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Caches

Divide the main memory (RAM) in stripes of size LS .

Main
memory

(RAM)

The ith line in RAM is mapped to the cache line i mod L, where L is
the number of available cache lines.
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Caches

A smarter cache follows a pre-defined policy instead; for instance, the
‘Least Recently Used (LRU)’ policy:
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Caches

Realistic caches combine modulo-mapping and the LRU policy:

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

k is the number of subcaches; there are L/k LRU stacks.
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Caches

Realistic caches are used within multi-level memory hierarchies:
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Cache Cache

(L1) (L2)CPU

Intel Core2 (Q6600) AMD Phenom II (945e) Intel Westmere (E7-2830)
L1: 32kB k = 8
L2: 4MB k = 16
L3: - -

S = 64kB k = 2
S = 512kB k = 8
S = 6MB k = 48

S = 256kB k = 8
S = 2MB k = 8
S = 24MB k = 24
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Caches and multiplication

Dense matrix–vector multiplication
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Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A. But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman



Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A.

But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman



Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
this causes O(n) cache misses on m − 1 rows.

Fix:

stop processing a row before an element from x would be evicted;
first continue with the next rows.

This results in column-wise ‘stripes’ of the dense A. But now:

elements from the vector y can be prematurely evicted; O(m)
cache misses on each block of columns.

Fix:

stop processing before an element from y is evicted; first do the
remaining column blocks.

Consecutive processing of p × q submatrices (cache-aware blocking).

Albert-Jan Yzelman



Shared-memory parallel computing > Shared-memory architectures and paradigms

Caches and multiplication

When k, L are larger, we can predict:

lower elements from x are evicted while processing the first row;
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Caches and multicore

Most architectures employ shared caches; (p, r , l , g) = (4, 3GHz, l , g):
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64kB L1 64kB L1 64kB L1 64kB L1

Core 1 Core 2 Core 3 Core 4

512kB L2512kB L2512kB L2512kB L2

System interface

6MB shared L3 cache
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Caches and multicore: NUMA
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System interface

4MB L2

(4, 2.4GHz, l , g), but Non-Uniform Memory Access (NUMA)!
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Dealing with NUMA: distribution types

Implicit distribution, centralised local allocation:

If each processor moves data to the same single memory element, the
bandwidth is limited by that of a single memory controller.

Albert-Jan Yzelman



Shared-memory parallel computing > Shared-memory architectures and paradigms

Dealing with NUMA: distribution types

Implicit distribution, centralised interleaved allocation:

If each processor moves data from all memory elements, the bandwidth
multiplies if accesses are uniformly random.
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Dealing with NUMA: distribution types

Explicit distribution, distributed local allocation:

If each processor moves data from and to its own unique memory
element, the bandwidth multiplies.
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Bandwidth

CPU speeds stall, but Moore’s Law now translates to an increasing
amount of cores per die, i.e., the effective flop rate of processors
still rises as it always has.

But what about bandwidth?

Technology Year Speed

EDO 1970s 27 Mbyte/s
SDRAM early 1990s 53 Mbyte/s
RDRAM mid 1990s 1.2 Gbyte/s

DDR 2000 1.6 Gbyte/s
DDR2 2003 3.2 Gbyte/s
DDR3 2007 6.4 Gbyte/s
DDR3 2013 11 Gbyte/s

Will the effective bandwidth per core keep decreasing?
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Bandwidth

Arithmetic intensity:
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If your computation has enough work per data element, it is
compute bound. Otherwise it is bandwidth bound.
If you are bandwidth bound, reducing your memory footprint, i.e.,
compression, directly results in faster execution.

(Image courtesy of Prof. Wim Vanroose, UA)
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Shared-memory programming intro

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α;’ globally allocated:

α = 0.0

for i = s to n step p

α += xiyi
return α

Data race! (for n = p = 2, output can be x0y0, x1y1, or x0y0 + x1y1)
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Shared-memory programming intro

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[p];’ globally allocated:

for i = s to n step p

αs += xiyi
synchronise

return
∑p−1

i=0 αi

False sharing! (processors access and update the same cache lines)
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Shared-memory programming intro

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[8p];’ globally allocated:

for i = s to n step p
α8s += xiyi

synchronise
return

∑p−1
i=0 α8i

Inefficient cache use!
(All threads access all cache lines associated with x , y)
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Shared-memory programming intro

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[8p];’ globally allocated:

for i = s to n step p
α8s += xiyi

synchronise
return

∑p−1
i=0 α8i

Inefficient cache use: Θ(pn) data movement.
(All threads access all cache lines)
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Shared-memory programming intro

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.

Input:
s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

Shared-memory SPMD program with ‘double α[8p];’ globally allocated:

for i = s · dn/pe to (s + 1) · dn/pe
α8s += xiyi

synchronise

return
∑p−1

i=0 α8i

(Now inefficiency only at boundaries; O(n + p − 1) data movement)
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Central obstacles for SpMV multiplication

The second example application is the sparse matrix–vector
multiplication

y = Ax .

Three obstacles for an efficient shared-memory parallel sparse
matrix–vector (SpMV) multiplication kernel:

inefficient cache use,

limited memory bandwidth, and

non-uniform memory access (NUMA).
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Inefficient cache use

SpMV multiplication using CRS, LRU cache perspective:

x?

=⇒

a0?

x?

=⇒

y0

a0?

x? =⇒

x?

y0

a0?

x?
=⇒

a??

x?

y0

a0?

x?

=⇒

y?

a??

x?

y?

a0?

x?

We cannot predict memory accesses in the sparse case:

simple blocking is not possible.
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Inefficient cache use

Visualisation of the SpMV multiplication Ax = y with nonzeroes
processed in row-major order:

Accesses on the input vector are completely unpredictable.
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Inefficient cache use

Visualisation of the SpMV multiplication Ax = y with nonzeroes
processed in an order defined by the Hilbert curve:

Accesses on both vectors have more temporal locality.
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Bandwidth issues

The arithmetic intensity of an SpMV multiply lies between

2

4
and

2

5
flop per byte.

On an 8-core 2.13 GHz (with AVX), and 10.67 GB/s DDR3:

CPU speed Memory speed
1 core 8.5 · 109 nz/s 4.3 · 109 nz/s

8 cores 68 · 109 nz/s 4.3 · 109 nz/s

The SpMV multiplication is clearly bandwidth-bound on modern CPUs.
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Sparse matrix storage

The coordinate format stores nonzeroes in arbitrary order:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


COO:

A =


V [7 1 4 1 2 3 3 2 1 1]

J [0 0 0 1 2 2 3 3 3 2]

I [3 2 0 0 1 0 1 2 3 3]

Storage requirements:
Θ(3nz),

where nz is the number of nonzeroes in A.
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SpMV multiplication

Multiplication using COO:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 1 2 3 3 2 1 1]

J [0 0 0 1 2 2 3 3 3 2]

I [3 2 0 0 1 0 1 2 3 3]

Sequential algorithm:
for k = 0 to nz − 1 do

add Vk · xJk to yIk

Is this OK?
Albert-Jan Yzelman
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SpMV multiplication

Multiplication using COO:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 1 2 3 3 2 1 1]

J [0 0 0 1 2 2 3 3 3 2]

I [3 2 0 0 1 0 1 2 3 3]

#omp parallel for private( k ) schedule( dynamic, 8 )
for k = 0 to nz − 1 do

add Vk · xJk to yIk

Is this OK?
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Sparse matrix storage

Assuming a row-major order of nonzeroes enables compression:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


CRS:

A =


V [4 1 3 2 3 1 2 7 1 1]

J [0 1 2 2 3 0 3 0 2 3]

Î [0 3 5 7 10]

Storage requirements:
Θ(2nz + m + 1).
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SpMV multiplication

Multiplication using CRS:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

,

A =


V [4 1 3 2 3 1 2 7 1 1]

J [0 1 2 2 3 0 3 0 2 3]

Î [0 3 5 7 10]

Sequential kernel:
for i = 0 to m − 1 do

for k = Îi to Îi+1 − 1 do
add Vk · xJk to yi
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SpMV multiplication

Multiplication using CRS:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

,

A =


V [4 1 3 2 3 1 2 7 1 1]

J [0 1 2 2 3 0 3 0 2 3]

Î [0 3 5 7 10]

#omp parallel for private( i, k ) schedule( dynamic, 8 )
for i = 0 to m − 1 do

for k = Îi to Îi+1 − 1 do
add Vk · xJk to yi
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SpMV multiplication

Parallel multiplication using Compressed Sparse Blocks:

A =

 A0,0 · · · A0,n/β−1
...

. . .

Am/β−1,0 · · · Am/β−1,n/β−1

,

cilk for i = 0 to m/β − 1
for k = Îi to Îi+1 − 1

do block-local SpMV using Ai ,Jk ,
the Jkth block of x , and
the ith block of y

Ref.: Buluç, Fineman, Frigo, Gilbert, and Leiserson, “Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using compressed sparse blocks”, Proc. 21st annual symposium
on Parallelism in algorithms and architectures, pp. 233-244 (2009)
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Fine-grained parallelisation

The two previous SpMV multiplication algorithms are fine-grained.

typically there are more rows than processes m� p, thus

there are more tasks than processes.

The idea is that load-balancing, and scalability, are automatically
attained by run-time scheduling.

scalability is limited only by the amount of parallelism (i.e., the
algorithmic span, or the critical path length).

Requires implicit (interleaved) allocation of all data. But this
does not play well with NUMA. Alternatives:

1D SpMV: distribute A and y rowwise.

2D SpMV: distribute A, x , and y .
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NUMA: Parallel 1D SpMV

Distribute rows to processes, do local blocking and Hilbert ordering:

Allows for explicit (local) allocation of the sparse matrix A and the
output vector y ; x is implicitly distributed and interleaved.
Ref.: Yzelman and Roose, “High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector
Multiplication”, IEEE Trans. Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2013).
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NUMA: Parallel 1D SpMV

The SPMD code is still very simple. Initialisation:

find which rows I ⊂ {0, . . . ,m − 1} are ours;

order nonzeroes blockwise;

impose a Hilbert-curve ordering on these blocks;

allocate and store the local matrix A(s) (in the above order) using
a compressed data structure;

allocate a local y (s) (intialise to 0).

The input vector x is kept in global memory.

Multiplication:

Execute y (s) = A(s)x .

Implemented in POSIX Threads.

Albert-Jan Yzelman
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NUMA: Parallel 2D SpMV

2D SpMV

Input vector communication:

retrieving values from x is called fan-out, and

is implemented by using bsp get.

Elements from x are communicated in a one-to-many fashion.

Output vector communication:

sending contributions to non-local y is fan-in.

Implementation happens through Bulk Synchronous Message
Passing (BSMP).

Elements from y are communicated in a many-to-one fashion.
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NUMA: Parallel 2D SpMV

Do sparse matrix partitioning as a pre-processing step. Then, in BSP:

1: for each aij that is local to s do
2: if xj is not local then
3: bsp get xj from remote process
4: bsp sync()

5: for each aij that is local to s do
6: add aij · xj to yi
7: if yi is not local then
8: bsp send (yi , i) to the owner of yi
9: bsp sync()

10: while bsp qsize() > 0 do
11: (α, i) = bsp move()
12: add α to yi

everything is explicitly allocated!
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Results
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BSP ‘direct get’

The ‘direct get’ is a blocking one-sided get instruction.

bypasses the BSP model, but is consistent with bsp hpget.

Its intended case is within supersteps that

contain only BSP ‘get’ primitives,

guarantee source data remains unchanged.

Replacing those primitives with calls to bsp direct get allows
merging this superstep with its following one, thus

saving a synchronisation step.

Ref.: Yzelman and Bisseling, “An Object-Oriented Bulk Synchronous Parallel Library for Multicore
Programming”, Concurrency and Computation: Practice and Experience 24(5), pp. 533-553 (2012).
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BSP ‘hp send’

BSP programming is transparent and safe because of

1 buffering on destination,

2 buffering on source.

This costs memory.

Alternative: high-performance (hp) variants.

bsp move; copies a message from its incoming communications
queue into local memory.

bsp hpmove; evades this by returning the user a pointer into the
queue.

bsp hpsend; delays reading source data until the message is sent.
Local source data should remain unchanged!

(bsp hpput and bsp hpget also exist.)
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BSP 2D SpMV

Step 1: fan-out. Request contiguous ranges of x .

typedef std::vector< fanQuadlet >::const_iterator IT;

for( IT it = fanIn.begin(); it != fanIn.end(); ++it ) {

const unsigned long int src_P = it->remoteP;

const unsigned long int src_ind = it->remoteStart;

const unsigned long int dest_ind = it->localStart;

const unsigned long int length = it->length;

bsp_direct_get( src_P,

x,

src_ind * sizeof( double ),

x + dest_ind,

length * sizeof( double )

);

}

Albert-Jan Yzelman
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BSP 2D SpMV

Step 2: local SpMV multiplication:

if( A != NULL )

A->zax( x, y ); //(‘zax’ stands for z=Ax)

We use Compressed BICRS storage with the nonzeroes in row-major
order. A is a pointer to an instance of a C++ class.

Yzelman and Roose, “High-level strategies for parallel shared-memory sparse matrix–vector
multiplication”, IEEE TPDS, 2013 (in press); paper: http://dx.doi.org/10.1109/TPDS.2013.31,
software: http://albert-jan.yzelman.net/software/#SL

Albert-Jan Yzelman
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BSP 2D SpMV

Step 3: fan-in (I). Send chunks of row contributions.

//the tagsize is initialised to 2*sizeof( ULI )

//fanOut[ i ] has the following layout:

//{ ULI remoteP, localStart, remoteStart, length; }

typedef unsigned long int ULI;

for( ULI i = 0; i < fanOut.size(); ++i ) {

const ULI dest_P = fanOut[ i ].remoteP;

const ULI src_ind = fanOut[ i ].localStart;

const ULI length = fanOut[ i ].length;

bsp_hpsend( dest_P,

&( fanOut[ i ].remoteStart ),

y + src_ind, length * sizeof( double ) );

}

bsp_sync();

Albert-Jan Yzelman
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BSP 2D SpMV

Step 3: fan-in (II). Handle incoming contributions.

unsigned long int *msg_tag;

double *msg_payload;

while( bsp_hpmove( (void**)&msg_tag,

(void**)&msg_payload

) != SIZE_MAX ) {

const unsigned long int y_dest = msg_tag[ 0 ];

const unsigned long int length = msg_tag[ 1 ];

for( unsigned long int i = 0; i < length; ++i )

y[ y_dest + i ] += msg_payload[ i ];

}

This finishes our implementation of the 2D SpMV multiply.

Albert-Jan Yzelman
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Results – new primitives

We test the new primitives using the BSP 2D SpMV multiply:
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Summary

We have seen

hardware properties of modern shared-memory architectures,

how this affects shared-memory programming and data locality,

common pitfalls of non-BSP shared-memory programming like
data races and false sharing (in OpenMP, Cilk, and PThreads),

how shared-memory BSP programming avoids these issues, and

how to attain high performance algorithms using BSP.

Albert-Jan Yzelman



Shared-memory parallel computing > Case study: Intel Xeon Phi

Case study: Intel Xeon Phi

1 Shared-memory architectures and paradigms

2 Applications

3 Case study: Intel Xeon Phi

Albert-Jan Yzelman



Shared-memory parallel computing > Case study: Intel Xeon Phi

Many integrated cores

The Xeon Phi is an accelerator which has

61 x86-type cores (one reserved for OS),

support for 4 threads per core,

on-board fast DDR5 memory (44 GB/s per controller),

four groups of paired (2) memory controllers,

the cores arranged around a ring interconnect,

the memory groups uniformly distributed along this ring.

Thus one board effectively has 240 concurrent threads backed by a
bandwidth of 350 GB/s.

Albert-Jan Yzelman
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Earlier work

Originally devised for vector computers:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


ELLPACK:

A =

V :


4 1 3

2 3 -

1 2 -

7 1 1

 , J :


0 1 2

2 3 -

0 3 -

0 2 3


Formatted as an m ×maxj{A 3 aij 6= 0} dense matrix.

causes fill-in.
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Shared-memory parallel computing > Case study: Intel Xeon Phi

Earlier work

PA =


4 1 3 0
7 0 1 1
0 0 2 3
1 0 0 2


Sliced ELLPACK (SELLPACK):

A =


V :

{(
4 1 3

7 1 1

)
,

(
2 3

1 2

)}

J :

{(
0 1 2

0 2 3

)
,

(
2 3

0 3

)}

Fixed-size slice parameter s (here, s = 2),

improved performance when using row permutations P.

Albert-Jan Yzelman
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Earlier work

Other ELLPACK-based data structures:

Hybrid (ELLPACK/COO)
Ref.: Bell, Garland, “Implementing sparse matrix-vector multiplication on throughput-oriented processors”, Proc.
High Performance Computing Networking, Storage and Analysis (2008)

SELLPACK-R (zero-length encoded fill-in)
Ref.: Vázquez, J. Fernández, and E. Garzón, “A new approach for sparse matrix vector product on NVIDIA
GPUs”, Concurr. Comput.: Pract. Exper. 23, pp. 815–826 (2011).

ELLPACK Sparse Block
(ESB; restricted row partitioning, bitmasked fill-in)
Ref.: Liu, Smelyanskiy, Chow, and Dubey, “Efficient sparse matrix-vector multiplication on x86-based many-core
processors”, Proc. 27th intern. conf. on supercomputing (ICS ’13), doi: 10.1145/2464996.2465013 (2013).

The latter reminds us of similar efforts for CPUs:

Bitmasked Compressed Sparse Blocks (mCSB)
Ref.: Buluç, Williams, Oliker, and Demmel, “Reduced-bandwidth multithreaded algorithms for sparse
matrix–vector multiplication”, Proc. of the Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pp. 721-733 (2011).
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Earlier work

Blocked CRS; integrated in OSKI (see Im and Vuduc).

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


Vnz : [4 1 3 2 3 1 2 7 0 1 1]

Vblk : [0 3 5 6 7 11]

J : [0 2 0 3 0]

Î : [0 1 2 4 5]

Dense blocks: 4, 1, 3 / 2, 3 / 1 / 2 / 7, 0, 1, 1,
Θ(nz + 2nblk + m) storage.
Ref.: Pinar and Heath, “Improving Performance of Sparse Matrix-Vector Multiplication”, Proc. ACM/IEEE Conf. on
Supercomputing (1999).
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New strategy

Correct data structure for row-wise 3-blocking:

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Fill-in in red, regular BICRS data in blue.
Note its similarity to Blocked CRS (it is different though!)
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New strategy

Example multiplication: block 1

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Multiply (7, 1, 4) with (x0, x0, x0) and add to (y3, y2, y0).
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New strategy

Example multiplication: block 2

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Multiply (0, 0, 1) with (x1, x1, x1) and add to (y3, y2, y0).
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New strategy

Example multiplication: block 3

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Multiply (2, 3, 0) with (x2, x2, x2) and add to (y1, y0, y2).
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New strategy

Example multiplication: block 4

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Multiply (3, 0, 2) with (x3, x3, x3) and add to (y1, y0, y2).
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New strategy

Example multiplication: block 5

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Multiply (1, 0, 0) with (x2, x2, x2) and add to (y3, y−, y−).
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New strategy

Example multiplication: block 6

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1



A =


V [7 1 4 / 0 0 1 / 2 3 0 / 3 0 2 / 1 0 0 / 1 0 0]

∆J [0 1 5 1 3 1 4]

∆I [3 2 0 / -2 -1 1 / 2 - -]

Multiply (1, 0, 0) with (x3, x3, x3) and add to (y3, y−, y−).
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New strategy

The Xeon Phi supports gather/scatter instructions. This is the key
technology for the new strategy. In intrinsics:

__m512d _mm512_i32logather_pd(

indices,

base_pointer,

scale

);

Suppose

x is a vector of 512 doubles, and
I = (0, 9, 4, 1, 256, 511, 510, 509).

Then

_mm512_i32logather_pd( I, x, 8 ) ==

( x[0], x[9], x[4], x[1], x[256], x[511], x[510], x[509] ).
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New strategy

The Intel Xeon Phi has a vectorisation width of 512 bits:

arithmetic operations on vectors of 8 doubles only cost a single
vectorised operation,

data has to be loaded into vector registers first (no solution to
bandwidth issues).

1D column blocking for the Xeon Phi, coding perspective (this is
very close to the production code):

void oICRS< double, 1, 8, int16_t >::zax( //z=Ax

const double *__restrict__ pDataX,

double *__restrict__ pDataZ

) {

...

Albert-Jan Yzelman
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New strategy

...

double *__restrict__ pDataA = ds;

int16_t *__restrict__ pIncRow = r_ind;

int16_t *__restrict__ pIncCol = c_ind;

//define buffers

__m512i c_ind_buffer;

__m512d input_buffer;

__m512d value_buffer;

__m512d outputbuffer;

__m512i zeroF = _mm512_set_epi32(

1, 1, 1, 1, 1, 1, 1, 0

);

...

Albert-Jan Yzelman
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New strategy

...

//initialise kernel

outputbuffer = _mm512_setzero_pd();

//fill c_ind_buffer

c_ind_buffer = _mm512_extload_epi32( pIncCol,

_MM_UPCONV_EPI32_UINT16,

_MM_BROADCAST32_NONE,

_MM_HINT_NT

);

//shift input vector

pDataX += *pIncCol;

...

Albert-Jan Yzelman
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New strategy

...

//move pIncCol up one block

pIncCol += block_length;

//reset start column index; c_ind_buffer[ 0 ] = 0;

c_ind_buffer = _mm512_mullo_epi32(

c_ind_buffer, zeroF );

//shift output vector

pDataZ += *pIncRow++;

//start kernel

while( pDataA < pDataAend ) {

...
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New strategy

...

//process a single row

while( pDataX < pDataXend ) {

//fill input buffer

input_buffer = _mm512_i32loextgather_pd(

c_ind_buffer, pDataX, _MM_UPCONV_PD_NONE,

8, _MM_HINT_NONE );

//fill nonzero buffer

value_buffer = _mm512_load_pd( pDataA );

//do vectorised multiply-add

outputbuffer = _mm512_fmadd_pd( value_buffer,

input_buffer, outputbuffer );

...

Albert-Jan Yzelman



Shared-memory parallel computing > Case study: Intel Xeon Phi

New strategy

...

//shift input data

pDataA += block_length;

//fill c_ind_buffer

c_ind_buffer = _mm512_extload_epi32(

pIncCol,

_MM_UPCONV_EPI32_UINT16,

_MM_BROADCAST32_NONE,

_MM_HINT_NT );

//reset start column index

c_ind_buffer = _mm512_mullo_epi32(

c_ind_buffer, zeroF );

...
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New strategy

...

//shift input vector

pDataX += *pIncCol;

//move pIncCol up

pIncCol += block_length;

} //finished processing this row

//reduce row contribution

*pDataZ +=_mm512_reduce_add_pd( outputbuffer );

//reset sums buffer

outputbuffer = _mm512_setzero_pd();

...
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New strategy

...

//row jump, shift back input vector

pDataX -= this->noc;

//shift output vector

pDataZ += *pIncRow++;

}

}

//end z=Ax specialisation for 16-byte unsigned integer

//indices, double data types, 1x8 blocks.
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Results
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Summary

We have seen:

one of the newer shared-memory architectures,

how existing methods may have to be tuned to new architectures,

that the performance of some kernels depend heavily on its input.

New techniques:

vectorisation,

sparse matrix blocking,

alternative data storage families.
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