
Parallel Computing

Dirk Roose Albert-Jan Yzelman
Office: 200A 03.25 Office: 200A 03.18

1

Course textbook

Rob H. Bisseling,
Parallel Scientific Computation. A Structured Approach using
BSP and MPI, Oxford University Press, 2004

(BSP: Bulk Synchronous Parallel;
 MPI: Message Passing Interface)

Available in Acco (& VTK cursusdienst ?)

Table of content of book:
http://ukcatalogue.oup.com/product/
9780198529392.do#.UGSxJULv-2U

Book: Parallel Scientific Computation

•  The first text to explain how to use BSP in parallel computing
•  Clear exposition of distributed-memory parallel computing with

applications to core topics of scientific computation
•  Each topic treated follows the complete path from theory to practice
•  This is the first text explaining how to use the bulk synchronous parallel

(BSP) model […] in parallel algorithm design and parallel
programming.

•  An appendix on the message-passing interface (MPI) discusses how to
program using the MPI communication library. MPI equivalents of all
the programs are also presented.

2

Parallel Scientific Computation (2)

The main topics treated in the book are core in the area of scientific
computation: solving dense linear systems by Gaussian elimination,
computing fast Fourier transforms, and solving sparse linear systems by
iterative methods. Each topic is treated in depth, starting from the problem
formulation and a sequential algorithm, through a parallel algorithm and its
analysis, to a complete parallel program written in C and BSPlib, and
experimental results obtained using this program on a parallel computer.

Additional topics treated in the exercises include: data compression, random
number generation, cryptography, eigensystem solving, 3D and Strassen matrix
multiplication, wavelets and image compression, fast cosine transform, decimals
of pi, simulated annealing, and molecular dynamics.

 Extra (separate texts) : sorting, case studies,
 scheduling & load balancing

3

4

Why parallel computing ?
•  Limits of single computer/processor

–  available memory size and memory access time
–  performance

•  Until 2007: Growing mismatch between clock cycle and memory
access time (clock cycle : + 40% /year ; memory access: + 10%/year)

•  Since 2007: multicore processors!

•  Parallel computing allows
–  to solve problems that don�t fit in the memory of a single processor
–  to solve problems that can�t be solved in a reasonable time on a

single core (processor)

 
Parallel Computing 

 
Introduction & Motivation 

"adapted version of !
slides from!

Kathy Yelick and Jim Demmel"
EECS & Math Departments"

UC Berkeley"

www.cs.berkeley.edu/~demmel/cs267_spr11"

6"

Outline

• Why powerful computers must be parallel processors

•  Large Computational Science and Engineering (CSE)
problems require powerful computers

• Why writing (fast) parallel programs is hard

• Principles of parallel computing performance

• Structure of the course

Commercial problems too

Including your laptops and handhelds

all

But things are improving

7"

Units of Measure
• High Performance Computing (HPC) units are:

-  Flop: floating point operation, usually double precision unless noted
-  Flop/s: floating point operations per second
-  Bytes: size of data (a double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes
Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes
Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes
Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes
Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes
Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes
Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

8"

Why powerful
computers are

parallel"
circa 1991-2006

all (2007)

9"

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5
years!
Called �Moore�s Law�!
!
!
!
 !

Moore�s Law!

Microprocessors have
become smaller, denser, and
more powerful.!

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would double
roughly every 18 months. !

Slide source: Jack Dongarra

10"

Microprocessor Transistors / Clock (1970-2000)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000

Transistors (Thousands)

Frequency (MHz)

11"

Revolution in Processors

• Chip density is continuing to increase ~2x every 2 years
• Clock speed is not
• Number of processor cores may double instead
• Power is under control, no longer growing

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Cores

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

12"

 Parallelism in 2011?
• These arguments are no longer theoretical
• All major processor vendors are producing multicore chips

-  Every machine will soon be a parallel machine
-  To keep doubling performance, parallelism must double

• Which commercial applications can use this parallelism?
-  Do they have to be rewritten from scratch?

• Will all programmers have to be parallel programmers?
-  New software model needed
-  Try to hide complexity from most programmers – eventually
-  In the meantime, need to understand it

• Computer industry betting on this big change, but does not
have all the answers

-  Berkeley ParLab established to work on this

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

Question: Can you double concurrency without doubling memory?!
•  Strong scaling: fixed problem size, increase number of processors!
•  Weak scaling: grow problem size proportionally to number of processors!

Source: IBM

14"

More Limits: How fast can a serial computer be?

• Consider the 1 Tflop/s sequential machine:
- Data must travel some distance, r, to get from memory

to processor.
- To get 1 data element per cycle, this means 1012

times per second at the speed of light, c = 3x108 m/s.
Thus r < c/1012 = 0.3 mm.

• Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:
- Each bit occupies about 1 square Angstrom, or the

size of a small atom.

• No choice but parallelism

r = 0.3
mm

1 Tflop/s, 1
Tbyte sequential
machine

15"

More Exotic Solutions on the Horizon
•  Graphics and Game processors

-  Graphics Processing Units (GPUs), e.g., NVIDIA and ATI/AMD
-  Game processors, e.g., Cell for PS3
-  Parallel processor attached to main processor
-  Originally special purpose, getting more general
-  Programming model not yet mature

•  FPGAs – Field Programmable Gate Arrays
-  Inefficient use of chip area
-  More efficient than multicore for some domains
-  Programming challenge now includes hardware design, e.g., layout
-  Wire routing heuristics still troublesome;

•  Dataflow architectures
-  Have considerable experience with dataflow from 1980�s
-  Programming with functional languages?

• Listing the 500 most powerful computers
in the world

• Yardstick: Rmax of Linpack
- Solve Ax=b, dense problem, matrix is random
- Dominated by dense matrix-matrix multiply

• Update twice a year:
-  ISC�xy in June in Germany
- SCxy in November in the U.S.

• All information available from the TOP500
web site at: www.top500.org

The TOP500 Project

The TOP12 (June 2013)

17"

The TOP12 (June 2013)

18"

36th List: The TOP10 (Nov. 2010)

Rank Site Manufacturer Computer Country Cores Rmax
[Tflops]

Power
[MW]

1
National

SuperComputer
Center in Tianjin

NUDT
Tianhe-1A

NUDT TH MPP,
 Xeon 6C, NVidia, FT-1000 8C

China 186,368 2,566 4.04

2 Oak Ridge National
Laboratory Cray Jaguar

Cray XT5, HC 2.6 GHz USA 224,162 1,759 6.95

3
National

Supercomputing
Centre in Shenzhen

Dawning
Nebulae

TC3600 Blade, Intel X5650,
NVidia Tesla C2050 GPU

China 120,640 1,271 2.58

4
GSIC, Tokyo
Institute of
Technology

NEC/HP
TSUBAME-2

HP ProLiant, Xeon 6C,
NVidia, Linux/Windows

Japan 73,278 1,192 1.40

5 DOE/SC/
LBNL/NERSC Cray Hopper

Cray XE6, 6C 2.1 GHz USA 153,408 1.054 2.91

6
Commissariat a

l'Energie Atomique
(CEA)

Bull
Tera 100

Bull bullx super-node
S6010/S6030

France 138.368 1,050 4.59

7 DOE/NNSA/LANL IBM Roadrunner
BladeCenter QS22/LS21 USA 122,400 1,042 2.34

8 University of
Tennessee Cray Kraken

Cray XT5 HC 2.36GHz USA 98,928 831.7 3.09

9 Forschungszentrum
Juelich (FZJ) IBM Jugene

Blue Gene/P Solution Germany 294,912 825.5 2.26

10 DOE/NNSA/
LANL/SNL Cray Cielo

Cray XE6, 6C 2.4 GHz USA 107,152 816.6 2.95

Core Count

Moore�s Law reinterpreted

•  Number of cores per chip will double every
two years

•  Clock speed will not increase (possibly
decrease)

•  Need to deal with systems with millions of
concurrent threads

•  Need to deal with inter-chip parallelism as
well as intra-chip parallelism

24"

Outline

• Why powerful computers must be parallel processors

•  Large CSE problems require powerful computers

• Why writing (fast) parallel programs is hard

• Principles of parallel computing performance

• Structure of the course

Commercial problems too

Including your laptops and handhelds

all

But things are improving

25"

Computational Science- Recent News

Nature, March 23, 2006!

�An important development in sciences is
occurring at the intersection of computer
science and the sciences that has the
potential to have a profound impact on
science. It is a leap from the application of
computing … to the integration of
computer science concepts, tools, and
theorems into the very fabric of science.� -
Science 2020 Report, March 2006!

26"

Drivers for Change

•  Continued exponential increase in computational
power → simulation is becoming third pillar of
science, complementing theory and experiment

•  Continued exponential increase in experimental
data → techniques and technology in data
analysis, visualization, analytics, networking, and
collaboration tools are becoming essential in all
data rich scientific applications

27"

 Simulation: The Third Pillar of Science
•  Traditional scientific and engineering method:

(1) Do theory or paper design
(2) Perform experiments or build system

•  Limitations:
 –Too difficult—build large wind tunnels
 –Too expensive—build a throw-away passenger jet
 –Too slow—wait for climate or galactic evolution
 –Too dangerous—weapons, drug design, climate

 experimentation

•  Computational science and engineering paradigm:
(3) Use computers to simulate and analyze the phenomenon
- Based on known physical laws and efficient numerical methods
- Analyze simulation results with computational tools and

methods beyond what is possible manually

Simulation!

Theory! Experiment!

Data Driven Science

•  Scientific data sets are growing exponentially
-  Ability to generate data is exceeding our ability to

store and analyze
-  Simulation systems and some observational

devices grow in capability with Moore�s Law

•  Petabyte (PB) data sets will soon be common:
-  Climate modeling: estimates of the next IPCC data

is in 10s of petabytes
-  Genome: JGI alone will have .5 petabyte of data

this year and double each year
-  Particle physics: LHC is projected to produce 16

petabytes of data per year
-  Astrophysics: LSST and others will produce 5

petabytes/year

•  Create scientific communities with �Science
Gateways� to data

28"

29"

Some Particularly Challenging Computations
• Science

-  Global climate modeling
-  Biology: genomics; protein folding; drug design
-  Astrophysical modeling
-  Computational Chemistry
-  Computational Material Sciences and Nanosciences

• Engineering
-  Semiconductor design
-  Earthquake and structural modeling
-  Computation fluid dynamics (airplane design)
-  Combustion (engine design)
-  Crash simulation

• Business
-  Financial and economic modeling
-  Transaction processing, web services and search engines

• Defense
-  Nuclear weapons -- test by simulations
-  Cryptography

30"

Economic Impact of HPC
• Airlines:

-  System-wide logistics optimization systems on parallel systems.
-  Savings: approx. $100 million per airline per year.

• Automotive design:
-  Major automotive companies use large systems (500+ CPUs) for:

-  CAD-CAM, crash testing, structural integrity and
aerodynamics.

-  One company has 500+ CPU parallel system.
-  Savings: approx. $1 billion per company per year.

• Semiconductor industry:
-  Semiconductor firms use large systems (500+ CPUs) for

-  device electronics simulation and logic validation
-  Savings: approx. $1 billion per company per year.

• Energy
-  Computational modeling improved performance of current

nuclear power plants, equivalent to building two new power
plants.

31"

What Supercomputers Do

Introducing Computational Science and Engineering

Two Examples

-  simulation replacing experiment that is too slow
-  analyzing massive amounts of data with new tools

32"

Global Climate Modeling Problem
• Problem is to compute:

f(latitude, longitude, elevation, time)  �weather� =
 (temperature, pressure, humidity, wind velocity)

•  Approach:
-  Discretize the domain, e.g., a measurement point every 10 km
-  Devise an algorithm to predict weather at time t+δt given t

• Uses:!
-  Predict major events, e.g.,

El Nino!
-  Use in setting air

emissions standards!
-  Evaluate global warming

scenarios!

Source: http://www.epm.ornl.gov/chammp/chammp.html

33"

High Resolution
Climate Modeling on
NERSC-3 – P. Duffy,

et al., LLNL!

34"

Example : weather prediction (Europe)
•  Navier-Stokes equations (PDE) : discretized on a grid
•  Assume domain : 3000 km x 3000 km x 10 km

 resolution: 1 km x 1km x 0.1 km

 �> grid of size: 3000 x 3000 x 100 = ± 109 grid points
 time interval: 48 h. ; time step : 3 min. �> ± 1000 timesteps

 cost per gid point : 1000 flop (flop = floating point operation)

 �> Total cost: 109 x 1000 x 1000 = 1015 flop = 1 Pflop

•  PC or workstation (1 Gflops) : 300 hours
 Cluster (e.g. VIC3) (400 Gflops) : 45 min

•  Required memory :
 solution only: 109 grid points x 5 variables x 8 bytes = 4 1010 bytes

 = 40 Gbyte ! --> total required memory: ± 400 Gbyte

Which commercial applications require parallelism?

Em
be

d

SP
EC

DB Ga
m

es

M
L

HP
C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Analyzed in detail in
�Berkeley View� report!

Analyzed in detail in
�Berkeley View� report

www.eecs.berkeley.edu/Pubs/
TechRpts/2006/

EECS-2006-183.html

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

Em
be

d

SP
EC

D
B

G
am

es

M
L

H
PC Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What do commercial and CSE applications have in common?

37"

Outline

• Why powerful computers must be parallel processors

•  Large CSE problems require powerful computers

• Why writing (fast) parallel programs is hard

• Principles of parallel computing performance

• Structure of the course

Commercial problems too

Including your laptops and handhelds

all

But things are improving

38"

Principles of Parallel Computing
• Finding enough parallelism (Amdahl�s Law)
• Granularity

•  Locality

•  Load balance

• Coordination and synchronization

• Performance modeling

All of these things makes parallel programming
even harder than sequential programming.

39"

�Automatic� Parallelism in Modern Machines
• Bit level parallelism

- within floating point operations, etc.

• Instruction level parallelism (ILP)
- multiple instructions execute per clock cycle

• Memory system parallelism
- overlap of memory operations with computation

• OS parallelism
- multiple jobs run in parallel on commodity SMPs

Limits to all of these -- for very high performance, need
user to identify, schedule and coordinate parallel tasks

40"

Finding Enough Parallelism
• Suppose only part of an application seems parallel
• Amdahl�s law

-  let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

- P = number of processors

Speedup(P) = Time(1)/Time(P)

 <= 1/(s + (1-s)/P)

 <= 1/s
• Even if the parallel part speeds up perfectly

performance is limited by the sequential part!

• Top500 list: currently 2nd fastest machine has P~224K;
fastest has ~186K+GPUs!

41"

Overhead of Parallelism
• Given enough parallel work, this is the biggest barrier to

getting desired speedup

• Parallelism overheads include:
-  cost of starting a thread or process
-  cost of communicating shared data
-  cost of synchronizing
- extra (redundant) computation

• Each of these can be in the range of milliseconds
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of work
to run fast in parallel (i.e. large granularity), but not so
large that there is not enough parallel work

42"

Locality and Parallelism

•  Large memories are slow, fast memories are small
•  Storage hierarchies are large and fast on average

•  Parallel processors, collectively, have large, fast cache
-  the slow accesses to �remote� data we call �communication�

•  Algorithm should do most work on local data

Proc!
Cache!

L2 Cache!

L3 Cache!

Memory!

Conventional !
Storage !
Hierarchy!

Proc!
Cache!

L2 Cache!

L3 Cache!

Memory!

Proc!
Cache!

L2 Cache!

L3 Cache!

Memory!

potential!
interconnects!

43"

Processor-DRAM Gap (latency)

µProc!
60%/yr.!

DRAM!
7%/yr.!

1!

10!

100!

1000!

19
8

0!19
8

1! 19
8

3!19
8

4!19
8

5!19
8

6!19
8

7!19
8

8!19
8

9!19
9

0!19
9

1!19
9

2!19
9

3!19
9

4!19
9

5!19
9

6!19
9

7!19
9

8!19
9

9!20
0

0!

DRAM!

CPU!

19
8

2!

Processor-Memory!
Performance Gap:"
(grows 50% / year)!

Pe
rf

or
m

an
ce
!

Time!

�Moore�s Law�!

Goal: find algorithms that minimize communication, not necessarily arithmetic

44"

Load Imbalance
•  Load imbalance is the time that some processors in the

system are idle due to
-  insufficient parallelism (during that phase)
-  unequal size tasks

• Examples of the latter
-  adapting to �interesting parts of a domain�
-  tree-structured computations
-  fundamentally unstructured problems

• Algorithm needs to balance load
-  Sometimes can determine work load, divide up evenly, before starting

-  �Static Load Balancing�
-  Sometimes work load changes dynamically, need to rebalance

dynamically
-  �Dynamic Load Balancing�

45

Parallel Software Eventually – ParLab view

• 2 types of programmers  2 layers

• Efficiency Layer (10% of today�s programmers)
-  Expert programmers build Libraries implementing motifs, �Frameworks�,

OS, ….
-  Highest fraction of peak performance possible

• Productivity Layer (90% of today�s programmers)
-  Domain experts / Naïve programmers productively build parallel applications

by composing frameworks & libraries
-  Hide as many details of machine, parallelism as possible
-  Willing to sacrifice some performance for productive programming

• Expect students may want to work at either level
-  In the meantime, we all need to understand enough of the efficiency layer to

use parallelism effectively

46"

Outline

• Why powerful computers must be parallel processors

•  Large CSE problems require powerful computers

• Why writing (fast) parallel programs is hard

• Principles of parallel computing performance

• Structure of the course

Commercial problems too

Including your laptops and handhelds

all

But things are improving

47"

Improving Real Performance

0.1!

1!

10!

100!

1,000!

2000! 2004!

Te
ra

flo
ps

1996!

Peak Performance grows exponentially,
a la Moore�s Law
  In 1990�s, peak performance increased

100x; in 2000�s, it will increase 1000x

But efficiency (the performance relative to
the hardware peak) has declined
  was 40-50% on the vector supercomputers

of 1990s
  now as little as 5-10% on parallel

supercomputers of today
 Close the gap through ...
  Mathematical methods and algorithms that

achieve high performance on a single
processor and scale to thousands of
processors

  More efficient programming models and tools
for massively parallel supercomputers

Performance
Gap

Peak Performance

Real Performance

48"

Performance Levels
• Peak performance

-  Sum of all speeds of all floating point units in the system

-  You can�t possibly compute faster than this speed

•  LINPACK
-  The �hello world� program for parallel performance

-  Solve Ax=b using Gaussian Elimination, highly tuned

• Gordon Bell Prize winning applications performance
-  The right application/algorithm/platform combination plus years of work

• Average sustained applications performance
-  What one reasonable can expect for standard applications

When reporting performance results, these levels are
often confused, even in reviewed publications

49"

Performance Levels (for example on NERSC-5)
• Peak advertised performance (PAP): 100 Tflop/s

•  LINPACK (TPP): 84 Tflop/s

• Best climate application: 14 Tflop/s
-  WRF code benchmarked in December 2007

• Average sustained applications performance: ? Tflop/s
-  Probably less than 10% peak!

• We will study performance
-  Hardware and software tools to measure it

-  Identifying bottlenecks

-  Practical performance tuning (Matlab demo)

50"

Parallel Computing in Data Analysis
•  Finding information amidst large quantities of data
•  General themes of sifting through large, unstructured data

sets:
-  Has there been an outbreak of some medical condition in a

community?
-  bio-informatics
-  ...

•  Data collected and stored at enormous speeds (Gbyte/hour)
-  telescope scanning the skies
-  microarrays generating gene expression data
-  ...

