
Introduction to the Bulk Synchronous Parallel model

Introduction to the Bulk Synchronous Parallel model

Albert-Jan N. Yzelman

4th of October, 2013

Derived from the book slides by Prof. dr. Rob H. Bisseling, found at

www.math.uu.nl/people/bisseling/Education/PA/pa.html

Albert-Jan N. Yzelman

www.math.uu.nl/people/bisseling/Education/PA/pa.html

Introduction to the Bulk Synchronous Parallel model > Motivation

Motivation

1 Motivation

2 The Bulk Synchronous Parallel Model

3 Parallel inner-product computation

4 BSPlib, the BSP interface

5 Programming using BSPlib

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Motivation

Why?

Some problems are too large to be solved on one machine

Google pageranking,

climate modelling,

structural stability (skyscrapers, air planes, ...),

financial market pricing,

movie rendering,

...

Bottlenecks can be time-to-solution, memory requirements, or both.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Motivation

Why?

Sequential performance has stalled

Moore’s Law: the number of transistors that one can cost-effectively
place on a unit surface, doubles every 1.5 years.

Corollary: processor speeds double every 1.5 years

This corollary broke down around 2007 due to power unscalability.

Solutions:

Multi-core processors, optionally using

slower clock speeds.

Software has to become parallel to keep up with Moore’s Law!

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Motivation

Why?

Sequential performance has stalled

Moore’s Law: the number of transistors that one can cost-effectively
place on a unit surface, doubles every 1.5 years.

Corollary: processor speeds double every 1.5 years

This corollary broke down around 2007 due to power unscalability.

Solutions:

Multi-core processors, optionally using

slower clock speeds.

Software has to become parallel to keep up with Moore’s Law!

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Motivation

Why not?

There are also reasons for not going parallel:

writing parallel code is more difficult:

work distribution,
communication minimisation,
conflicts due to concurrency.

The many different parallel architectures complicates things:
parallel code may run fast on one architecture, but surprisingly
slow on others.

To mitigate these issues, we should program

portably, and

transparently.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Motivation

How?

There are many different

architectures (RISC, GPUs, x86, ...),

network interconnects (Hypercube, ring, fat tree, ...),

vendors (Intel, Cray, IBM, Oracle, Cisco, ...),

programming interfaces.

We would like one standard model to design for, both for

algorithm design, and

hardware design.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Motivation

How?

Solution: bridging models

Message Passing Interface (MPI, interface only)

Bulk Synchronous Parallel (BSP, model and interface)

Ref.: Leslie G. Valiant, A bridging model for parallel computation,

Communications of the ACM, Volume 33 (1990), pp. 103–111.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel Model

1 Motivation

2 The Bulk Synchronous Parallel Model

3 Parallel inner-product computation

4 BSPlib, the BSP interface

5 Programming using BSPlib

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP computer: abstract model

M
P P P PP

M M M M

Communication
network

Bulk synchronous parallel (BSP) computer.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP computer: abstract model

M
P P P PP

M M M M

Communication
network

A BSP computer consists of a collection of processors, each with
its own memory. It is a distributed-memory computer.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP computer: abstract model

M
P P P PP

M M M M

Communication
network

Access to own memory is fast, to remote memory slower.

Uniform access time to all remote memories.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP computer: abstract model

M
P P P PP

M M M M

Communication
network

A black-box communication network. Algorithm designers should
not worry about network details, only about global performance.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP computer: abstract model

M
P P P PP

M M M M

Communication
network

Algorithms designed for a BSP computer are portable: they can
be run efficiently on many different parallel computers.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP algorithm

P(0) P(1) P(2) P(3) P(4)

sync

sync

sync

sync

sync

comm

comm

comm

comp

comp

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP algorithm

Superstep 1 Superstep 2

...and so on

Synchronisation & Communication Synchronisation...

1

2

3

4

A BSP algorithm consists of

computation supersteps, and
communication supersteps.

A superstep is always followed by a BSP synchronisation barrier.

A computation superstep is a sequential program. In scientific
computing, its cost often is expressed in floating point
operations (flops).

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP algorithm

Superstep 1 Superstep 2

...and so on

Synchronisation & Communication Synchronisation...

1

2

3

4

A communication superstep consists of communication operations
that transfer data words from one processor to another.

In theory, we distinguish between the two types of supersteps.
This helps in the design and analysis of parallel algorithms.

In practice the distinction may be dropped, either automatically or
manually, so to overlap communication with computation.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

Cost of a communication superstep

Suppose:

hs is the maximum number of data words sent by a processor.

hr is the maximum number of data words received by a processor.

An h-relation is a communication superstep in which every processor
sends and receives at most h data words:

h = max{hs, hr}.

2-relations:

P(0) P(1)

P(2)

P(0)P(0) P(0)P(0) P(1)

P(2)

(a) (b)

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

Cost of a communication superstep

Suppose:

hs is the maximum number of data words sent by a processor.

hr is the maximum number of data words received by a processor.

An h-relation is a communication superstep in which every processor
sends and receives at most h data words:

h = max{hs, hr}.

2-relations:

P(0) P(1)

P(2)

P(0)P(0) P(0)P(0) P(1)

P(2)

(a) (b)

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

Cost of a communication superstep

Central assumption:

The entry points and exit points of a communication superstep is
the bottleneck of the time spent communicating.

Hence the h-relation determines the cost of a communication
superstep:

Tcomm = hg + l ,

where g is the time per data word and l the global synchronisation
time.

Motivation l : this latency models the cost of preparing the processors
and network interconnect for all-to-all communication. This includes
start-up costs of sending data, checking whether all data have arrived
at their destinations, costs of the employed synchronisation method, ...

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

Time of an h-relation on an 8-processor IBM SP2

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250

Ti
m

e
(in

 fl
op

 u
ni

ts)

h

Measured data
Least-squares fit

r = 212 Mflop/s, p = 8, g = 187 flop (0.88µs),
l = 148212 flop (698 µs)

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

Cost of computation superstep

The cost of a computation superstep:

Tcomp = w/r + l , where w is the maximum number of flops of
a processor in the computation superstep.

Processors with less than w flops will typically be idle.

To measure T , a wall clock that measures elapsed time is needed.
Using a CPU timer will not work, since it ignores idle time.

Here, r is measured in flops per second (flop/s).

The cost of a BSP algorithm is the sum of the cost of its supersteps:

Tcomm + Tcomp = w + gh + 2l .

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP cost

The cost of a BSP algorithm is an expression of the form

a + bg + cl .

This cost is obtained by adding the costs of all the supersteps.

Note that g = g(p) and l = l(p) are in general a function of the
number of processors p.

The parameters a, b, c depend in general on p and on a problem
size n.

In general, the total BSP cost equals:

N−1∑
i=0

max w
(s)
i /r + hig + l ,

with N the total number of supersteps of the BSP algorithm.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP cost

P(0) P(1) P(2) P(3) P(4)

Comp

Comm

Comm

Comp

Comm

Sync

Sync

Sync

Sync

Sync

0

50

5

20

6

60

2

60

100

150

200

250

300

Cost

For p = 5, g = 2.5, and l = 20:
First computation superstep costs 60 + 20 = 80 flops.
First communication superstep costs 4 · 5 · 2.5 + 20 = 70 flops.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

BSP cost

P(0) P(1) P(2) P(3) P(4)

Comp

Comm

Comm

Comp

Comm

Sync

Sync

Sync

Sync

Sync

0

50

5

20

6

60

2

60

100

150

200

250

300

Cost

For p = 5, g = 2.5, and l = 20:

The total cost of the BSP algorithm is 320 flops.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > The Bulk Synchronous Parallel Model

Summary

An abstract BSP machine is a BSP(p, r , g , l) computer, with
p number of processors
r computing rate (in flop/s)
g communication cost per data word (in flop time units)
l global BSP latency cost (in flop time units)

The BSP model consists of

1 a distributed-memory architecture with a black box
communication network providing uniform access time to remote
memories;

2 an algorithmic framework formed by a sequence of supersteps;

3 a cost model giving cost expressions of the form a + bg + cl .

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Parallel inner-product computation

1 Motivation

2 The Bulk Synchronous Parallel Model

3 Parallel inner-product computation

4 BSPlib, the BSP interface

5 Programming using BSPlib

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Inner product of two vectors

The inner product of two vectors x = (x0, . . . , xn−1)T and
y = (y0, . . . , yn−1)T is defined by

α = xTy =
n−1∑
i=0

xiyi .

Here, ‘T’ denotes transposition. All vectors are column vectors.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Vector data distributions

block

cyclic

P(0) P(1) P(2) P(3)

p = #processors = 4
n = vector length = 16

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Block distribution

The block distribution is defined by

xi 7−→ P(i div b), for 0 ≤ i < n.

Here, the div operator stands for dividing and rounding down:
i div b = bi/bc.
The block size is b = dnp e = n

p rounded up.

For n = 9 and p = 4, this assigns 3, 3, 3, 0 vector components to
the processors, respectively. You may blink at an empty processor,
but this distribution is just as good as 3, 2, 2, 2. Really!

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Cyclic distribution

The cyclic distribution is defined by

xi 7−→ P(i mod p), for 0 ≤ i < n.

This distribution is easiest to compute. Note the advantage of starting
to count at zero: the formula becomes very simple.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Parallel inner product computation

Design pattern:

Assign data so that the bulk of the computations are local.

Assign xi and yi to the same processor, for all i . This makes
computing xi · yi a local operation. Thus distr(x) = distr(y).

Give each process the same amount of work (load balance)

Choose a distribution with an even spread of vector components. Both
block and cyclic distributions are fine. We choose cyclic, following the
way card players deal their cards.

The data distribution naturally leads to a parallel algorithm.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Example for n = 10 and p = 4

12 -1 30 2 -24 157 11

0 1 2 3 4 5 6 7 8 9
1 9 -1 312 82 1 20

22

22 228 8 23 2322 2223 22 23 22 22 228 8

75 757575

22238

0 1 2 3 4 5 6 7 8 9

*

+

+

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = xT y.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi ;

(1) for t := 0 to p − 1 do
put αs in P(t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt ;

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = xT y.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi ;

(1) for t := 0 to p − 1 do
put αs in P(t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt ;

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = xT y.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi ;

(1) for t := 0 to p − 1 do
put αs in P(t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt ;

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Single Program, Multiple Data (SPMD)

Only one program text needs to be written. All processors run the
same program, but on their own data.

The program text is parametrised in the processor number s,
0 ≤ s < p, also called processor identity. The actual execution of
the program depends on s.

Processor P(s) computes a local partial inner product

αs =
∑

0≤i<n, i mod p=s

xiyi .

The corresponding computation superstep (0) costs

2

⌈
n

p

⌉
+ l .

(1 addition and 1 multiplication per local vector component.)

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Result needed on all processors

The partial inner products must be added. This could have been
done by P(0), i.e. processor 0.

Sending the αs to P(0) is a (p − 1)-relation. Sending them to
P(∗), i.e., to all the processors, costs the same. The cost is
(p − 1)g + l .

Computing α on P(0) costs the same as computing it on all the
processors redundantly, i.e. in a replicated fashion. The cost is
p + l .

Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

Sending the local result to all processors is best if each processor
contributes one value. If there are more values per processor, a
different approach might be better.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Result needed on all processors

The partial inner products must be added. This could have been
done by P(0), i.e. processor 0.

Sending the αs to P(0) is a (p − 1)-relation. Sending them to
P(∗), i.e., to all the processors, costs the same. The cost is
(p − 1)g + l .

Computing α on P(0) costs the same as computing it on all the
processors redundantly, i.e. in a replicated fashion. The cost is
p + l .

Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

Sending the local result to all processors is best if each processor
contributes one value. If there are more values per processor, a
different approach might be better.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Result needed on all processors

The partial inner products must be added. This could have been
done by P(0), i.e. processor 0.

Sending the αs to P(0) is a (p − 1)-relation. Sending them to
P(∗), i.e., to all the processors, costs the same. The cost is
(p − 1)g + l .

Computing α on P(0) costs the same as computing it on all the
processors redundantly, i.e. in a replicated fashion. The cost is
p + l .

Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

Sending the local result to all processors is best if each processor
contributes one value. If there are more values per processor, a
different approach might be better.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Result needed on all processors

The partial inner products must be added. This could have been
done by P(0), i.e. processor 0.

Sending the αs to P(0) is a (p − 1)-relation. Sending them to
P(∗), i.e., to all the processors, costs the same. The cost is
(p − 1)g + l .

Computing α on P(0) costs the same as computing it on all the
processors redundantly, i.e. in a replicated fashion. The cost is
p + l .

Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

Sending the local result to all processors is best if each processor
contributes one value. If there are more values per processor, a
different approach might be better.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Total BSP cost of inner product

Tinprod = 2

⌈
n

p

⌉
+ p + (p − 1)g + 3l .

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

One-sided communication

The ‘put’ operation involves an active sender and a passive
receiver. We assume all puts are accepted. Thus we can define
each data transfer by giving only the action of one side.

No clutter in programs: shorter and simpler texts.

No danger of the dreaded deadlock. What happens if both
processors want to receive first? Deadlock can easily occur in
two-sided message passing, with an active sender and an active
receiver that must shake hands, or kiss. This may cause lots of
problems.

Another one-sided operation is the ‘get’. The name says it all.

One-sided communications are more efficient.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Parallel inner-product computation

Summary

We design algorithms in Single Program, Multiple Data style.
Each processor runs its own copy of the same program, on its own
data.

The block and cyclic distributions are commonly used in parallel
computing. Both are suitable for an inner product computation.

The BSP style encourages balancing the communication among
the processors. Sending all data to one processor is discouraged.
Better: all to all.

One-sided communications such as puts and gets are easy to use
and efficient.

The BSP cost is transparently calculated.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

BSPlib, the BSP interface

1 Motivation

2 The Bulk Synchronous Parallel Model

3 Parallel inner-product computation

4 BSPlib, the BSP interface

5 Programming using BSPlib

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

BSPlib program: sequential, parallel, sequential

P(0) P(1) P(2) P(3) P(4)

Sync

Sync

Begin

End

Init

Exit

Sequential

Parallel (SPMD)

Sequential

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Sequential I, parallel computation, sequential O

A BSPlib program starts with a sequential part, mainly intended
for input. Motivation:

Desired number of processors of the parallel part may depend on
the input.
Input of data describing a problem is often sequential.

A BSPlib program ends with a sequential part, mainly intended
for output. Motivation:

Reporting the output of a computation is often sequential.

Sequential I/O in a parallel program may be inherited from a
sequential program.

The sequential parts may also be empty.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Main function of BSPlib program

int P;
int main(int argc, char **argv){

bsp_init(bspinprod, argc, argv);

printf("How many processors?\n"); /* sequential part */
scanf("%d", &P);
if(P > bsp_nprocs()) {

printf("Sorry, not enough available.\n");
exit(1);

}

bspinprod(); /* parallel part */

exit(0); /* sequential part */
}

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitive bsp init

bsp_init(spmd, argc, argv);

The BSPlib primitive bsp init initialises the program. It must be
the first executable statement in the program.

spmd is the name of the function that comprises the parallel part .
In our example, the name is bspinprod.

The primitive bsp init is needed to circumvent restrictions of
certain machines.

It is ugly and often misunderstood. (But then, what happened to
Quasimodo in the end?)

int argc is the number of command-line arguments and char
**argv is the array of arguments. These arguments can be used
in the sequential input part, but they cannot be transferred to
the parallel part.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Structure of SPMD part

void bspinprod() {
int p, s, n;

bsp_begin(P);
p = bsp_nprocs(); /* p = number of procs */
s = bsp_pid(); /* s = processor number */
if(s == 0) {

printf("Please enter n:\n");
scanf("%d", &n);
if(n < 0)

bsp_abort("Error in input: n < 0");
}
...
bsp_end();

}
Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitives bsp begin, bsp end

bsp_begin(reqprocs);
bsp_end();

The BSPlib primitive bsp begin starts the parallel part of the
program with reqprocs processors. It must be the first
executable statement in the SPMD function.

The BSPlib primitive bsp end ends the parallel part of the
program. It must be the last executable statement in the SPMD
function.

If the sequential parts of the program are empty, main can
become the parallel part and bsp init can be removed.

P(0) inherits the values of the variables from the sequential part
and can use these in the parallel part. Other processors do not
inherit any values and must obtain needed values by explicit
communication.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitives bsp nprocs, bsp pid

bsp_nprocs();
bsp_pid();

The BSPlib primitive bsp nprocs gives the number of processors.
In the parallel part, this is the actual number p of processors
involved in the parallel computation. In the sequential parts, it is
the maximum number available.

Thus, we can ask how many processors are available and then
decide not to use them all. Sometimes, using fewer processors
gives faster results!

The BSPlib primitive bsp pid gives the processor identity s,
where 0 ≤ s < p.

Both primitives can be used anywhere in the parallel program, so
you can always get an answer to burning questions such as:
How many are we? Who am I?

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitive bsp abort

bsp_abort(error_message);

If one processor detects that something is wrong, it can bring all
processors down in a graceful manner and print an error message
by using bsp abort.

The message is in the standard format of the C-function printf.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Putting data into another processor

bsp_put(pid, source, dest, offset, nbytes);

Put

nbytesOffset

Dest

nbytes

Source

bsp_pid

pid

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitive bsp put

bsp_put(pid, source, dest, offset, nbytes);

The bsp put operation copies nbytes of data from the local
processor bsp pid into the specified destination processor pid.

The pointer source points to the start of the data to be copied.

The pointer dest specifies the start of the memory area where
the data is written.

The data is written at offset bytes from the start.

This is the most-often used one-sided communication operation.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Inner product function

double bspip(int p, int s, int n, double *x, double *y) {

double inprod, *Inprod; /* Initialisation */
int i, t;
Inprod = vecallocd(p);
bsp_push_reg(Inprod, p * SZDBL);
bsp_sync();

inprod = 0.0; /* Superstep 0 */
for (i = 0; i < nloc(p, s, n); i++)

inprod += x[i] * y[i];

for(t = 0; t < p; t++) /* Superstep 1 */
bsp_put(t, &inprod, Inprod, s*SZDBL, SZDBL);

bsp_sync(); ...
}

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Local and global indices for cyclic distribution

12

12

–1

–1

3

3

0

0

2

2

–2

–2

4

4

15

15

7

7

11

11

P(2) P(3)P(1)P(0)

0 1 2

0 1 2 0 1 2 0 1 0 1

3 4 5 6 7 8 9

Global

Local

Global index: i , local index on P(s): i. Their relation is:

i = i · p + s.

Use local indices in programs:

for(i = 0; i < nloc(p, s, n); i++)
inprod += x[i] * y[i];

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitive bsp get

bsp_get(pid, source, offset, dest, nbytes);

The bsp get operation copies nbytes of data from the specified
remote source processor pid into the local processor bsp pid.

The pointer source points to the start of the data in the remote
processor to be copied.

The pointer dest specifies the start of the local memory area
where the data is written.

The data is read starting at offset bytes from the start of
source.

Remember for both puts and gets: the source parameter comes
first and the offset is in the remote processor.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Getting n from P(0)

void bspinprod() {

int p, s, n;
...
if(s == 0) {

printf("Please enter n:\n");
scanf("%d", &n);

}
bsp_push_reg(&n, SZINT);
bsp_sync();

bsp_get(0, &n, 0, &n, SZINT);
bsp_sync();
...

}

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Primitive bsp sync

bsp_sync();

The bsp sync operation terminates the current superstep. It
causes all communications initiated by puts and gets to be
actually carried out. It synchronises all the processors.

After the bsp sync, the communicated data can be used.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Safety first: no interference

The regular bsp put and bsp get operations are doubly buffered,
at the source and at the destination. This provides safety.

A data word that is put is first copied into a local send buffer.
The space occupied by the original data word can be reused
immediately.

All received data are first stored in a receive buffer.

All communication is postponed until the moment all
computations of the current superstep are finished. The value
obtained by a get is the value at the moment computations are
finished; the get cannot buffer data!

If you like living on the edge: the bsp hpput primitive is
unbuffered, more efficient than bsp put, uses less memory, but is
considered dangerous.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Your x is my x

bsp_push_reg(variable, nbytes);
bsp_pop_reg(variable);

A variable called x may have the same name on different
processors, but this does not guarantee that it has the same
address in memory.

To guarantee this, the names must be registered first.

All processors participate in the registration procedure by pushing
their variable and its memory size onto a stack. The unwilling
ones can register NULL.

The SPMD style suggests registering the same variable name on
all processors, but this is not strictly necessary.

Registration takes effect only in the next superstep.

Deregistration is done by all processors together.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Registration is expensive

To register, all processors have to talk to each other.

This is a p-relation, worst case.

Try to register sparingly.

Register once, put many times.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

BSP timer measures elapsed time

...
bsp_sync();
time0 = bsp_time();

alpha = bspip(p, s, n, x, x);
bsp_sync();
time1=bsp_time();

if(s==0)
printf("This took only %.6lf seconds.\n",

time1 - time0);
...

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > BSPlib, the BSP interface

Summary

SMALL IS BEAUTIFUL
BSPlib is a small library of 20 primitives for writing parallel programs in
bulk synchronous parallel style.

We have learned 12 primitives and are ready to start programming in
parallel.

The put and get primitives provide RDMA (Remote Direct Memory
Access, also called DRMA).

Registration allows direct access to dynamically allocated memory.

The complete program bspinprod should now be clear. Try to compile
it and to run it on 4 processors.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Programming using BSPlib

1 Motivation

2 The Bulk Synchronous Parallel Model

3 Parallel inner-product computation

4 BSPlib, the BSP interface

5 Programming using BSPlib

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Available BSP libraries

Distributed-memory computers:

1 Oxford BSP library, see www.bsp-worldwide.org

2 BSPonMPI, see bsponmpi.sourceforge.net

Shared-memory computers, see www.multicorebsp.com:

1 MulticoreBSP for Java

2 MulticoreBSP for C

Albert-Jan N. Yzelman

www.bsp-worldwide.org
bsponmpi.sourceforge.net
www.multicorebsp.com

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Compilation of BSPlib programs

Oxford BSP Toolset (Hill, McColl, Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas, Bisseling; 1998)

bspcc bspinprod.c;
bsprun -npes <P> ./a.out

BSPonMPI (van Suijlen; 2006)

mpcc bspinprod.c -lbsponmpi;
./a.out

MulticoreBSP for C (Yzelman, Bisseling, Roose, Meerbergen; 2012)

cc bspinprod.c -lmcbsp -pthread -lrt;
./a.out

MulticoreBSP for Java (Yzelman, Bisseling; 2010)

javac -cp MulticoreBSP.jar bspinprod.java;
java -cp MulticoreBSP.jar bspinprod

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Other BSP libraries

Other (distributed memory) BSP-style libraries (incompatible API):

MapReduce
Google Inc.; 2004.

Pregel
Malewicz, Austern, Bik, Dehnert, Ilan Horn, Czajkowski (Google Inc.); 2010.

Apache Hama
Yoon et al.; 2010

Paderborn University BSP library (PUB)
Bonorden, Juurlink, von Otte, Rieping; 1998.

Bulk Synchronous Parallel ML (BSMLlib)
Gava, Gesbert, Hains, Tesson; 2000.

Python/BSP
Hinsen, Sadron; 2003.

Cloudscale BSP
McColl et al. (Cloudscale Inc.); 2012.

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Hello World!

#include "bsp.h" / "mcbsp.h"

int main(int argc, char **argv) {
bsp_begin(4);

printf("Hello world from thread %d out of $d!\n",
bsp_pid(), bsp_nprocs());

bsp_end();
}

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Hello World!

An example using MulticoreBSP for C and static linkage:

$ gcc -o hello hello.c lib/libmcbsp1.1.0.a -pthread -lrt
$./hello
Hello world from thread 3 out of 4!
Hello world from thread 2 out of 4!
Hello world from thread 0 out of 4!
Hello world from thread 1 out of 4!
$...

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Hello World!

#include "mcbsp.h"
int P;

void hello() {
bsp_begin(P);
printf("Hello world from thread %d!\n",

bsp_pid());
bsp_end();

}

int main(int argc, char **argv) {
bsp_init(hello, argc, argv);
scanf("%d", &P);
hello();

}

Albert-Jan N. Yzelman

Introduction to the Bulk Synchronous Parallel model > Programming using BSPlib

Summary

There are multiple implementations of the BSPlib interface.

Other BSP-style libraries for parallel programming exist; some stay
close to the BSP model, others do not.

We have seen the syntax for compilation for various BSPlib
libraries, and applied these on a ‘Hello world!’ example.

The complete program bspinprod should now be clear from the
last section. Try to compile it and to run it!

Albert-Jan N. Yzelman

	Motivation
	The Bulk Synchronous Parallel Model
	Parallel inner-product computation
	BSPlib, the BSP interface
	Programming using BSPlib

