
Overview of parallel programming paradigms

Overview of parallel programming paradigms

Albert-Jan Yzelman

29th of November, 2013

Albert-Jan Yzelman

Overview of parallel programming paradigms

Flynn’s Taxonomy

Single Data Multiple Data
Single Instruction SISD SIMD

Multiple Instruction MISD MIMD

Examples:

classical von Neumann computing; program and data streamed to
processor.

vectorisation (MMX/AVX/. . .), vector computers.

shared-memory programming, i.e.,
ccNUMA architectures,
symmetric multiprocessors,
non-cc NUMA (scratchpad memory, Cell Broadband Engine, . . .)

distributed-memory programming (classical, grids, clouds, . . .).

hybrid parallel programming.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Programming models

A class on parallel computing focuses on MIMD.

Two flavours of MIMD:

Single Program, Multiple Data (SPMD), and
Multiple Program, Multiple Data (MPMD).

Both SPMD and MPMD programs can be in lockstep.

Examples:

GPUs often use stream-based programming. This is SPMD and
employs groupwise lockstepping.

Past and future architectures do allow and even promote MPMD
programming: e.g., the Cell BE and the Epiphany archtictures.

BSP is an SPMD paradigm.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Common design patterns

Often-used techniques for writing parallel software:

task-based: identify independently executable work and group
them into tasks, then schedule these dynamically. This may
include modeling inter-task dependencies in terms of input- and
output-data. In the extreme: workflows.

divide-and-conquer: concurrently conquer a divided problem.

geometric decomposition: often used in spatial computational
science simulations.

pipelining: like task-based parallelism, but with
serial-dependencies; this pattern sometimes appears in a
subsection of a parallel program.

master/worker: one process assignes work others.

fork/join: after a fork a new process appears, starting at the same
part of the program.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based parallelisation

A task has three states: (1) wait for data, (2) ready, and (3) done. If
Ti is the set of tasks in state i , then a simple scheduler runs a loop
similar to:

While T2 is empty, wait.

Remove a task t from T2.

Execute t.

For all tasks s ∈ T1, if s waits on t,

let s know t is done, and

if s has no further waits, remove it from T1 and add it to T2.

Insert t into T3.

This requires thread-safe datastructures (concurrent removals,
insertions). The orange statement is critical to performance.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

Remark: the sequential running time Tseq =
∑

v∈V w(v).

Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

Remark: let P ⊂ V be a path from r to a leaf vertex x s.t.

∀v ∈ V , @(x , v) ∈ E ,

then w(P) =
∑

v∈P w(v) is the path weight. The weighted critical
path Pc has for all other possible paths P that w(Pc) ≥ w(P).

Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p →∞, the minimum amount of computation remains
w(Pc), always. The parallel compute time Tp is bounded by

Tp = O(w(Pc)/r + Tseq/p),

with r the computation speed of a single worker.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Task-based analysis

The analysis of a fine-grained (task-based) algortihm differs from what
we have seen previously. Steps to perform the analysis:

view the collection of tasks the program creates as a rooted
directed graph G = (V ,E); V contain all tasks, r ∈ V is the
initial process of the algorithm, and an edge e = (v ,w) ∈ E
indicates w depends on v .

assign vertex weights w(v) to vertices v ∈ V such that w(v)
equals the amount of work of the task v .

find the weight of the weighted critical path (and try to minimise
this for scalability).

Remark: if p →∞, the minimum amount of computation remains
w(Pc), always. The parallel compute time Tp is bounded by

Tp = O(w(Pc)/r + Tseq/p),

with r the computation speed of a single worker.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Common HW/OS capabilities

Hardware and operating systems often support parallelism by:

thread and process execution and control:

spawn,
abort,
wait for,
exit.

mutexes (locks),

synchronisation barriers,

transactional memory

readily available: atomics,
more complex technologies: speculative threading.

In-software equivalents of the above are possible (for instance, the use
of spin-locks instead of barriers).

Albert-Jan Yzelman

Overview of parallel programming paradigms

Communication paradigms

Popular ways for inter-process communication:

message passing (MPI, BSP),

direct remote memory access (BSP, MPI),

collectives (MPI),

global arrays / global address space (GA/PGAS/UPC).

These approaches can be

Blocking or non-blocking,

One-sided or two-sided (and up to p-sided).

Classically,

MPI is a two-sided blocking message passing (send/receive pairs)
paradigm, while

BSP is a one-sided non-blocking direct remote memory access
paradigm.

Naturally, both paradigms have evolved beyond this strict classification.

Albert-Jan Yzelman

Overview of parallel programming paradigms

History of MPI

1994: Message Passing Interface (MPI) became available as a
standard interface for parallel programming in C and Fortran 77.

Designed by a committee called the MPI Forum consisting of
computer vendors, users, computer scientists.

Based on sending and receiving messages by a pair of processors.
One processor sends; the other receives. Both are active in the
communication.

Underlying model: communicating sequential processes (CSP)
proposed by Hoare in 1978.

MPI itself is not a model. BSP is a model.

MPI is an interface for a communication library, like BSPlib.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Recent history of MPI

1997: MPI-2 standard defined. Added functionality:

one-sided communications (put, get, sum)
dynamic process management
parallel input/output
languages C++ and Fortran 90

2003: first full implementations of MPI arrive, namely MPICH
(Argonne National Labs) and LAM/MPI (Indiana University).

2004–: Open MPI. Open-source project, merges 3 MPI
implementations: LAM/MPI, FT-MPI (University of Tennessee),
LA-MPI (Los Alamos National Laboratory).

Many users still use MPI-1, particularly its latest version MPI-1.2.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Why use MPI?

It is available on almost every parallel computer, often in an
optimised version provided by the vendor. Thus MPI is the most
portable communication library.

Many libraries are available written in MPI, such as the numerical
linear algebra library ScaLAPACK.

You can program in many different ways using MPI, since it is
highly flexible.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Why not?

It is huge: the full standard has about 300 primitives. The user
has to make many choices.

It is not so easy to learn. Usually one starts with a small subset of
MPI. Full knowledge of the standard is hard to attain.

MPI-2 has not widely been accepted (yet), nor has it been fully
implemented in every MPI library. If you like one-sided
communications you may want to consider BSPlib as an
alternative.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Ping pong benchmark

The cost of communicating a message of length n is

T (n) = tstartup + ntword.

Here, tstartup is a fixed startup cost and tword is the additional
cost per data word communicated.

Communication of a message (in its blocking form) synchronises
the sender and receiver. This is pairwise synchronisation, not
global.

Parameters tstartup and tword are usually measured by sending a
message from one processor to another and back: ping pong.

The message length is varied in the ping pong benchmark.

There is only one ping pong ball on the table.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Send and receive primitives

if (s==2)

MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)

MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

Processor P(2) sends 5 doubles to P(3).

P(2) reads the data from its array x. After transmission, P(3)
writes these data into its array y.

The integer ‘0’ is a tag for distinguishing between different
messages from the same source processor to the same destination
processor.

MPI Send and MPI Recv are of fundamental importance in MPI.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Communicator: the whole processor world

if (s==2)

MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)

MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

A communicator is a subset of processors forming a
communication environment with its own processor numbering.

MPI COMM WORLD is the communicator consisting of all the
processors.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Send/Receive considered harmful

1968: Edsger Dijkstra, guru of structured programming,
considered the Go To statement harmful in sequential
programming.

Go To was widely used in Fortran programming in those days. It
caused spaghetti code: if you pull something here, something
unexpected moves there.

No one dares to use Go To statements any more.

Send/Receive in parallel programming has the same dangers, and
even more, since several diners eat from the same plate.

Pull here, pull there, nothing moves: deadlock.

Deadlock may occur if P(0) wants to send a message to P(1),
and P(1) to P(0), and both processors want to send before they
receive.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product program mpiinprod

int main(int argc, char **argv){

int p, s, n;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&p);

MPI_Comm_rank(MPI_COMM_WORLD,&s);

if (s==0){

printf("Please enter n:\n");

scanf("%d",&n);

if(n<0)

MPI_Abort(MPI_COMM_WORLD,-1);

}

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

...
Albert-Jan Yzelman

Overview of parallel programming paradigms

Collective communication: broadcast

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(buf,count,datatype,root,communicator);

Broadcast count data items of a certain datatype from
processor root to all others in the communicator, reading from
location buf and also writing it there.

All processors of the communicator participate.

Extensive set of collective communications available in MPI. Using
these reduces the size of program texts, and allows hardware
vendors to provide optimised algorithms.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product program mpiinprod (cont’d)

...

nl= nloc(p,s,n); //local vector length

x = vecallocd(nl); //allocate and initialise x

for (i=0; i<nl; i++) {

iglob= i*p+s;

x[i]= iglob+1;

}

MPI_Barrier(MPI_COMM_WORLD); // global sync for timing

time0=MPI_Wtime(); // wall clock time

...

Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product program mpiinprod (cont’d)

...

//do calculate inner product

alpha= mpiip(p,s,n,x,x);

//sync for timing

MPI_Barrier(MPI_COMM_WORLD);

time1=MPI_Wtime();

...

MPI_Finalize();

exit(0);

Albert-Jan Yzelman

Overview of parallel programming paradigms

Inner product function mpiip

double mpiip(int p,int s,int n,

double *x,double *y){

double inprod, alpha;

int i;

inprod= 0.0;

for (i=0; i<nloc(p,s,n); i++)

inprod += x[i]*y[i];

MPI_Allreduce(&inprod,&alpha,1,MPI_DOUBLE,

MPI_SUM,MPI_COMM_WORLD);

return alpha;

}

Albert-Jan Yzelman

Overview of parallel programming paradigms

Collective communication: reduce

MPI_Allreduce(&inprod, &alpha, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(sendbuf, recvbuf, count, datatype,

operation, communicator);

The reduction operation by MPI Allreduce sums the
double-precision local inner products inprod, leaving the result
alpha on all processors.

One can also do this for an array instead of a scalar, by changing
the parameter 1 to the array size count, or perform other
operations, such as taking the maximum, by changing MPI SUM to
MPI MAX.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Collectives

More collective operations:

broadcast,

scatter,

gather,

reduction (also reduce-scatter),

all-gather, and

all-to-all.

For a nice graphical overview, see
www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

MPI directly integrates these patterns by providing primitives:
MPI BCAST, MPI GATHER, MPI SCATTER, . . .

MPI also supports collectives on vectors instead of single entities
(MPI GATHERV. MPI SCATTERV, . . .), thus enabling
optimisations such as the two-phase broadcast.

Albert-Jan Yzelman

www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node64.html

Overview of parallel programming paradigms

Multi-BSP

Multi-BSP: A BSP computer consists out of p other BSP computers
(Valiant, 2008), or p processors.

(Blue: local memory, green: network interconnect, black: processors)

MulticoreBSP for C already supports nested BSP runs.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.

BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:

start 8 BSP FFT processes, which each recursively call

a parallel BSP FFT using 4 cores, which each recursively call

an optimised sequential FFT.

While this introduces more data redistribution stages, the BSP g and
l are lower in each of these step; each redistribution step is cheaper.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.

BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:

start 8 BSP FFT processes, which each recursively call

a parallel BSP FFT using 4 cores, which each recursively call

an optimised sequential FFT.

While this introduces more data redistribution stages, the BSP g and
l are lower in each of these step; each redistribution step is cheaper.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.

BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:

start 8 BSP FFT processes, which each recursively call

a parallel BSP FFT using 4 cores, which each recursively call

an optimised sequential FFT.

While this introduces more data redistribution stages, the BSP g and
l are lower in each of these step; each redistribution step is cheaper.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Multi-BSP

The BSP FFT splits local computation into two local (generalised)
FFTs, with one data redistribution phase in between.

FFT example: instead of reverting to optimised sequential FFTs,
we revert to parallel FFT kernels.

Consider an 8 socket machine with eight quadcore processors.

BSP FFT: two comp. phases, one comm. phase.
Multi-BSP FFT: three comp. phases, two comm. phases:

start 8 BSP FFT processes, which each recursively call

a parallel BSP FFT using 4 cores, which each recursively call

an optimised sequential FFT.

While this introduces more data redistribution stages, the BSP g and
l are lower in each of these step; each redistribution step is cheaper.

Albert-Jan Yzelman

Overview of parallel programming paradigms

Summary

We have seen

various ways on exploiting parallelism on current hardware,

a high-level overview of parallel programming paradigms,

common design patterns used within these paradigms,

what the hardware and OS can do for you,

an overview of communication paradigms,

how to analyse fine-grained parallel applications,

a short introduction to the Message Passing Interface, and
programming using MPI, and

what the future of BSP might look like.

Albert-Jan Yzelman

