 · x2

= λ2 n

• λ2 is the smallest positive eval of L, with evec x2, (assuming G is
connected, λ1 = 0, x1 = e)

• x2 satisfies
∑

xi = 0 since orthogonal to x1, etx1 = 0

• x2 called Fiedler vector (properties studied by Fiedler in 70’s).

Spectral Bisection

• Assign vertices according to the sign of the x2. Almost
always gives connected subdomains, with significantly
fewer edge cuts than RCB. (Thrm. (Fiedler) If G is connected,
then one of A,B is. If @i , x2 i = 0 then other set is connected too).

• Recursively repeat (or use higher order evecs)

v2 =

.256
.437
−.138
−.811
.256

1

2

3

5

4

Spectral Bisection

+ High quality partitions

– How find second eval and evec? (Lanczos, or CG, how do
this in parallel, when you don’t yet have the partition?)

Kernighan-Lin Algorithm
• Heuristic for graph partitioning (even 2 way partitioning with unit

weights is NP complete)

• Needs initial partition to start, iteratively improve it by making
small local changes to improve partition quality (vertex swaps
that decrease edge-cut cost)

1

2

3

4

6

5

7

8

1

2

3

4

6

5

7

8

cut cost 4 cut cost 2

Kernighan-Lin Algorithm

More precisely, the problem is:

• Given: an undirected graph G(V ,E) with 2n vertices,
edges (a,b) ∈ E with weights w(a,b)

• Find: sets A and B, so that V = A ∪ B, A ∩ B = 0, and
|A| = |B| = n that minimizes the cost

∑
(a,b)∈AxB w(a,b)

• Approach: Take initial partition and iteratively improve it.
Exchange two vertices and see if cost of cut size is
reduced. Select best pair of vertices, lock them, continue.
When all vertices locked one iteration is done.

Original algorithm O(n3). Complicated improvement by
Fiduccia-Mattheyses is O(|E |).

Kernighan-Lin Algorithm

• Let C = cost(A,B)

• E(a) = external cost of a in A
=

∑
b∈B w(a,b)

• I(a) = internal cost of a in A
=

∑
a′∈A,a′ 6=a w(a,a′)

• D(a) = cost of a in A = E(a) - I(a)
D(6) = 1 D(1) = 1
D(3) = 0 newD(3) = -2

Consider swapping X={a} and Y={b}.
(newA = A - X ∪ Y newB = B - Y ∪ X)

newC = C - (D(a) + D(b) - 2*w(a,b)) = C - gain(a,b)

newD(a’) = D(a’) + 2 w(a’,a) - 2 w(a’,b) for a′ ∈ A,a′ 6= a
newD(b’) = D(b’) + 2 w(b’,b) - 2 w(b’,a) for b′ ∈ B,b′ 6= b

Kernighan-Lin Algorithm
• Let C = cost(A,B)

• E(a) = external cost of a in A
=

∑
b∈B w(a,b)

• I(a) = internal cost of a in A
=

∑
a′∈A,a′ 6=a w(a,a′)

• D(a) = cost of a in A = E(a) - I(a)

X

Y

Z

W

A B

D(Y) = 1 D(Z) = 1
newC = C

Consider swapping X={a} and Y={b}.
(newA = A - X ∪ Y newB = B - Y ∪ X)

newC = C - (D(a) + D(b) - 2*w(a,b)) = C - gain(a,b)

newD(a’) = D(a’) + 2 w(a’,a) - 2 w(a’,b) for a′ ∈ A,a′ 6= a
newD(b’) = D(b’) + 2 w(b’,b) - 2 w(b’,a) for b′ ∈ B,b′ 6= b

Kernighan-Lin Algorithm

Compute C = cost(A,B) for initial A,B

Repeat
Compute costs D for all verts
Unmark all nodes
While there are unmarked nodes

Find unmarked pair (a,b) maximizing gain(a,b)
Mark a and b (do not swap)
Update D for all unmarked verts (as if a,b swapped)

End

Pick sets of pairs maximizing gain
if (Gain>0) then actually swap

Update A’ = A - {a1,a2,...am} + {b1,b2,...bm}
B’ = B - {b1,b2,...bm} + {a1,a2,...,am}
C’ = C - Gain

Until Gain<0

Kernighan-Lin Algorithm

KL can sometimes climb out of local minima...

Kernighan-Lin Algorithm

gets better solution; but need good partitions to start

Graph Coarsening
• Adjacent vertices are combined to form a multinode at next level,

with weight equal to the sum of the original weights. Edges are
the union of edges of the original vertices, also weighted.
Coarser graph still represents original graph.

2 2
2

2
1 1

• Graph collapse uses maximal matching = set of edges, no two of
which are incident on the same vertex. The matched vertices
are collapsed into the multinode. Unmatched vertices copied to
next level.

• Heuristics that combine 2 vertices sharing edge with heaviest
weight, or randomly chosen unmatched vertex, ...

Graph Coarsening

Fewer remaining visible edges on coarsest grid⇒ easier to partition

Multilevel Graph Partitioning
• Coarsen graph

• Partition the coarse graph

• Refine graph, using local refinement algorithm (e.g.K-L)
• vertices in larger graph assigned to same set as coarser

graph’s vertex.
• since vertex weight conserved, balance preserved
• similarly for edge weights

Moving one node with K-L on coarse graph equivalent to moving large
number of vertices in original graph but much faster.

Re-Partitioning

when workload changes dynamically, need to re-partition as
well as minimizing redistribution cost. Options include:

• partition from scratch (use incremental partitioner, or try to
map on to processors well) called scratch-remap

• give away excess, called cut-and-paste repartitioning
• diffusive repartitioning

Should you minimize sum of vertices changing subdomains
(total volume of communication = TotalV), or max volume per
processor (called maxV).

Re-Partitioning

(b) from scratch (c) cut-and-paste, (d) diffusive

Diffusion-based Partitioning
• Iterative method used for re-partitioning - migrate tasks

from overutilized processors to underutilized ones.
• Variations on which nodes to move, how many to move at

one time.

• Based on Cybenko model

w t+1
i = w t

i +
∑

j

αij(w t
j − w t

i)

if wj − wi > 0 processor j gives work to i , else other way
around.

• At steady state the temperature is constant (computational
load is equal)

Slow to converge, use multilevel version, or recursive bisection
verion. Solve optimization problem to minimize norm of data
movement (1- or 2-norm).

Multiphase/Multiconstraint Graph Partitioning
• Many simulations have multiple phases - e.g. first compute fluid step,

next compute the structural deformation, move geometry,...

• Each step has different CPU and memory requirements. Would like to
load balance each phase.
• single partition that balances all phases?
• multiple partition with redistribution between phases?

Issues with Edge Cut Approximation

• 7 edges cut
• 9 items

communicated
• vertex 1 in A

connected to two
vertices in B but it
only needs to be
sent once.

Edge cuts 6= Communication volume
Communication volume 6= Communication cost

Hypergraphs

Hypergraph H = (V ,E) where E is a
hyperedge = subset of V, i.e. connects more than two vertices

e1 = {v1, v2, v3}
e2 = {v2, v3}
e3 = {v3, v5, v6}
e4 = {v4}

k-way partitioning: find P = {Vo, ...,Vk−1} to minimize

cut(H,P) = Σ
|E |−1
i=0 (λi(H,P)− 1)

λi(H,P) = number of partitions spanned by hyperedge i

Other Issues

• Heterogeneous machines

• Aspect ratio of subdomains (needed for convergence rate
of iterative solvers)

Software Packages

Also, graph partitioning archive at Univ. of Greenwich by Walshaw.

Slide 91

Test Data

SLAC *LCLS

Radio Frequency Gun

6.0M x 6.0M

23.4M nonzeros

Xyce 680K ASIC Stripped

Circuit Simulation

680K x 680K

2.3M nonzeros

Cage15 DNA

Electrophoresis

5.1M x 5.1M

99M nonzeros

SLAC Linear Accelerator

2.9M x 2.9M

11.4M nonzeros

from Zoltan tutorial slides, by Erik Boman and Karen Devine

Slide 92

Communication Volume:

Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts

= number of

processors.

RCB

Graph

Hypergraph

HSFC

from Zoltan tutorial slides, by Erik Boman and Karen Devine

Slide 93

Partitioning Time:

Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.

Varying number

of processors.

RCB

Graph

Hypergraph

HSFC

from Zoltan tutorial slides, by Erik Boman and Karen Devine

Slide 95

Repartitioning Results:

Lower is Better
Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning

Time (secs)

Data

Redistribution

Volume

Application

Communication

Volume

from Zoltan tutorial slides, by Erik Boman and Karen Devine

References

• Graph Partitioning for High Performance Scientific
Simulations
by K. Schloegel, G. Karypis and V. Kumar.
in CRPC Parallel Computing Handbook, (2000).
(University of Minnesota TR 0018)

• Load Balancing Fictions, Falsehoods and Fallacie
by Bruce Hendrickson
Applied Math Modelling, (preprint from his website; many
other relevant papers there too).

• Zoltan tutorial
by E. Boman and K. Devine
http://www.cs.sandia.gov/˜kddevin/papers/
Zoltan_Tutorial_Slides.pdf

http://www.cs.sandia.gov/~kddevin/papers/Zoltan_Tutorial_Slides.pdf
http://www.cs.sandia.gov/~kddevin/papers/Zoltan_Tutorial_Slides.pdf

