Data Distribution

Data Distribution

Albert-Jan Yzelman

15th of November, 2013

Derived from the book slides by Prof. dr. Rob H. Bisseling, found at

www.math.uu.nl/people/bisseling/Education/PA/pa.html

_

www.math.uu.nl/people/bisseling/Education/PA/pa.html

Data Distribution

Data dependencies

@ Data must be distributed for scalability. Two objectives:
@ load balance
(scalability for computation supersteps)
@ minimise h-relations
(i.e., minimise the overhead of communication supersteps).

e If data is mostly independent, then no communication between
processes is necessary and optimising for load-balance is all we
need to do (embarrasingly parallel).

@ If computation on one data element requires input depending on
all other data elements, then high communication costs
(all-to-alls) are unavoidable.

m AIbert_Jan Yzelman

Data Distribution

Data dependencies

@ Data must be distributed for scalability. Two objectives:
@ load balance
(scalability for computation supersteps)
@ minimise h-relations
(i.e., minimise the overhead of communication supersteps).

@ If data is mostly independent, then no communication between
processes is necessary and optimising for load-balance is all we
need to do (embarrasingly parallel).

@ If computation on one data element requires input depending on
all other data elements, then high communication costs
(all-to-alls) are unavoidable.

@ Many applications are in-between these two extremes. Then load
balancing and minimisation of h-relations, the two objectives of
data distribution, are in conflict with each other.

m AIbert_Jan Yzelman

Data Distribution

Sparse matrix—vector multiplication

Parallel sparse matrix—vector multiplication u := Av, with
@ A sparse m X n matrix,

@ u dense m-vector,

@ v dense n-vector;

computes
n—1
uj ‘= E ajjVvj
j=0

Four supersteps:
© communicate (fan-out),
@ compute (local SpMV),
© communicate (fan-in),

@ compute (handle remote contributions).

m AIbert_Jan Yzelman

Data Distribution

Sparse matrix—vector multiplication

Four supersteps:
@ fan-out,
@ local SpMV,
© fan-in,
@ handle remote contributions.

Albert-Jan Yzelman

Data Distribution

Sparse matrix—vector multiplication

Four supersteps:
Q@ fan-out,
@ local SpMV,
@ fan-in,
@ handle remote contributions.

w&w Y

m AIbert_Jan Yzelman

Data Distribution

Sparse matrix—vector multiplication

Four supersteps:
Q@ fan-out,
@ local SpMV,
@ fan-in,
@ handle remote contributions.

Albert-Jan Yzelman

Data Distribution

Cartesian matrix partitioning

@ Block distribution of 59 x 59 matrix impcol_b from
Harwell-Boeing collection with 312 nonzeros, for p = 4

!"-_-.

T

"

@ F#nonzeros per processor: 126,

@ Each separate split has optimal balance (for blocks)

, 128, 30

Albert-Jan Yzelman

Data Distribution

Non-Cartesian matrix partitioning

@ Block distribution of 59 x 59 matrix impcol_b from
Harwell-Boeing collection with 312 nonzeros, for p = 4

@ Fnonzeros per processor: 76, , 80, 80

@ Each separate split has optimal balance (for blocks)

m AIbert_Jan Yzelman

Data Distribution

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

m Albert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Sparse matrix partitioning

@ Sparse matrix partitioning

m Albert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Matrix distributions

Definition (Matrix distribution)
Let A an m x n sparse matrix, / = {0,1,...,m— 1}, and
J=1{0,1,...,n—1}. A distribution of this matrix over p processes is

a function
¢:1xJ—{0,1,...,p—1}.

Definition (Matrix distribution over a process grid)

Let A, I, J as before. Let M, N be integers. If the p processes are
organised in an M x N grid such that p = M - N, then a matrix
distribution over this grid is a function

¢:1xJ—{0,1,....,M—1}yx{0,1,...,N—1}.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Matrix distributions

You have seen matrix distributions before (dense LU decomposition):

Definition (2D cyclic distribution over a process grid)
Let p= MN, A, I, J as before. A 2D cyclic distribution is given by

¢(i,j) = (i mod M,j mod N).

Any distribution on a process grid can be reduced to a distribution
unrelated to a process grid, e.g., by mapping (s;,s;) to s = s;N + s;M.

Definition (2D cyclic distribution)

Let p, A, I, J as before. Assume additionally that p = M - N for integer
M, N. Then, a 2D cyclic distribution is given by

é(i,j) = (i mod M)- N+ j mod N.

m AIbert_Jan YZEIman

Data Distribution > Sparse matrix partitioning

Matrix distributions

Definition (Cartesian distribution over a process grid)

Let p= MN,A, I, J as before. Let ¢; : | — {0,1,...,M — 1} and
¢j:J—{0,1,...,N —1}. Then, a 2D Cartesian distribution over an
M x N process grid has the following form:

o(i,J) = (0i(i), ¢(1))-

Again, there is no difference with the following definition:

Definition (Cartesian distribution)

Let p= MN, A, I, J, ¢i,¢; as before. A 2D Cartesian distribution has
the form

¢(i,4) = ¢i(IN + ¢;())-

m AIbert_Jan YZEIman

Data Distribution > Sparse matrix partitioning

p-way sparse matrix partitioning

For sparse matrix partitioning, we identify:
@ nonzero = index pair;
@ sparse matrix = set of index pairs.

Instead of thinking about functions, we can also think about sets:

@ Define the process-local sparse matrix A
As ={(i,j):0<i,j<nA¢(ij)=s}

as the set of nonzeroes local to process s, 0 < s < p.
@ The sets Ap,...,Ap—1 form a p-way partitioning of

A={(i,j):0<i,j<nA aj#0}

if all parts are mutually disjoint and include all nonzeroes:

o UPJAr=A and
e V0 < g,r < p we have that A, N A, = 0.

Albert-Jan Yzelman

Data Distribution > Sparse matrix partitioning

Aims of sparse matrix partitioning

Parallel sparse matrix—vector multiplication u := Av

i ¢ o K

6
(9] |4
22
41|=16
64

u A p=2

4 supersteps: communicate, compute, communicate, compute. Aims:
© balance main computation step, and
@ minimise communication volume.

Here, the total communication volume V equals 5.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Communication volume for partitioned matrix

m

T

V(A07A17 aA3) = V(AOaAla U A3) + V(7A3)

e V(Ao, A1, ,As) is the total matrix—vector communication
volume corresponding to the partitioning Ag, A1, , As.

e V(,Aj3)is the volume corresponding to the partitioning | A3
of the matrix = U As.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Motivation of the Mondriaan splitting

Theorem. Given an m x n sparse matrix A, and mutually disjoint
subsets Ag, ..., Ak of A, where kK > 1, it holds that

V(AOa s 7Ak) = V(AOa vy Ak, Ak U Ak) + V(Ak—la Ak)

Meaning: k parts = k 4 1 parts can be done locally, independently, by
looking at just one split. This greedily minimises the total
communication volume.

k|

1]

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Computational load balance

@ Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!

@ A load balance criterion must therefore be satisfied:

nz(A)
< —_—.
omax nz(As) < (1+¢)

@ ¢ is specified allowable imbalance;
¢’ is imbalance achieved by partitioning.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

BSP cost determines ¢

We now have a parameter e. What is its best value?
@ Communication cost is %, assuming balanced communication.
@ Total BSP cost is

2(1+¢€) +41.

nz(A Vi
nz(A) | Ve
p
@ To get a good trade-off between computation imbalance and
communication, we require
,nz(A) ~ @ . ’ Vg

2 .e. 2 .
€ > D ie., € 2n2(A)

@ If necessary, we adjust € and run the partitioner again.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Bipartitioning: splitting into 2 parts

0 3001
4 1 000
A=[105 9 2 0
6 0 0 5 3
0 0589

@ The number of possible 2-way partitionings is
2rz(A)=1 — 212 — 4006. (Symmetry saved a factor of 2.)

@ Finding the best solution by enumeration, trying all possibilities
and choosing the best, works only for small problems. Thus, we
need heuristic methods.

@ Splitting by columns restricts the search space to 2"~! = 2* = 16
possibilities. An optimal column split for e = 0.1 is {0,1,2} —
{3,4}, with V = 4.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Repeated splits

Recursive bipartitioning: starts with a complete matrix, splits it into
2 submatrices, and recurses on each submatrix (until p parts are
created). The maximum number of nonzeroes in one part is at most
(1+e)%.
@ Rows and columns in the submatrix need not be consecutive.
@ A split in the column in direction can cause empty rows to appear
in the submatrix (and vice versa).
@ The final result for processor P(s) is a local matrix As. This
matrix is a submatrix of A that corresponds to the rows and
columns of I5 x Js.

@ Removing empty rows and columns from s x Jg gives Is x Js.

Thus o
As Cls x Js C Is x Js.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Global view of matrix prime60

Cr
Il

?!.'F'l'-s":-'l."!’!-'.!"-:'"k"l'-':'::"'l

.

"

b
b

WP e
-~

@ Distribution of 60 x 60 matrix prime60 with 462 nonzeros, for

p = 4, obtained by Mondriaan partitioning with € = 3%.

@ Maximum number of nonzeros per processor is 117; average is

462/4=115.5. Achieved imbalance is ¢ ~ 1.3%.
@ Communication volume is: fanout 51; fanin 47; V = 98.

Albert-Jan Yzelman

Data Distribution > Sparse matrix partitioning

Local view of matrix prime60

[T T

I H
1k !

.t [- .
! '._-"_ G H
H T E.-'. - :
== . H

IE- -"-.-\.- L]
e .
TS .
=, H
— i
. |
=
L H
. L]

@ The local submatrix Is x Js of processor P(s) has size:
e 29 x 26 for P(0); 29 x 34 for P(1)
e 31 x 31 for 7 31 x 29 for P(3)
@ Note that /; x J; has 6 empty rows and 9 empty columns, giving
a size of 23 x 25 for 1 x .

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Growth of load imbalance by splitting

@ If the growth factor at each recursion level is 1 + 4, the overall
growth factor is (1 +0)9 &~ 1+ qd. Here, p = 29. This motivates
starting with gd = ¢, i.e., § = €/q.

o After the first split, one part has at least half the nonzeros, and
the other part at most half. We recompute the € values for both
halves based on the new situation.

@ The less-loaded part can increase the allowed load imbalance as
its farther from its maximum load. This results in more freedom
for the partitioner to reduce communication.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, €)
input: p =29, € = allowed load imbalance, € > 0.
output: p-way partitioning of A with imbalance < e.

if p > 1 then

maxnz .= (1 +¢)

(B, BoY) := split(A, row, £);

(BS', BSOY) := split(A, col, o)

if V(BEW, BIov) < V(BSY, B°') then
(BO> Bl) = (B(gowv B{OW);

else
(Bo, B1) == (B§®, B{);

m AIbert_Jan Yzelman

nz(A) :

Data Distribution > Sparse matrix partitioning

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, €)
input: p =29, ¢ = allowed load imbalance, € > 0.
output: p-way partitioning of A with imbalance <.

if p > 1 then

.__ maxnz p _ 1. .__ maxnz p _ 1.
€ = nz(By) 2 Le = nz(B1) 2 L

(Ao, - - -, Apja—1) := MatrixPartition(Bo, 5, €o);
(Ap/2,- -, Ap—1) := MatrixPartition(By, §, €1);

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

The magic split function

This clarifies the limitations of what the split can do;

@ either rowwise or columnwise splits, and
@ cannot return a bipartitioning that deviates more than € from

@ an ideal 1:1 split in terms of load-balance.

But how does it work, and how does it minimise
communication?

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Graphs and hypergraphs

To solve this multi-constraint optimisation problem, we use
hypergraphs. We first introduce graphs:

Definition (Graph)

Let V be a set of vertices and E = { {v;,v;} | v;j € V} a set of
edges. Then G = (V, E) is an undirected graph.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Graphs and hypergraphs

Each edge e € E of a graph connects but two vertices. Hypergraphs
allow for larger connectivities.

Definition (Hypergraph)

Let V be a set of vertices and N C P(V) a set of hyperedges (also
called nets). Then H = (V,) is a hypergraph.

Note that indeed n C V), so |n| > 2 is possible.

m AIbert_Jan YZEIman

Data Distribution > Sparse matrix partitioning

Example hypergraph

@@@@/@
/

@@’/0

Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” columns: communication during fan-out

0 N o 0o~ W DN P

Column-net model; a cut net means a shared column

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” columns: communication during fan-out

B

0 N o 0o~ W DN P

B |

Column-net model; a cut net means a shared column

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” columns: communication during fan-out

B

0 N o 0o~ W DN P

|

Column-net model; a cut net means a shared column

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

Definition (Column-net model of a sparse matrix)

Let A be an m x n sparse matrix, /| = {0,1,...,m — 1}, and
J=1{0,1,...,n—1}. Define V =1, and Vi € | define a net n; € N/
with

m={jeJ| a#0}.

Then (V,N) is the column-net model of A.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” rows: communication during fan-in

1 2 3 45 6 7 8

06 G
— OO
O}(© IO

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” rows: communication during fan-in

12345678 [R

Row-net model; a cut net means a shared row. Definition is analogous
to that of the column-net model, but with the roles of / and J
switched.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

Catch” all communication:

12

5

14

11

13

10

Albert-Jan Yzelman

Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Catch” all communication:

Fine-grain model; a cut net means either fan-out or fan-in.

m AIbert_Jan Yzelman

Data Distribution > Sparse matrix partitioning

Matrix communication to hypergraph costs

Do hypergraph models allow precise modeling of the communication
volumes? (And if not, what other cost metrics make sense?)

Definition (Connectivity of a hyperedge)

Let H = (V,N) be a hypergraph. Let Px = {)o,...,Vk_1} be a
k-way partitioning of H. Then, the connectivity \; of the hyperedge
n; € N is given by

Ai = {Vi € Pr | niNV; # 0}

m AIbert_Jan YZEIman

Data Distribution > Sparse matrix partitioning

Matrix communication to hypergraph costs

Given a hypergraph H = (V,) and a partitioning Py of V.
@ A net is cut precisely if its connectivity is larger than 1.

Definition (Cut-net metric)

The cost of a partitioning according to the cut-net metric is given by

1, ifa>1
3 {

e otherwise.

Question: does this model the communication volume?

m AIbert_Jan YZEIman

Data Distribution > Sparse matrix partitioning

Matrix communication to hypergraph costs

Answer: no. But we can:

Definition ((A — 1)-metric)
Let H = (V,N), Pk, and \; be as before. Then, the (A — 1)-metric is

given by

> (ni-1).

n;j eN

This models the communication model exactly. It counts
@ the amount of fan-out communication in the column-net model,
@ the amount of fan-in communication in the row-net model, and

@ the total amount of communication in the fine-grain model.

m AIbert_Jan YZEIman

Data Distribution > Hypergraph partitioning

Hypergraph partitioning

© Hypergraph partitioning

m Albert_Jan Yzelman

Data Distribution > Hypergraph partitioning

General data partitioning

Let H = (V,N). A partitioning of H into p parts, is a partitioning
Vo, V1, ..., Vp—1 of V into p parts such that

(1) V=U,V, and

(2) Vi,je{0,1,...,p—1},VinV;=0.

Hypergraphs models of sparse matrices, combined with hypergraph
partitioning, directly results in sparse matrix partitionings (in the sense
of partitioning A into local matrices As).

@ A partitioning of a column-net model of A corresponds to a
partitioning of the rows of A (a 1D row-wise distribution).

m Albert_Jan Yzelman

Data Distribution > Hypergraph partitioning

General data partitioning

Let H = (V,N). A partitioning of H into p parts, is a partitioning
Vo, V1,...,Vp—1 of Vinto p parts such that

(1) v= Ug;éVs, and

(2) Vi,je{0,1,...,p—1}L,ViNnV;=0.

Hypergraphs can model more than just sparse matrices; it can model
any collection of data dependencies. But

@ partitioning is not the only relevant operation (matching?),
@ much effort goes into finding correct cost metric.

Sometimes a mathematical analysis can find optimal partitionings a
priori. Here we present an automatic but heuristic, procedure.

m AIbert_Jan YZEIman

Data Distribution > Hypergraph partitioning

Hypergraph partitioner

Following the example of sparse matrix partitioning:

@ Model the sparse matrix using a hypergraph.

e Partition the vertices of that hypergraph (in two).
That is, first design a hypergraph bipartitioner.

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Hypergraph partitioner

Following the example of sparse matrix partitioning:

@ Model the sparse matrix using a hypergraph.

e Partition the vertices of that hypergraph (in two).
That is, first design a hypergraph bipartitioner.

State-of-the-art hypergraph partitioning is a multi-level scheme:
© First coarsen the input hypergraph.

@ If the hypergraph remains too large, call this multi-level scheme
recursively.

© Otherwise, do random partitioning or optimal partitioning.
@ Undo coarsening.

© Refine the resulting partitioning refinement (e.g., local search).

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Let H = (V,N) be a hypergraph. Let Vg, V4,..., Vik_1 be a k-way
partitioning of V. Let V. = {Vo,..., Vk_1}. For each n; € N, there is
a n§ € N with

nf={V; V.| nnV; #0}.

Then He = (Ve, V) is a coarsened hypergraph of H.

Coarsened hypergraphs should be structurally 'similar’ to the original
hypergraph.

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Wanted: a measure for similarity.
@ Assume a row-net model, where
@ coarsening means combining matrix columns into ‘supercolumns’.

@ Hence, ‘similar’ columns should be combined:

Let A, m, n, and /| as before. Write AJ°-°',A‘,:(°I for the jth and kth
column of A, respectively. The structural inner-product (j, k)

[{i € 1| aj # 0 and aj # 0}|.

m AIbert_Jan Yzelman

i IS

Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

A related problem:

Definition (Graph matching)

Let G = (V, E) be a graph. A matching M C E has that for each
{v,w} € M, there is no other edge e € M for which v € e or w € e.

@ Let M be the set of all possible matchings. Then M € M is
maximal if for all e € E\M, MU {e} ¢ M.

o M € M is maximum if there is no other matching My € M s.t.
[Mo| > [M].

m AIbert_Jan YZEIman

Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

A related problem:

Suppose a graph G = (V/, E) has an associated weight function
w: E — R. Then (V,E,w) is a weighted graph.

We define the weight w(M) of a matching M as > _; e Wik-

A matching M is a weighted maximum matching if there is no other
My € M such that w(Mp) > w(M).

m Albert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

o Let V = {A A Acl).

o Let the edge e;(A%, ACO') € E have weight w(i) equal to the
similarity measure of the two columns.

e G =(V,E,w) forms a fully connected edge-weighted graph.

@ Let M be a weighted maximum matching of G.

Then a valid coarsening strategy is to merge all column pairs in M.

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Merging similar columns in pairs to reduce the problem size (repeat
this until the problem is small):

F .] . T M1 P
1 - 11 1 11
1111 1 11 1
111 : merge | 1 1
11 1
11 - - 1
: 11 1
i 11 1 1] -1 1]

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning: HKLFM

Step 5: refinement

After uncoarsening, reduce communication through local search
methods.
e E.g., Kernighan-Lin, with improved implementation by Fiduccia
and Mattheyses (KLFM), is often used.
@ The cost function to minimise during local search is the
(A — 1)-metric.
@ Moves that violate the load-balance criterion are marked invalid.

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning: HKLFM

vertices

0123456

aOhWN=O

nets

Example of refinement using the row-net model:

@ HKLFM tries to improve initial uncoarsened partitioning by
moving vertices (columns) to the other part.

@ The vertex with the largest gain (communication reduction) is
moved. If the best possible move increases the communication, it
is still accepted.

@ Several passes are carried out. Vertices are never moved twice in a
pass. Best solution encountered is kept.

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Partitioning

References:

Catalyiirek & Aykanat, Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication, IEEE Transactions on Parallel
Distributed Systems 10 (1999), pp. 673-693

Kernighan & Lin, An efficient heuristic procedure for partitioning graphs, Bell
Systems Technical Journal 49 (1970): pp. 291-307

Fiduccia & Mattheyses, A linear-time heuristic for improving network
partitions, Proceedings of the 19th IEEE Design Automation Conference
(1982), pp. 175-181.

Example software: Mondriaan (Bisseling et al., UU), Zoltan (Boman et al.,
Sandia), PaToH (Catalyiirek & Aykanat, OSU), and Scotch (Pellegrini,
Bordelais).

m AIbert_Jan Yzelman

Data Distribution > Hypergraph partitioning

Communication volume and time: 1D vs. 2D

(Vastenhouw and Bisseling, SIAM Review 47 (2005) pp.67-95.)
Volume (in data words) Time (in ms)
1D row 1D col 2D 1D row 1D col 2D
1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 1406 1222 12.14
8 90919 96038 49120 6.49 6.35 6.62
16 177347 155604 75384 5.22 422 420
32 297658 227368 106563 4.32 408 3.23
Term-by-document matrix tbdlinux:
112,757 rows; 20,167 columns; 2,157,675 nonzeros.
Timings obtained on an SGI Origin 3800.

m AIbert_Jan Yzelman

o

Data Distribution > Hypergraph partitioning

Summary

@ We have derived a recursive partitioning algorithm for a sparse
matrix. It is greedy (minimises splits separately without looking
ahead).

@ The result is a p-way matrix partitioning Ao, ..., Ap_1.

@ We used hypergraphs H = (V,), which generalise the notion of
a graph.

@ Multilevel methods for hypergraph partitioning find good splits of
a sparse matrix in reasonable time.

@ The sparse matrix partitioner introduced here optimises
communication volume. Other possible metrics:

e h-relations, or
e number of messages.

@ In the book, the vector distribution is used to balance
communication, i.e., uses the minimised communication volume
to get minimised h-relations.

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Vector distribution

© Vector distribution

m Albert_Jan Yzelman

Data Distribution > Vector distribution

Balance the communication!

@ Aim: reduce the BSP cost hg, where

h= max h(s), h(s) = max(hs(s), h:(s)).
0<s<p
@ Thus, given a matrix distribution ¢, we have to determine a
vector distribution ¢, that minimises h for the fanout and satisfies
jG J(Z)v(J)' for O S_j < n.
o Constraint j € Jy, (j) means: processor P(s) = P(¢y(j)) that owns
vj; must own a nonzero in matrix column j, i.e., j € Js.

@ We also have to find a vector distribution ¢, that minimises the
value h for the fanin and that satisfies the constraint i € Iy, (;), for
0<i<n.

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Vector partitioning for prime60

Global view. Both constraints are satisfied.

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Vector partitioning for prime60

A TR T

[, ™ L

'._..'_ . "

TR =

- oo .

P b .
-
RRE
-
-
- B
LA "

Local view. The local components of the vector u are placed to the
left of the local submatrix for P(0) and

Albert-Jan Yzelman

Data Distribution > Vector distribution

The two vector distribution problems are similar

@ Nonzero pattern of row i of A equals the nonzero pattern of
column i of AT:
ujs is sent from P(s) to P(t) in the multiplication by A
& v; is sent from P(t) to P(s) in the multiplication by AT.

@ We can find a good distribution ¢, given ¢ = ¢4 by finding a
good distribution ¢, given ¢ = @d47.

@ Hence, we only solve one problem, namely for v. We can apply
this method also for u, with A” instead of A.

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

General case: arbitrary g; values

@ Columns with g; = 0 or g; = 1 do not cause communication and
are omitted from the problem. Hence, we assume g; > 2, for all j.

@ For processor P(s):
h(s)= > (g-1),
0<j<n, ¢u(j)=s

and
h(s)=j:j€Js A ¢ulf) # s}

@ Aim: for given matrix distribution and hence given communication
volume V, minimise

h= h hy .
max max (hi(s), he(s))

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Egoistic local bound

@ An egoistic processor tries to minimise its own
h(s) = max(h;(s), hs(s)) without consideration for others.

@ To minimise hy(s), it just has to maximise the number of
components v; with j € Js that it owns.

@ To minimise hs(s), it has to minimise the total weight of these
components, where the weight of v; is g; — 1.

@ A locally optimal strategy is to start with hs(s) = 0 and
he(s) = |Js| and grab the components in order of increasing
weight, each time adjusting hs(s) and h.(s), as long as
hs(s) < hy(s).

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Optimal values

e Denote the resulting optimal value of h.(s) by h.(s), that of hg(s)
by hs(s), and that of h(s) by h(s). We have

hy(s) < hi(s) = h(s), for 0 < s < p.

@ The value lA1(5) is a local lower bound on the actual value that can
be achieved: h(s) < h(s), for all s.

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on Numerical
Analysis 21 (2005) pp. 47-65.)

o Define the generalised lower bound h(J, nsy, nro) for a given index
set J C Js and a given initial number of sends nsy and receives
nrp.

@ Initial communications are due to columns outside J.

@ Bound is computed by the same method, but starting with
hs(s) = nsp and h(s) = nro + |J|.

e Note that h(s) = h(Js,0,0).

@ Our algorithm gives preference to the processor that faces the
toughest future, i.e., the processor with the highest current value

h(s).

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Initialisation of algorithm

fors:=0top—1do

Ls = Js;
hs(s) :==0;
h(s) := 0;

@ L is the index set of components that may still be assigned to
P(s).

@ The number of sends caused by the assignments done so far is
registered as hs(s); the number of receives as h(s).

@ The current state of P(s) is represented by the triple
(Ls, hs(s), hi(s)).

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Termination of algorithm

fors:=0top—1do
if hy(s) < hs(Ls, hs(s), he(s)) then
active(s) := true;
else active(s) := false;

@ Note that nspy < /A15(J, nsp, nry), so that trivially
hs(s) < hs(Ls, h(s), he(s)).

@ A processor will not accept more components once it has achieved
its optimum, when hy(s) = hy(Ls, hs(s), he(s)).

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Main loop of algorithm

while (3s: 0 <s < p A active(s)) do
Smax := argmax(h(Ls, hs(s), he(s)) : 0 < s < p A active(s));
J:=min(Ls,,.); {j has minimal q; }
¢v(,/) = Smax:
hs(smax) = hs(smax) + qj — 1;

m Albert_Jan Yzelman

Data Distribution > Vector distribution

Main loop of algorithm

while (3s: 0 <s < p A active(s)) do
Smax := argmax(h(Ls, hs(s), he(s)) : 0 < s < p A active(s));
J:=min(Ls,,.); {j has minimal q; }
¢v(,/) = Smax:
hs(smax) = hs(smax) + qj — 1;

foralls:0<s<p A s#snx AJjE Jsdo
hy(s) == he(s) + 1;

foralls:0<s<pAj€ J do

Ls:= Ls\{jA'};
if hs(s) = hs(Ls, hs(s), he(s)) then
active(s) := false;

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Special case: gq; <2

2 3_3 2
0= o—0—0 @
At N s 01 N
e o6/ s/ \/ ()

A2 3 2e !

1 Sadia=—0 1

Ty 2 1?}.-.\\3 [
4/ N .24 2 ()
® /5 3‘ \ /3’

1 6 6

@ Vertex s = processor 5, 0 <s < p
e Edge (s, t) = processor pair sharing matrix columns

e Edge weight w(s,t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a processor,
balancing the number of data words sent and received

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Transform into unweighted undirected graph

3
® 0=-0-0 e
5/ oy | o1 \.
N\ 1 3?5 5 ./] \1
(N 0:0-0
% s e P
®
3
o—g5 3 No—6
1

@ Assign two shared columns: one to processor s, one to t.
w(s,t) == w(s, t) —2.
@ Repeat until all edge weights = 0 or 1.

m Albert_Jan Yzelman

Data Distribution > Vector distribution

Unweighted undirected graph

o, eo-0-0 _e
./ .\. ‘ /. \.
\. | ® \
N o-0-0
.\. ° \o /.
—d o Neo—e

Albert-Jan Yzelman

Data Distribution > Vector distribution

Transform into directed graph

o o-0-0¢ __o
.: .\. ‘ /. \.
° >-0-0 © \
N o-0-0
.". ® \0 /.
o & No—e

Walk path starting at odd-degree vertex
Remove walked edges from undirected graph
Edge s — t: processor s sends, t receives

Even-degree vertices remain even-degree

Repeat until all degrees in undirected graph are even.

Albert-Jan Yzelman

Data Distribution > Vector distribution

Transform into directed graph

o-0-0 __o

° S e

o-o-0 °\ \
L
; \o——O

Albert-Jan Yzelman

Data Distribution > Vector distribution

Transform into directed graph

?-».-». ./.\.
I S
o\._—. /

m Albert_Jan Yzelman

Data Distribution > Vector distribution

Transform into directed graph

@ Walk path starting at even-degree vertex
@ Repeat until undirected graph empty
@ Solution is provably optimal (see Bisseling & Meesen 2005)

m AIbert_Jan Yzelman

Data Distribution > Vector distribution

Summary

@ BSP cost is a natural metric that encourages communication
balancing.

@ For the general vector distribution problem, we have developed a
heuristic method, which works well in practice.

@ The heuristic method is based on assigning vector components to
the processor with the toughest future, as predicted by an egoistic
local bound.

@ For the special case with at most 2 processors per matrix column,
we have obtained an optimal method based on walking paths in
an associated graph, starting first at odd-degree vertices.

m AIbert_Jan Yzelman

	Sparse matrix partitioning
	Hypergraph partitioning
	Vector distribution

