Overview of parallel programming paradigms

Overview of parallel programming paradigms

Albert-Jan Yzelman

29th of November, 2013

KATHOLIEKE UNIVERSITEIT

LEUVEN

Overview of parallel programming paradigms

Flynn's Taxonomy

Single Data Multiple Data
Single Instruction SISD SIMD
Multiple Instruction

Examples:

@ classical von Neumann computing; program and data streamed to
processor.

@ vectorisation (MMX/AVX/...), vector computers.

°

o ccNUMA architectures,
e symmetric multiprocessors,
e non-cc NUMA (scratchpad memory, Cell Broadband Engine, .. .)

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Programming models

A class on parallel computing focuses on MIMD.

@ Two flavours of MIMD:

e Single Program, Multiple Data (SPMD), and
e Multiple Program, Multiple Data (MPMD).

e Both SPMD and MPMD programs can be in lockstep.

Examples:

@ GPUs often use stream-based programming. This is SPMD and
employs groupwise lockstepping.

@ Past and future architectures do allow and even promote MPMD
programming: e.g., the Cell BE and the Epiphany archtictures.

@ BSP is an SPMD paradigm.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Common design patterns

Often-used techniques for writing parallel software:

@ task-based: identify independently executable work and group
them into tasks, then schedule these dynamically. This may
include modeling inter-task dependencies in terms of input- and
output-data. In the extreme: workflows.

@ divide-and-conquer: concurrently conquer a divided problem.

@ geometric decomposition: often used in spatial computational
science simulations.

@ pipelining: like task-based parallelism, but with
serial-dependencies; this pattern sometimes appears in a
subsection of a parallel program.

@ master/worker: one process assignes work others.

e fork/join: after a fork a new process appears, starting at the same
part of the program.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based parallelisation

A task has three states: (1) wait for data, (2) ready, and (3) done. If
Ti is the set of tasks in state i, then a simple scheduler runs a loop
similar to:

e While 7 is empty, wait.

° from 7>.

o Execute t.

@ For all tasks s € Tq, if s waits on t,

° let s know t is done, and

° if s has no further waits, remove it from 77 and add it to 7.
@ Insert t into 73.

This requires thread-safe datastructures (concurrent removals,
insertions). The orange statement is critical to performance.

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v,w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

Remark: the sequential running time Tseq = >, o\ w(v).

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V/, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v, w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

Remark: let P C V be a path from r to a leaf vertex x s.t.
YveV, B(x,v)eE,

then w(P) = > cp w(v) is the path weight. The weighted critical
path P, has for all other possible paths P that w(P.) > w(P).

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V/, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v, w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

e find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p — oo, the minimum amount of computation remains
w(P;), always.

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

@ view the collection of tasks the program creates as a rooted
directed graph G = (V/, E); V contain all tasks, r € V is the
initial process of the algorithm, and an edge e = (v, w) € E
indicates w depends on v.

@ assign vertex weights w(v) to vertices v € V such that w(v)
equals the amount of work of the task v.

e find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p — oo, the minimum amount of computation remains
w(P.), always. The parallel compute time T, is bounded by

Tp = O(w(Pc)/r + Tsea/p),
with r the computation speed of a single worker.

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Common HW/OS capabilities

Hardware and operating systems often support parallelism by:
@ thread and process execution and control:
@ spawn,
abort,

wait for,
exit.

@ mutexes (locks),
@ synchronisation barriers,

@ transactional memory
o readily available: atomics,
e more complex technologies: speculative threading.
In-software equivalents of the above are possible (for instance, the use
of spin-locks instead of barriers).

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Communication paradigms

Popular ways for inter-process communication:
@ message passing (MPI, BSP),
@ direct remote memory access (BSP, MPI),
@ collectives (MPI),
@ global arrays / global address space (GA/PGAS/UPC).
These approaches can be
@ Blocking or non-blocking,
@ One-sided or two-sided (and up to p-sided).
Classically,
@ MPI is a two-sided blocking message passing (send/receive pairs)
paradigm, while
@ BSP is a one-sided non-blocking direct remote memory access
paradigm.

Naturally, both paradigms have evolved beyond this strict classification.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

History of MPI

@ 1994: Message Passing Interface (MPI) became available as a
standard interface for parallel programming in C and Fortran 77.

@ Designed by a committee called the MPI Forum consisting of
computer vendors, users, computer scientists.

@ Based on sending and receiving messages by a pair of processors.
One processor sends; the other receives. Both are active in the
communication.

e Underlying model: communicating sequential processes (CSP)
proposed by Hoare in 1978.

@ MPI itself is not a model. BSP is a model.

@ MPI is an interface for a communication library, like BSPIib.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Recent history of MPI

@ 1997: MPI-2 standard defined. Added functionality:
e one-sided communications (put, get, sum)
e dynamic process management
e parallel input/output
e languages C++ and Fortran 90
@ 2003: first full implementations of MPI arrive, namely MPICH
(Argonne National Labs) and LAM/MPI (Indiana University).

@ 2004—: Open MPI. Open-source project, merges 3 MPI
implementations: LAM/MPI, FT-MPI (University of Tennessee),
LA-MPI (Los Alamos National Laboratory).

@ Many users still use MPI-1, particularly its latest version MPI-1.2.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Why use MPI?

@ It is available on almost every parallel computer, often in an
optimised version provided by the vendor. Thus MPI is the most
portable communication library.

@ Many libraries are available written in MPI, such as the numerical
linear algebra library ScaLAPACK.

@ You can program in many different ways using MPI, since it is
highly flexible.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Why not?

@ It is huge: the full standard has about 300 primitives. The user
has to make many choices.

@ It is not so easy to learn. Usually one starts with a small subset of
MPI. Full knowledge of the standard is hard to attain.

@ MPI-2 has not widely been accepted (yet), nor has it been fully
implemented in every MPI library. If you like one-sided
communications you may want to consider BSPIlib as an
alternative.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Ping pong benchmark

@ The cost of communicating a message of length n is
T(n) - tstartup + ntyord-

Here, tstartup is a fixed startup cost and tyerq is the additional
cost per data word communicated.

e Communication of a message (in its blocking form) synchronises
the sender and receiver. This is pairwise synchronisation, not
global.

@ Parameters tsiartup and tyword are usually measured by sending a
message from one processor to another and back: ping pong.

@ The message length is varied in the ping pong benchmark.

@ There is only one ping pong ball on the table.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Send and receive primitives

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD) ;
if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,
&status);

@ Processor P(2) sends 5 doubles to P(3).

@ P(2) reads the data from its array x. After transmission, P(3)
writes these data into its array y.

@ The integer ‘0" is a tag for distinguishing between different
messages from the same source processor to the same destination
processor.

@ MPI_Send and MPI_Recv are of fundamental importance in MPI.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Communicator: the whole processor world

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD) ;
if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,
&status);

@ A communicator is a subset of processors forming a
communication environment with its own processor numbering.

@ MPI_COMM_WORLD is the communicator consisting of all the
processors.

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Send/Receive considered harmful

@ 1968: Edsger Dijkstra, guru of structured programming,
considered the Go To statement harmful in sequential
programming.

@ Go To was widely used in Fortran programming in those days. It
caused spaghetti code: if you pull something here, something
unexpected moves there.

@ No one dares to use Go To statements any more.

@ Send/Receive in parallel programming has the same dangers, and
even more, since several diners eat from the same plate.

@ Pull here, pull there, nothing moves: deadlock.

@ Deadlock may occur if P(0) wants to send a message to P(1),
and P(1) to P(0), and both processors want to send before they
receive.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product program mpiinprod

int main(int argc, char **argv){
int p, s, n;

MPI_Init(&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD,&p) ;
MPI_Comm_rank (MPI_COMM_WORLD,&s) ;

if (s==0){
printf ("Please enter n:\n");
scanf ("%d",&n) ;
if (n<0)
MPI_Abort (MPI_COMM_WORLD,-1);
}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Collective communication: broadcast

MPI_Bcast(&n, 1, MPI_INT, O, MPI_COMM_WORLD);

MPI_Bcast (buf,count,datatype,root,communicator) ;

@ Broadcast count data items of a certain datatype from
processor root to all others in the communicator, reading from
location buf and also writing it there.

@ All processors of the communicator participate.

@ Extensive set of collective communications available in MPI. Using
these reduces the size of program texts, and allows hardware
vendors to provide optimised algorithms.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product program mpiinprod (cont'd)

nl= nloc(p,s,n); //local vector length
x = vecallocd(nl); //allocate and initialise x
for (i=0; i<nl; i++) {

iglob= ix*p+s;

x[i]= iglob+1;

MPI_Barrier (MPI_COMM_WORLD); // global sync for timing
time0=MPI_Wtime () ; // wall clock time

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product program mpiinprod (cont'd)

//do calculate inner product
alpha= mpiip(p,s,n,x,x);

//sync for timing

MPI_Barrier (MPI_COMM_WORLD) ;
timel=MPI_Wtime();

MPI_Finalize();
exit (0);

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product function mpiip

double mpiip(int p,int s,int n,
double *x,double *y){

double inprod, alpha;
int i;

inprod= 0.0;
for (i=0; i<nloc(p,s,n); i++)
inprod += x[il*y[i];
MPI_Allreduce(&inprod,&alpha,1,MPI_DOUBLE,
MPI_SUM,MPI_COMM_WORLD) ;

return alpha;

}

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Collective communication: reduce

MPI_Allreduce(&inprod, &alpha, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD) ;

MPI_Allreduce(sendbuf, recvbuf, count, datatype,
operation, communicator);

@ The reduction operation by MPT_Allreduce sums the
double-precision local inner products inprod, leaving the result
alpha on all processors.

@ One can also do this for an array instead of a scalar, by changing
the parameter 1 to the array size count, or perform other
operations, such as taking the maximum, by changing MPI_SUM to
MPI_MAX.

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Collectives

More collective operations:

broadcast,

scatter,

gather,

reduction (also reduce-scatter),
all-gather, and

all-to-all.

For a nice graphical overview, see
www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

MPI directly integrates these patterns by providing primitives:
MPI_BCAST, MPI_GATHER, MPI_SCATTER, ...

MPI also supports collectives on vectors instead of single entities
(MPI_.GATHERV. MPI_SCATTERY, ...), thus enabling
optimisations such as the two-phase broadcast.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

Overview of parallel programming paradigms

Multi-BSP

Multi-BSP: A BSP computer consists out of p other BSP computers
(Valiant, 2008), or p processors.

I .
T

(Blue: local memory, green: network interconnect, black: processors)

@ MulticoreBSP for C already supports nested BSP runs.

KATHOLIEKE UNIVERSITEIT

LEquN Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.

BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:

@ start 8 BSP FFT processes, which each recursively call

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.
BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:
@ start 8 BSP FFT processes, which each recursively call

@ a parallel BSP FFT using 4 cores, which each recursively call

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.
BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:
@ start 8 BSP FFT processes, which each recursively call
@ a parallel BSP FFT using 4 cores, which each recursively call

@ an optimised sequential FFT.

KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.
BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:
@ start 8 BSP FFT processes, which each recursively call
@ a parallel BSP FFT using 4 cores, which each recursively call

@ an optimised sequential FFT.

While this introduces more data redistribution stages, the BSP g and

| are lower in each of these step; each redistribution step is cheaper.
KATHOLIEKE UNIVERSITEIT

LEUVEN Albert-Jan Yzelman

Overview of parallel programming paradigms

Summary

We have seen

@ various ways on exploiting parallelism on current hardware,

@ a high-level overview of parallel programming paradigms,

@ common design patterns used within these paradigms,

@ what the hardware and OS can do for you,

@ an overview of communication paradigms,

@ how to analyse fine-grained parallel applications,

@ a short introduction to the Message Passing Interface, and
programming using MPI, and

@ what the future of BSP might look like.

KATHOLIEKE UNIVERSITEIT
LEUVEN Albert-Jan Yzelman

