
Slides taken from

Parallel Computing Platforms

Ananth Grama, Anshul Gupta,
George Karypis, and Vipin Kumar

To accompany the text ``Introduction to Parallel Computing'',

Addison Wesley, 2003.

Limitations of
Memory System Performance

•  Memory system, and not processor speed, is often the
bottleneck for many applications.

•  Memory system performance is largely captured by two
parameters, latency and bandwidth.

•  Latency is the time from the issue of a memory request
to the time the data is available at the processor.

•  Bandwidth is the rate at which data can be pumped to
the processor by the memory system.

Memory Latency: An Example

•  Consider a processor operating at 1 GHz (1 ns clock)
connected to a DRAM with a latency of 100 ns (no
caches). Assume that the processor has two multiply-
add units and is capable of executing four instructions in
each cycle of 1 ns. The following observations follow:
–  The peak processor rating is 4 GFLOPS.
–  Since the memory latency is equal to 100 cycles and block size

is one word, every time a memory request is made, the
processor must wait 100 cycles before it can process the data.

Memory Latency: An Example

•  On the above architecture, consider the problem of
computing a dot-product of two vectors.
–  A dot-product computation performs one multiply-add on a single

pair of vector elements, i.e., each floating point operation
requires one data fetch.

–  It follows that the peak speed of this computation is limited to
one floating point operation every 100 ns, or a speed of 10
MFLOPS, a very small fraction of the peak processor rating!

Improving Effective Memory
Latency Using Caches

•  Caches are small and fast memory elements between
the processor and DRAM.

•  This memory acts as a low-latency high-bandwidth
storage.

•  If a piece of data is repeatedly used, the effective latency
of this memory system can be reduced by the cache.

•  The fraction of data references satisfied by the cache is
called the cache hit ratio of the computation on the
system.

•  Cache hit ratio achieved by a code on a memory system
often determines its performance.

Explicitly Parallel Platforms

Dichotomy of Parallel Computing
Platforms

•  An explicitly parallel program must specify concurrency
and interaction between concurrent subtasks.

•  The former is sometimes also referred to as the control
structure and the latter as the communication model.

Control Structure of Parallel Programs

•  Parallelism can be expressed at various levels of
granularity - from instruction level to processes.

•  Between these extremes exist a range of models, along
with corresponding architectural support.

Control Structure of Parallel Programs

•  Processing units in parallel computers either operate
under the centralized control of a single control unit or
work independently.

•  If there is a single control unit that dispatches the same
instruction to various processors (that work on different
data), the model is referred to as single instruction
stream, multiple data stream (SIMD).

•  If each processor has its own control control unit, each
processor can execute different instructions on different
data items. This model is called multiple instruction
stream, multiple data stream (MIMD).

SIMD and MIMD Processors

(a) (b)

Global

+

+

+

+
PE

PE

PE

PE

PE

PE

PE

PE

PE

control
unit

IN
TERCO

N
N

ECTIO
N

 N
ETW

O
RK

IN
TERCO

N
N

ECTIO
N

 N
ETW

O
RK

control unit

control unit

control unit

control unit

PE: Processing Element

A typical SIMD architecture (a) and a typical MIMD architecture (b).

SIMD Processors

•  Some of the earliest parallel computers such as the
Illiac IV, MPP, DAP, CM-2, and MasPar MP-1 belonged
to this class of machines.

•  Variants of this concept have found use in co-processing
units such as the MMX units in Intel processors and DSP
chips such as the Sharc.

•  SIMD relies on the regular structure of computations
(such as those in image processing).

•  It is often necessary to selectively turn off operations on
certain data items. For this reason, most SIMD
programming paradigms allow for an ``activity mask'',
which determines if a processor should participate in a
computation or not.

Communication Model
of Parallel Platforms

•  There are two primary forms of data exchange between
parallel tasks - accessing a shared data space and
exchanging messages.

•  Platforms that provide a shared data space are called
shared-address-space machines or multiprocessors.

•  Platforms that support messaging are also called
message passing platforms or multicomputers.

Shared-Address-Space Platforms

•  Part (or all) of the memory is accessible to all
processors.

•  Processors interact by modifying data objects stored in
this shared-address-space.

•  If the time taken by a processor to access any memory
word in the system global or local is identical, the
platform is classified as a uniform memory access
(UMA), else, a non-uniform memory access (NUMA)
machine.

NUMA and UMA Shared-Address-Space
Platforms

M

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

M

M

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

MM

P

C
M

M

(b)

P

C

P

C

P

C

C

P

P

M

M

C

(a) (c)

P

P

P

Typical shared-address-space architectures: (a) Uniform-memory
access shared-address-space computer; (b) Uniform-memory-

access shared-address-space computer with caches and
memories; (c) Non-uniform-memory-access shared-address-space

computer with local memory only.

NUMA and UMA
Shared-Address-Space Platforms

•  The distinction between NUMA and UMA platforms is important from
the point of view of algorithm design. NUMA machines require
locality from underlying algorithms for performance.

•  Programming these platforms is easier since reads and writes are
implicitly visible to other processors.

•  However, read-write data to shared data must be coordinated (this
will be discussed in greater detail when we talk about threads
programming).

•  Caches in such machines require coordinated access to multiple
copies. This leads to the cache coherence problem.

Shared-Address-Space
vs.

Shared Memory Machines

•  It is important to note the difference between the terms
shared address space and shared memory.

•  We refer to the former as a programming abstraction and
to the latter as a physical machine attribute.

•  It is possible to provide a shared address space using a
physically distributed memory.

Message-Passing Platforms

•  These platforms comprise of a set of processors and
their own (exclusive) memory.

•  Instances of such a view come naturally from clustered
workstations and non-shared-address-space
multicomputers.

•  These platforms are programmed using (variants of)
send and receive primitives.

•  Libraries such as MPI provide such primitives.

Message Passing
vs.

Shared Address Space Platforms

•  Message passing requires little hardware support, other
than a network.

•  Shared address space platforms can easily emulate
message passing. The reverse is more difficult to do (in
an efficient manner).

Interconnection Networks
for Parallel Computers

•  Interconnection networks carry data between processors
and to memory.

•  Interconnects are made of switches and links (wires,
fiber).

•  Interconnects are classified as static or dynamic.
•  Static networks consist of point-to-point communication

links among processing nodes and are also referred to
as direct networks.

•  Dynamic networks are built using switches and
communication links. Dynamic networks are also
referred to as indirect networks.

Static and Dynamic
Interconnection Networks

Static network Indirect network

Switching element
Processing node

Network interface/switch

P

P P P

P

P

PP

Classification of interconnection networks: (a) a static
network; and (b) a dynamic network.

Design of parallel algorithms

Core content of this course:
•  Take memory hierarchy into account (data locality)
•  Distribute data over memories
•  Distribute work over processors
•  Introduce & analyse

communication & synchronization

A first hands-on experience : do the exercise !

