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Data Distribution

Data dependencies

Data must be distributed for scalability. Two objectives:
1 load balance

(scalability for computation supersteps)
2 minimise h-relations

(i.e., minimise the overhead of communication supersteps).

If data is mostly independent, then no communication between
processes is necessary and optimising for load-balance is all we
need to do (embarrasingly parallel).

If computation on one data element requires input depending on
all other data elements, then high communication costs
(all-to-alls) are unavoidable.

Many applications are in-between these two extremes. Then load
balancing and minimisation of h-relations, the two objectives of
data distribution, are in conflict with each other.
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Data Distribution

Sparse matrix–vector multiplication

Parallel sparse matrix–vector multiplication u := Av, with

A sparse m × n matrix,

u dense m-vector,

v dense n-vector;

computes

ui :=
n−1∑
j=0

aijvj

Four supersteps:

1 communicate (fan-out),

2 compute (local SpMV),

3 communicate (fan-in),

4 compute (handle remote contributions).
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Data Distribution
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Data Distribution

Sparse matrix–vector multiplication

Four supersteps:
1 fan-out,
2 local SpMV,
3 fan-in,
4 handle remote contributions.
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Data Distribution

Cartesian matrix partitioning

Block distribution of 59× 59 matrix impcol b from
Harwell–Boeing collection with 312 nonzeros, for p = 4

#nonzeros per processor: 126, 28, 128, 30

Each separate split has optimal balance (for blocks)
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Data Distribution

Non-Cartesian matrix partitioning

Block distribution of 59× 59 matrix impcol b from
Harwell–Boeing collection with 312 nonzeros, for p = 4

#nonzeros per processor: 76, 76, 80, 80

Each separate split has optimal balance (for blocks)
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Data Distribution

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921
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Data Distribution > Sparse matrix partitioning

Sparse matrix partitioning

1 Sparse matrix partitioning

2 Hypergraph partitioning

3 Vector distribution
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Data Distribution > Sparse matrix partitioning

Matrix distributions

Definition (Matrix distribution)

Let A an m × n sparse matrix, I = {0, 1, . . . ,m − 1}, and
J = {0, 1, . . . , n − 1}. A distribution of this matrix over p processes is
a function

φ : I × J → {0, 1, . . . , p − 1}.

Definition (Matrix distribution over a process grid)

Let A, I , J as before. Let M,N be integers. If the p processes are
organised in an M × N grid such that p = M · N, then a matrix
distribution over this grid is a function

φ : I × J → {0, 1, . . . ,M − 1} × {0, 1, . . . ,N − 1}.
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Data Distribution > Sparse matrix partitioning

Matrix distributions

You have seen matrix distributions before (dense LU decomposition):

Definition (2D cyclic distribution over a process grid)

Let p = MN,A, I , J as before. A 2D cyclic distribution is given by

φ(i , j) = (i mod M, j mod N).

Any distribution on a process grid can be reduced to a distribution
unrelated to a process grid, e.g., by mapping (si , sj) to s = siN + sjM.

Definition (2D cyclic distribution)

Let p,A, I , J as before. Assume additionally that p = M · N for integer
M,N. Then, a 2D cyclic distribution is given by

φ(i , j) = (i mod M) · N + j mod N.
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Data Distribution > Sparse matrix partitioning

Matrix distributions

Definition (Cartesian distribution over a process grid)

Let p = MN,A, I , J as before. Let φi : I → {0, 1, . . . ,M − 1} and
φj : J → {0, 1, . . . ,N − 1}. Then, a 2D Cartesian distribution over an
M × N process grid has the following form:

φ(i , j) = (φi (i), φj(i)).

Again, there is no difference with the following definition:

Definition (Cartesian distribution)

Let p = MN,A, I , J, φi , φj as before. A 2D Cartesian distribution has
the form

φ(i , j) = φi (i)N + φj(j).

Albert-Jan Yzelman



Data Distribution > Sparse matrix partitioning

p-way sparse matrix partitioning

For sparse matrix partitioning, we identify:

nonzero ≡ index pair;

sparse matrix ≡ set of index pairs.

Instead of thinking about functions, we can also think about sets:

Define the process-local sparse matrix As

As = {(i , j) : 0 ≤ i , j < n ∧ φ(i , j) = s}

as the set of nonzeroes local to process s, 0 ≤ s < p.

The sets A0, . . . ,Ap−1 form a p-way partitioning of

A = {(i , j) : 0 ≤ i , j < n ∧ aij 6= 0}

if all parts are mutually disjoint and include all nonzeroes:
∪p−1

k=0Ak = A, and
∀0 ≤ q, r < p we have that Aq ∩ Ar = ∅.
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Data Distribution > Sparse matrix partitioning

Aims of sparse matrix partitioning

Parallel sparse matrix–vector multiplication u := Av

1
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A p = 2

4 supersteps: communicate, compute, communicate, compute. Aims:

1 balance main computation step, and
2 minimise communication volume.

Here, the total communication volume V equals 5.
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Data Distribution > Sparse matrix partitioning

Communication volume for partitioned matrix

V (A0,A1,A2,A3) = V (A0,A1,A2 ∪ A3) + V (A2,A3)

V (A0,A1,A2,A3) is the total matrix–vector communication
volume corresponding to the partitioning A0,A1,A2,A3.

V (A2,A3) is the volume corresponding to the partitioning A2,A3

of the matrix A2 ∪ A3.
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Data Distribution > Sparse matrix partitioning

Motivation of the Mondriaan splitting

Theorem. Given an m × n sparse matrix A, and mutually disjoint
subsets A0, . . . ,Ak of A, where k ≥ 1, it holds that

V (A0, . . . ,Ak) = V (A0, . . . ,Ak−2,Ak−1 ∪ Ak) + V (Ak−1,Ak).

Meaning: k parts ⇒ k + 1 parts can be done locally, independently, by
looking at just one split. This greedily minimises the total
communication volume.
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Data Distribution > Sparse matrix partitioning

Computational load balance

Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!

A load balance criterion must therefore be satisfied:

max
0≤s<p

nz(As) ≤ (1 + ε)
nz(A)

p
.

ε is specified allowable imbalance;
ε′ is imbalance achieved by partitioning.
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Data Distribution > Sparse matrix partitioning

BSP cost determines ε

We now have a parameter ε. What is its best value?

Communication cost is Vg
p , assuming balanced communication.

Total BSP cost is

2(1 + ε′)
nz(A)

p
+

Vg

p
+ 4l .

To get a good trade-off between computation imbalance and
communication, we require

2ε′
nz(A)

p
≈ Vg

p
, i.e., ε′ ≈ Vg

2nz(A)
.

If necessary, we adjust ε and run the partitioner again.
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Data Distribution > Sparse matrix partitioning

Bipartitioning: splitting into 2 parts

A =


0 3 0 0 1
4 1 0 0 0
0 5 9 2 0
6 0 0 5 3
0 0 5 8 9

 .

The number of possible 2-way partitionings is
2nz(A)−1 = 212 = 4096. (Symmetry saved a factor of 2.)

Finding the best solution by enumeration, trying all possibilities
and choosing the best, works only for small problems. Thus, we
need heuristic methods.

Splitting by columns restricts the search space to 2n−1 = 24 = 16
possibilities. An optimal column split for ε = 0.1 is {0, 1, 2} —
{3, 4}, with V = 4.
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Data Distribution > Sparse matrix partitioning

Repeated splits

Recursive bipartitioning: starts with a complete matrix, splits it into
2 submatrices, and recurses on each submatrix (until p parts are
created). The maximum number of nonzeroes in one part is at most
(1 + ε)nz

2 . The 1:1 load balance ratio might shift if p 6= 2q!

Rows and columns in the submatrix need not be consecutive.

A split in the column in direction can cause empty rows to appear
in the submatrix (and vice versa).

The final result for processor P(s) is a local matrix As . This
matrix is a submatrix of A that corresponds to the rows and
columns of Īs × J̄s .

Removing empty rows and columns from Īs × J̄s gives Is × Js .
Thus

As ⊂ Is × Js ⊂ Īs × J̄s .
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Data Distribution > Sparse matrix partitioning

Global view of matrix prime60

Distribution of 60× 60 matrix prime60 with 462 nonzeros, for
p = 4, obtained by Mondriaan partitioning with ε = 3%.

Maximum number of nonzeros per processor is 117; average is
462/4=115.5. Achieved imbalance is ε′ ≈ 1.3%.

Communication volume is: fanout 51; fanin 47; V = 98.
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Data Distribution > Sparse matrix partitioning

Local view of matrix prime60

The local submatrix Īs × J̄s of processor P(s) has size:
29× 26 for P(0); 29× 34 for P(1)
31× 31 for P(2); 31× 29 for P(3)

Note that Ī1 × J̄1 has 6 empty rows and 9 empty columns, giving
a size of 23× 25 for I1 × J1.
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Data Distribution > Sparse matrix partitioning

Growth of load imbalance by splitting

If the growth factor at each recursion level is 1 + δ, the overall
growth factor is (1 + δ)q ≈ 1 + qδ. Here, p = 2q. This motivates
starting with qδ = ε, i.e., δ = ε/q.

After the first split, one part has at least half the nonzeros, and
the other part at most half. We recompute the ε values for both
halves based on the new situation.

The less-loaded part can increase the allowed load imbalance as
its farther from its maximum load. This results in more freedom
for the partitioner to reduce communication.
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Data Distribution > Sparse matrix partitioning

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ε)
input: p = 2q, ε = allowed load imbalance, ε > 0.
output: p-way partitioning of A with imbalance ≤ ε.

if p > 1 then

maxnz := (1 + ε)nz(A)
p ;

(Brow
0 ,Brow

1 ) := split(A, row, εq );

(Bcol
0 ,Bcol

1 ) := split(A, col, εq );

if V (Brow
0 ,Brow

1 ) ≤ V (Bcol
0 ,Bcol

1 ) then
(B0,B1) := (Brow

0 ,Brow
1 );

else
(B0,B1) := (Bcol

0 ,Bcol
1 );

...
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Data Distribution > Sparse matrix partitioning

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ε)
input: p = 2q, ε = allowed load imbalance, ε > 0.
output: p-way partitioning of A with imbalance ≤ ε.

if p > 1 then
...
ε0 := maxnz

nz(B0)
· p

2 − 1; ε1 := maxnz
nz(B1)

· p
2 − 1;

(A0, . . . ,Ap/2−1) := MatrixPartition(B0,
p
2 , ε0);

(Ap/2, . . . ,Ap−1) := MatrixPartition(B1,
p
2 , ε1);

else
A0 := A;
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Data Distribution > Sparse matrix partitioning

The magic split function

This clarifies the limitations of what the split can do;

either rowwise or columnwise splits, and

cannot return a bipartitioning that deviates more than ε from

an ideal 1:1 split in terms of load-balance.

But how does it work, and how does it minimise
communication?
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Data Distribution > Sparse matrix partitioning

Graphs and hypergraphs

To solve this multi-constraint optimisation problem, we use
hypergraphs. We first introduce graphs:

Definition (Graph)

Let V be a set of vertices and E = { {vi , vj} | vi ,j ∈ V } a set of
edges. Then G = (V ,E ) is an undirected graph.
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Data Distribution > Sparse matrix partitioning

Graphs and hypergraphs

Each edge e ∈ E of a graph connects but two vertices. Hypergraphs
allow for larger connectivities.

Definition (Hypergraph)

Let V be a set of vertices and N ⊆ P(V) a set of hyperedges (also
called nets). Then H = (V,N ) is a hypergraph.

Note that indeed n ⊆ V, so |n| > 2 is possible.
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Data Distribution > Sparse matrix partitioning

Example hypergraph

0

4

2

1

3

6

8

5

7

Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” columns: communication during fan-out
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Column-net model; a cut net means a shared column
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” columns: communication during fan-out
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” columns: communication during fan-out
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Column-net model; a cut net means a shared column
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

Definition (Column-net model of a sparse matrix)

Let A be an m × n sparse matrix, I = {0, 1, . . . ,m − 1}, and
J = {0, 1, . . . , n − 1}. Define V = I , and ∀i ∈ I define a net ni ∈ N
with

ni = {j ∈ J | aij 6= 0}.

Then (V,N ) is the column-net model of A.
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” rows: communication during fan-in
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Row-net model; a cut net means a shared row. Definition is analogous
to that of the column-net model, but with the roles of I and J
switched.
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Shared” rows: communication during fan-in
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Row-net model; a cut net means a shared row. Definition is analogous
to that of the column-net model, but with the roles of I and J
switched.
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Catch” all communication:
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Fine-grain model; a cut net means either fan-out or fan-in.
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Data Distribution > Sparse matrix partitioning

From matrix to hypergraph

“Catch” all communication:

����������
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

10 11

7

12

5

6

14

4

21

3

9

8 13

1 2

3 4 5 6

7

8 9

10 11

12

13 14

Fine-grain model; a cut net means either fan-out or fan-in.
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Data Distribution > Sparse matrix partitioning

Matrix communication to hypergraph costs

Do hypergraph models allow precise modeling of the communication
volumes? (And if not, what other cost metrics make sense?)

Definition (Connectivity of a hyperedge)

Let H = (V,N ) be a hypergraph. Let Pk = {V0, . . . ,Vk−1} be a
k-way partitioning of H. Then, the connectivity λi of the hyperedge
ni ∈ N is given by

λi = |{Vi ∈ Pk | ni ∩ Vi 6= ∅}|.
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Data Distribution > Sparse matrix partitioning

Matrix communication to hypergraph costs

Given a hypergraph H = (V,N ) and a partitioning Pk of V.

A net is cut precisely if its connectivity is larger than 1.

Definition (Cut-net metric)

The cost of a partitioning according to the cut-net metric is given by

∑
ni∈N

{
1, if λi > 1

0, otherwise.

Question: does this model the communication volume?
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Data Distribution > Sparse matrix partitioning

Matrix communication to hypergraph costs

Answer: no. But we can:

Definition ((λ− 1)-metric)

Let H = (V,N ), Pk , and λi be as before. Then, the (λ− 1)-metric is
given by ∑

ni∈N
(λi − 1) .

This models the communication model exactly. It counts

the amount of fan-out communication in the column-net model,

the amount of fan-in communication in the row-net model, and

the total amount of communication in the fine-grain model.
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Data Distribution > Hypergraph partitioning

Hypergraph partitioning

1 Sparse matrix partitioning

2 Hypergraph partitioning

3 Vector distribution
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Data Distribution > Hypergraph partitioning

General data partitioning

Definition (Hypergraph partitioning)

Let H = (V,N ). A partitioning of H into p parts, is a partitioning
V0,V1, . . . ,Vp−1 of V into p parts such that

(1) V = ∪p−1
s=0Vs , and

(2) ∀i , j ∈ {0, 1, . . . , p − 1},Vi ∩ Vj = ∅.

Hypergraphs models of sparse matrices, combined with hypergraph
partitioning, directly results in sparse matrix partitionings (in the sense
of partitioning A into local matrices As).

A partitioning of a column-net model of A corresponds to a
partitioning of the rows of A (a 1D row-wise distribution).
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Data Distribution > Hypergraph partitioning

General data partitioning

Definition (Hypergraph partitioning)

Let H = (V,N ). A partitioning of H into p parts, is a partitioning
V0,V1, . . . ,Vp−1 of V into p parts such that

(1) V = ∪p−1
s=0Vs , and

(2) ∀i , j ∈ {0, 1, . . . , p − 1},Vi ∩ Vj = ∅.

Hypergraphs can model more than just sparse matrices; it can model
any collection of data dependencies. But

partitioning is not the only relevant operation (matching?),

much effort goes into finding correct cost metric.

Sometimes a mathematical analysis can find optimal partitionings a
priori. Here we present an automatic but heuristic, procedure.
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Data Distribution > Hypergraph partitioning

Hypergraph partitioner

Following the example of sparse matrix partitioning:

Model the sparse matrix using a hypergraph.

Partition the vertices of that hypergraph (in two).

That is, first design a hypergraph bipartitioner.

State-of-the-art hypergraph partitioning is a multi-level scheme:

1 First coarsen the input hypergraph.

2 If the hypergraph remains too large, call this multi-level scheme
recursively.

3 Otherwise, do random partitioning or optimal partitioning.

4 Undo coarsening.

5 Refine the resulting partitioning refinement (e.g., local search).
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Data Distribution > Hypergraph partitioning

Hypergraph partitioner

Following the example of sparse matrix partitioning:

Model the sparse matrix using a hypergraph.

Partition the vertices of that hypergraph (in two).

That is, first design a hypergraph bipartitioner.

State-of-the-art hypergraph partitioning is a multi-level scheme:

1 First coarsen the input hypergraph.

2 If the hypergraph remains too large, call this multi-level scheme
recursively.

3 Otherwise, do random partitioning or optimal partitioning.

4 Undo coarsening.

5 Refine the resulting partitioning refinement (e.g., local search).
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Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Definition (Coarsened hypergraph)

Let H = (V,N ) be a hypergraph. Let V0,V1, . . . ,Vk−1 be a k-way
partitioning of V. Let Vc = {V0, . . . ,Vk−1}. For each ni ∈ N , there is
a nc

i ∈ Nc with
nc
i = {Vi ∈ Vc | ni ∩ Vi 6= ∅}.

Then Hc = (Vc,Nc) is a coarsened hypergraph of H.

Coarsened hypergraphs should be structurally ’similar’ to the original
hypergraph.
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Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Wanted: a measure for similarity.

Assume a row-net model, where

coarsening means combining matrix columns into ‘supercolumns’.

Hence, ‘similar’ columns should be combined:

Definition (structural inner product)

Let A, m, n, and I as before. Write Acol
j ,Acol

k for the jth and kth
column of A, respectively. The structural inner-product 〈j , k〉IA is

|{i ∈ I | aij 6= 0 and aik 6= 0}|.
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Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

A related problem:

Definition (Graph matching)

Let G = (V ,E ) be a graph. A matching M ⊆ E has that for each
{v ,w} ∈ M, there is no other edge e ∈ M for which v ∈ e or w ∈ e.

Let M be the set of all possible matchings. Then M ∈M is
maximal if for all e ∈ E\M, M ∪ {e} /∈M.

M ∈M is maximum if there is no other matching M0 ∈M s.t.
|M0| > |M|.

Albert-Jan Yzelman



Data Distribution > Hypergraph partitioning

Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

A related problem:

Definition (Weighted graph matching)

Suppose a graph G = (V ,E ) has an associated weight function
w : E → R. Then (V ,E ,w) is a weighted graph.

We define the weight w(M) of a matching M as
∑
{j ,k}∈M wjk .

A matching M is a weighted maximum matching if there is no other
M0 ∈M such that w(M0) > w(M).
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Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Let V = {Acol
0 ,Acol

1 , . . . ,Acol
n−1}.

Let the edge ei (Acol
i ,Acol

j ) ∈ E have weight w(i) equal to the
similarity measure of the two columns.

G = (V ,E ,w) forms a fully connected edge-weighted graph.

Let M be a weighted maximum matching of G .

Then a valid coarsening strategy is to merge all column pairs in M.
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Partitioning: coarsening hypergraphs

Step 1: hypergraph coarsening

Merging similar columns in pairs to reduce the problem size (repeat
this until the problem is small):

· 1 · · · · · ·
1 · · · 1 · 1 ·
1 1 1 1 · · · 1
· 1 1 1 · · · ·
· · · · 1 1 · ·
· · · · 1 1 · ·
· · · · · · 1 1
· · 1 1 · · 1 1


merge−→



1 · · ·
1 · 1 1
1 1 · 1
1 1 · ·
· · 1 ·
· · 1 ·
· · · 1
· 1 · 1
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Partitioning: HKLFM

Step 5: refinement

After uncoarsening, reduce communication through local search
methods.

E.g., Kernighan-Lin, with improved implementation by Fiduccia
and Mattheyses (KLFM), is often used.

The cost function to minimise during local search is the
(λ− 1)-metric.

Moves that violate the load-balance criterion are marked invalid.
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Partitioning: HKLFM

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

Example of refinement using the row-net model:

HKLFM tries to improve initial uncoarsened partitioning by
moving vertices (columns) to the other part.

The vertex with the largest gain (communication reduction) is
moved. If the best possible move increases the communication, it
is still accepted.

Several passes are carried out. Vertices are never moved twice in a
pass. Best solution encountered is kept.
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Partitioning

References:

Catalyürek & Aykanat, Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication, IEEE Transactions on Parallel
Distributed Systems 10 (1999), pp. 673-693

Kernighan & Lin, An efficient heuristic procedure for partitioning graphs, Bell
Systems Technical Journal 49 (1970): pp. 291-307

Fiduccia & Mattheyses, A linear-time heuristic for improving network
partitions, Proceedings of the 19th IEEE Design Automation Conference
(1982), pp. 175-181.

Example software: Mondriaan (Bisseling et al., UU), Zoltan (Boman et al.,

Sandia), PaToH (Çatalyürek & Aykanat, OSU), and Scotch (Pellegrini,

Bordelais).
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Communication volume and time: 1D vs. 2D

(Vastenhouw and Bisseling, SIAM Review 47 (2005) pp.67–95.)
p Volume (in data words) Time (in ms)

1D row 1D col 2D 1D row 1D col 2D

1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 14.06 12.22 12.14
8 90919 96038 49120 6.49 6.35 6.62

16 177347 155604 75884 5.22 4.22 4.20
32 297658 227368 106563 4.32 4.08 3.23

Term-by-document matrix tbdlinux:
112,757 rows; 20,167 columns; 2,157,675 nonzeros.
Timings obtained on an SGI Origin 3800.
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Summary

We have derived a recursive partitioning algorithm for a sparse
matrix. It is greedy (minimises splits separately without looking
ahead).

The result is a p-way matrix partitioning A0, . . . ,Ap−1.

We used hypergraphs H = (V,N ), which generalise the notion of
a graph.

Multilevel methods for hypergraph partitioning find good splits of
a sparse matrix in reasonable time.
The sparse matrix partitioner introduced here optimises
communication volume. Other possible metrics:

h-relations, or
number of messages.

In the book, the vector distribution is used to balance
communication, i.e., uses the minimised communication volume
to get minimised h-relations.
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Vector distribution

1 Sparse matrix partitioning

2 Hypergraph partitioning

3 Vector distribution
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Balance the communication!

Aim: reduce the BSP cost hg , where

h = max
0≤s<p

h(s), h(s) = max(hs(s), hr(s)).

Thus, given a matrix distribution φ, we have to determine a
vector distribution φv that minimises h for the fanout and satisfies
j ∈ Jφv(j), for 0 ≤ j < n.

Constraint j ∈ Jφv(j) means: processor P(s) = P(φv(j)) that owns
vj must own a nonzero in matrix column j , i.e., j ∈ Js .

We also have to find a vector distribution φu that minimises the
value h for the fanin and that satisfies the constraint i ∈ Iφu(i), for
0 ≤ i < n.
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Vector partitioning for prime60

Global view. Both constraints are satisfied.
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Vector partitioning for prime60

Local view. The local components of the vector u are placed to the
left of the local submatrix for P(0) and P(2).
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The two vector distribution problems are similar

Nonzero pattern of row i of A equals the nonzero pattern of
column i of AT :
uis is sent from P(s) to P(t) in the multiplication by A
⇔ vi is sent from P(t) to P(s) in the multiplication by AT .

We can find a good distribution φu given φ = φA by finding a
good distribution φv given φ = φAT .

Hence, we only solve one problem, namely for v. We can apply
this method also for u, with AT instead of A.
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General case: arbitrary qj values

Columns with qj = 0 or qj = 1 do not cause communication and
are omitted from the problem. Hence, we assume qj ≥ 2, for all j .

For processor P(s):

hs(s) =
∑

0≤j<n, φv(j)=s

(qj − 1),

and
hr(s) = |{j : j ∈ Js ∧ φv(j) 6= s}|.

Aim: for given matrix distribution and hence given communication
volume V , minimise

h = max
0≤s<p

max (hs(s), hr(s)) .
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Egoistic local bound

An egoistic processor tries to minimise its own
h(s) = max(hr(s), hs(s)) without consideration for others.

To minimise hr(s), it just has to maximise the number of
components vj with j ∈ Js that it owns.

To minimise hs(s), it has to minimise the total weight of these
components, where the weight of vj is qj − 1.

A locally optimal strategy is to start with hs(s) = 0 and
hr(s) = |Js | and grab the components in order of increasing
weight, each time adjusting hs(s) and hr(s), as long as
hs(s) ≤ hr(s).
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Optimal values

Denote the resulting optimal value of hr(s) by ĥr(s), that of hs(s)
by ĥs(s), and that of h(s) by ĥ(s). We have

ĥs(s) ≤ ĥr(s) = ĥ(s), for 0 ≤ s < p.

The value ĥ(s) is a local lower bound on the actual value that can
be achieved: ĥ(s) ≤ h(s), for all s.

Albert-Jan Yzelman



Data Distribution > Vector distribution

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on Numerical
Analysis 21 (2005) pp. 47–65.)

Define the generalised lower bound ĥ(J, ns0, nr0) for a given index
set J ⊂ Js and a given initial number of sends ns0 and receives
nr0.

Initial communications are due to columns outside J.

Bound is computed by the same method, but starting with
hs(s) = ns0 and hr(s) = nr0 + |J|.
Note that ĥ(s) = ĥ(Js , 0, 0).

Our algorithm gives preference to the processor that faces the
toughest future, i.e., the processor with the highest current value
ĥ(s).
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Initialisation of algorithm

for s := 0 to p − 1 do
Ls := Js ;
hs(s) := 0;
hr(s) := 0;

Ls is the index set of components that may still be assigned to
P(s).

The number of sends caused by the assignments done so far is
registered as hs(s); the number of receives as hr(s).

The current state of P(s) is represented by the triple
(Ls , hs(s), hr(s)).
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Termination of algorithm

for s := 0 to p − 1 do

if hs(s) < ĥs(Ls , hs(s), hr(s)) then
active(s) := true;

else active(s) := false;

Note that ns0 ≤ ĥs(J, ns0, nr0), so that trivially
hs(s) ≤ ĥs(Ls , hs(s), hr(s)).

A processor will not accept more components once it has achieved
its optimum, when hs(s) = ĥs(Ls , hs(s), hr(s)).
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Main loop of algorithm

while (∃s : 0 ≤ s < p ∧ active(s)) do

smax := argmax(ĥr(Ls , hs(s), hr(s)) : 0 ≤ s < p ∧ active(s));
j := min(Lsmax); {j has minimal qj }
φv(j) := smax;
hs(smax) := hs(smax) + qj − 1;

for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do
hr(s) := hr(s) + 1;

for all s : 0 ≤ s < p ∧ j ∈ Js do
Ls := Ls\{j};
if hs(s) = ĥs(Ls , hs(s), hr(s)) then

active(s) := false;
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Main loop of algorithm

while (∃s : 0 ≤ s < p ∧ active(s)) do

smax := argmax(ĥr(Ls , hs(s), hr(s)) : 0 ≤ s < p ∧ active(s));
j := min(Lsmax); {j has minimal qj }
φv(j) := smax;
hs(smax) := hs(smax) + qj − 1;

for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do
hr(s) := hr(s) + 1;

for all s : 0 ≤ s < p ∧ j ∈ Js do
Ls := Ls\{j};
if hs(s) = ĥs(Ls , hs(s), hr(s)) then

active(s) := false;
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Special case: qj ≤ 2
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Vertex s = processor s, 0 ≤ s < p

Edge (s, t) = processor pair sharing matrix columns

Edge weight w(s, t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a processor,
balancing the number of data words sent and received

Albert-Jan Yzelman



Data Distribution > Vector distribution

Transform into unweighted undirected graph
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Assign two shared columns: one to processor s, one to t.
w(s, t) := w(s, t)− 2 .

Repeat until all edge weights = 0 or 1.
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Unweighted undirected graph
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Transform into directed graph

Walk path starting at odd-degree vertex

Remove walked edges from undirected graph

Edge s → t: processor s sends, t receives

Even-degree vertices remain even-degree

Repeat until all degrees in undirected graph are even.
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Transform into directed graph

Albert-Jan Yzelman



Data Distribution > Vector distribution

Transform into directed graph
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Transform into directed graph

Walk path starting at even-degree vertex

Repeat until undirected graph empty

Solution is provably optimal (see Bisseling & Meesen 2005)
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Summary

BSP cost is a natural metric that encourages communication
balancing.

For the general vector distribution problem, we have developed a
heuristic method, which works well in practice.

The heuristic method is based on assigning vector components to
the processor with the toughest future, as predicted by an egoistic
local bound.

For the special case with at most 2 processors per matrix column,
we have obtained an optimal method based on walking paths in
an associated graph, starting first at odd-degree vertices.
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