
Performance metrics for parallelism

Performance metrics for parallelism

Albert-Jan Yzelman

8th of November, 2013

Albert-Jan Yzelman

Performance metrics for parallelism

Sources

Rob H. Bisseling; Parallel Scientific Computing, Oxford Press.

Grama, Gupta, Karypis, Kumar; Parallel Computing, Addison Wesley.

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (Parallel overhead)

let Tseq be the time taken by a sequential algorithm;

let Tp be the time taken by a parallelisation of that algorithm,
using p processes.

Then, the parallel overhead To is given by

To = pTp − Ts .

(Effort is proportional to the number of workers multiplied with the
duration of their work, that is, equal to pTp.)

Best case: To = 0, such that Tp = Tseq/p.

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (Speedup)

Let Tseq, p, and Tp be as before. Then, the speedup S is given by

S(p) = Tseq/Tp.

• Target: S = p (no overhead; To = 0).

• Best case: S > p (superlinear speedup).

• Worst case: S < 1 (slowdown).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (Speedup)

Let Tseq, p, and Tp be as before. Then, the speedup S is given by

S(p) = Tseq/Tp.

• Target: S = p (no overhead; To = 0).

• Best case: S > p (superlinear speedup).

• Worst case: S < 1 (slowdown).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

What is Tseq?

Many sequential algorithms solving the same problem.

When determining the speedup S ,
compare against the best sequential algorithm
(that is available on your architecture).

When determining the overhead To ,
compare against the most similar algorithm
(maybe even take Tseq = T1).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

What is Tseq?

Many sequential algorithms solving the same problem.

When determining the speedup S ,
compare against the best sequential algorithm
(that is available on your architecture).

When determining the overhead To ,
compare against the most similar algorithm
(maybe even take Tseq = T1).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

What is Tseq?

Many sequential algorithms solving the same problem.

When determining the speedup S ,
compare against the best sequential algorithm
(that is available on your architecture).

When determining the overhead To ,
compare against the most similar algorithm
(maybe even take Tseq = T1).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (strong scaling)

S(p) = Tseq/Tp = Ω(p) (i.e., lim supp→∞|S(p)/p| > 0)

0

1

2

3

4

5

6

1 2 3 4 5 6 7

l
o
g
2

s
p
e
e
d
u
p

log2 p

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
512k-length vector

Question: is it reasonable to expect strong scalability for (good)
parallel algorithms?

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (strong scaling)

S(p) = Tseq/Tp = Ω(p) (i.e., lim supp→∞|S(p)/p| > 0)

0

1

2

3

4

5

6

1 2 3 4 5 6 7

l
o
g
2

s
p
e
e
d
u
p

log2 p

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
512k-length vector
32M-length vector

Answer: not as p →∞. You cannot efficiently clean a table with 50
people, or paint a wall with 500 painters.

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (weak scaling)

S(n) = Tseq(n)/Tp(n) = Ω(1), with p fixed.

0

20

40

60

80

100

10 12 14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

BSPlib: FFT on two different parallel machines

Perfect speedup
Lynx (distributed-memory)
HP DL980 (shared-memory)

For large enough problems, we do expect to make maximum use of our
parallel computer.

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance: example

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes

This processor advertises 64 processors,

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance: example

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes

This processor advertises 64 processors, but only has 32 FPUs.

We oversubscribed!

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes
32 processes

This processor advertises 64 processors, but only has 32 FPUs.

Be careful with oversubscription! (Including hyperthreading!)

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

0

5

10

15

20

25

30

35

14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

MulticoreBSP for Java: FFT on a Sun UltraSparc T2

Perfect scaling
64 processes
32 processes

This processor advertises 64 processors, but only has 32 FPUs.

Q: would you say this algorithm scales on the Sun Ultrasparc T2?

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

A: if the speedup stabilises around 16x, then

yes,

since the relative efficiency is stable.

Definition (Parallel efficiency)

Let Tseq, p, Tp, and S as before. The parallel efficiency E equals

E =
Tseq

p
/Tp = Tseq/pTp = S/p.

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

If there is no overhead (To = pTp − Tseq = 0), the efficiency
E = 1; decreasing the overhead increases the efficiency.

Weak scalability: what happens if the problem size increases?

But what is a sensible definition of the ‘problem size’?

Consider the following applications:

inner-product calculation;

binary search;

sorting (quicksort).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

If there is no overhead (To = pTp − Tseq = 0), the efficiency
E = 1; decreasing the overhead increases the efficiency.

Weak scalability: what happens if the problem size increases?

But what is a sensible definition of the ‘problem size’?

Consider the following applications:

inner-product calculation;

binary search;

sorting (quicksort).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Problem Size Run-time

Inner-product Θ(n) bytes Θ(n) flops
Binary search Θ(n) bytes Θ(log2 n) comparisons
Sorting Θ(n) bytes Θ(n log2 n) swaps
FFT Θ(n) bytes Θ(n log2 n) flops

Hence the problem size is best identified by Tseq.

Question:

How should the ratio To/Tseq behave as Tseq →∞, for the
algorithm to scale in a weak sense?

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

If To/Tseq = c , with c ∈ R≥0 constant, then

pTp − Tseq

Tseq
= pS−1 − 1 = c, so

S =
p

c + 1
, which is constant when p is fixed.

Note that here, E = S/p = 1
c+1

Question:

How should the ratio To/Tseq behave as p →∞, for the
algorithm to scale in a strong sense?

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

If To/Tseq = c , with c ∈ R≥0 constant, then

pTp − Tseq

Tseq
= pS−1 − 1 = c, so

S =
p

c + 1
.

Note that here, E = S/p = 1
c+1 which is still constant!

Answer:

Exactly the same! Both strong and weak scalability are
iso-efficiency constraints (E remains constant).

Albert-Jan Yzelman

Performance metrics for parallelism

Measuring performance

Definition (iso-efficiency)

Let E be as before. Suppose To = f (Tseq, p) is a known function.
Then the iso-efficiency relation is given by

Tseq =
1

1
E − 1

f (Tseq, p).

This follows from the definition of E :

E−1 = pTp/Tseq + 1− Tseq

Tseq

= 1 +
pTp − Tseq

Tseq

= 1 +
To

Tseq
, so Tseq(E−1 − 1) = To .

Albert-Jan Yzelman

Performance metrics for parallelism

Questions

Does this scale? Yes! (It’s again an FFT)

-2

0

2

4

6

8

10

5 10 15 20 25 30

T
i
m
e

Problem size

Albert-Jan Yzelman

Performance metrics for parallelism

Questions

Does this scale? Yes! (It’s again an FFT)

-2

0

2

4

6

8

10

5 10 15 20 25 30

E
x
e
c
u
t
i
o
n

t
i
m
e

(
l
o
g
a
r
i
t
h
m
i
c
)

log2 n

Measured running time
Theoretical optimum (asymptotic)

Albert-Jan Yzelman

Performance metrics for parallelism

Questions

Better use speedups when investigating scalability.

0

10

20

30

40

50

60

70

10 12 14 16 18 20 22 24 26

s
p
e
e
d
u
p

log2 n

HP DL980

Albert-Jan Yzelman

Performance metrics for parallelism

In summary...

A BSP algorithm is scalable when

T = O(Tseq/p + p).

This considers scalability of the speedup and includes parallel
overhead.

It does not include memory scalability:

M = O(Mseq/p + p),

where M is the memory taken by one BSP process and Mseq the
memory requirement of the best sequential algorithm.

Question:
does this definition of a scalable algorithm make sense?

Albert-Jan Yzelman

Performance metrics for parallelism

In summary...

A BSP algorithm is scalable when

T = O(Tseq/p + p).

This considers scalability of the speedup and includes parallel
overhead. It does not include memory scalability:

M = O(Mseq/p + p),

where M is the memory taken by one BSP process and Mseq the
memory requirement of the best sequential algorithm.

Question:
does this definition of a scalable algorithm make sense?

Albert-Jan Yzelman

Performance metrics for parallelism

In summary...

It does indeed make sense:

E−1 =
pTp

Ts

= 1 +
pTp − Ts

Ts

= 1 +
To

Ts
.

If To = Θ(p), then

E =
1

1 + p/Ts
=

Ts

Ts + p
.

Note limp→∞ E = 0 (strong scalability, Amdahl’s Law) and
limTs→∞ = 1 (weak scalability). For iso-efficiency, the ratio To and p
has to change appropriately.

Albert-Jan Yzelman

Performance metrics for parallelism

Practical session

Coming Thursday, see http://people.cs.kuleuven.be/

~albert-jan.yzelman/education/parco13/

Subjects:

1 Amdahl’s Law

2 Parallel Sorting

3 Parallel Grid computations

Albert-Jan Yzelman

http://people.cs.kuleuven.be/~albert-jan.yzelman/education/parco13/
http://people.cs.kuleuven.be/~albert-jan.yzelman/education/parco13/

Performance metrics for parallelism

Insights from the practical session

This intuition leads to a definition of how ‘parallel’ certain algorithms
are:

Definition (Parallelism)

Consider a parallel algorithm that runs in Tp time. Let Tseq the time
taken by the best sequential algorithm that solves the same problem.
Then the parallelism is given by

Tseq

T∞
= lim

p→∞

Tseq

Tp
.

This kind of analysis is fundamental for fine-grained parallelisation
schemes.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. 1995. Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30, 8 (August 1995), pp. 207-216.

Albert-Jan Yzelman

