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Abstract—This paper introduces SLAW, a Scalable Locality-
aware Adaptive Work-stealing scheduler. The SLAW scheduler
is designed to address two common limitations in current work-
stealing schedulers: use of a fixed task scheduling policy and
locality-obliviousness due to randomized stealing.

Past work has demonstrated the pros and cons of using fixed
scheduling policies, such as work-first and help-first, in different
cases without a clear win for one policy over the other. The
SLAW scheduler addresses this limitation by supporting both
work-first and help-first policies simultaneously. It does so by
using an adaptive approach that selects a scheduling policy on a
per-task basis at runtime. The SLAW scheduler also establishes
bounds on the stack and heap space needed to store tasks. The
experimental results for the benchmarks studied in this paper
show that SLAW’s adaptive scheduler achieves 0.98x to 9.2x
speedup over the help-first scheduler and 0.97 x to 4.5 speedup
over the work-first scheduler for 64-thread executions, thereby
establishing the robustness of using an adaptive approach instead
of a fixed policy. In contrast, the help-first policy is 9.2x slower
than work-first in the worst case for a fixed help-first policy, and
the work-first policy is 3.7 x slower than help-first in the worst
case for a fixed work-first policy. Further, for large irregular
recursive parallel computations, the adaptive scheduler runs with
bounded stack usage and achieves performance (and supports
data sizes) that cannot be delivered by the use of any single fixed
policy.

It is also known that work-stealing schedulers can be cache-
unfriendly for some applications due to randomized stealing.
The SLAW scheduler is designed for programming models where
locality hints are provided to the runtime by the programmer
or compiler, and achieves locality-awareness by grouping workers
into places. Locality awareness can lead to improved performance
by increasing temporal data reuse within a worker and among
workers in the same place. Our experimental results show that
locality-aware scheduling can achieve up to 2.6 x speedup over
locality-oblivious scheduling, for the benchmarks studied in this
paper.

Index Terms—Task Parallelism; Work-stealing;
Scheduling; Locality-aware Scheduling.

Adaptive

I. INTRODUCTION

As the computer industry is entering an era of mainstream
parallel processing, the need for improved productivity in
parallel programming has taken on a new urgency. The three
programming languages developed as part of the DARPA
HPCS program (Chapel [1], Fortress [2], X10 [3]) all iden-
tified dynamic lightweight task parallelism as one of the
prerequisites for success. Dynamic task parallelism is also
being introduced in existing programming models for shared-
memory parallelism such as OpenMP 3.0. In dynamic task

parallelism, computations are dynamically created and the run-
time scheduler is responsible for scheduling the computations
across the cores. An efficient and scalable runtime scheduler
is critical to achieving good performance for dynamic task
parallelism.

Work-stealing runtime schedulers are increasing in popu-
larity as scheduling algorithms for dynamic task parallelism,
as evidenced by past work e.g., Cilk [4], Cilk++ [5], In-
tel Threading Building Blocks (TBB) [6], Java’s Fork-join
Framework [7], Microsoft Task Parallel Library [8], and
StackThreads/MP [9]. A work-stealing scheduler employs a
fixed number of threads called workers. Each worker has
a local deque to store tasks. When a worker is suspended
at a synchronization point and there is no local task, the
worker will try to steal the task from the top of other busy
workers’ deques. For a busy worker, tasks are pushed and
popped from the bottom of the deque and these operations are
synchronization-free.

This paper introduces SLAW, a Scalable Locality-aware
Adaptive Work-stealing scheduler. SLAW identifies and ad-
dresses two important issues that limit the scalability in current
work-stealing schedulers: use of a fixed task scheduling policy,
and locality-obliviousness due to randomized stealing.

Scheduling Policies: Task scheduling is critical for a work-
stealing scheduler. Work-first and help-first are two commonly
used task scheduling policy used when spawning a task [10].
Under the work-first policy, the worker will execute the
spawned task eagerly and leave the continuation to be stolen.
Under the help-first policy, the worker will make the spawned
task available for stealing and itself will continue execution on
the parent task. Work-first and help-first policies are usually
implemented with different stack and memory bounds and
also exhibit performance limitations in different scenarios. The
work-first policy is good for scenarios when stealing is rare.
It has a provable memory bound but its implementation may
overflow the stack for large irregular computations. The help-
first policy is good for scenarios when stealing is frequent.
It can be implemented with low stack usage but is not
space-efficient in general. These differences make it hard to
determine a priori which policy should be used.

SLAW’s adaptive scheduler is designed to achieve the best
of both policies, while ensuring bounded stack usage. The
bound is referred to as the stack threshold, and is set as a
parameter by the programmer. SLAW’s adaptive scheduler is
provably space-efficient if the serial depth-first execution of the



computation does not exceed the stack threshold. If it exceeds
the threshold, the adaptive scheduler will move the stack
pressure to the heap, since the heap is usually much larger
than the stack. To obtain good scalability in both scenarios
when steals are rare vs. frequent, SLAW has a heuristic to
adjust scheduling policies according to the stealing rate. The
adaptiveness in scheduling policy and bounded stack usage
make SLAW capable of handling large irregular computations.

The experimental results from a variety of benchmarks
show that: SLAW’s adaptive scheduler achieves 0.98x -
9.2x speedup over the help-first scheduler and 0.97 x-4.5x
speedup over the work-first scheduler for 64-thread executions.
In contrast, the help-first policy is 9.2x slower than work-
first in the worst case for a fixed help-first policy, and the
work-first policy is 3.7x slower than help-first in the worst
case for a fixed work-first policy. Further, for large irregular
recursive parallel computations, the adaptive scheduler runs
with bounded stack usage and achieves performance (and
supports data sizes) that cannot be delivered by the use of
any single fixed policy.

Locality-aware scheduling: Work-stealing has also been
known to be cache-unfriendly for some applications due to
randomized stealing [11]. For tasks that share the same mem-
ory footprints, randomized locality-oblivious work-stealing
schedulers do nothing to ensure scheduling of these tasks
on workers that share a cache. This significantly limits the
scalability for some memory-bandwidth bounded applications
on machines that have separate caches.

SLAW is designed for programming models in which
locality hints are provided by the programmer or the compiler,
such as X10’s places [3] and Chapel’s locales [1]. In SLAW,
workers are grouped by places and our current implementation
restricts stealing to only occur within places. Our experimental
results show that locality-aware scheduling can achieve up to
2.6x speedup over locality-oblivious scheduling by increasing
temporal data reuse. We believe that the performance benefits
of locality-aware scheduling will continue to increase in future
systems.

Organization of the paper: Section II describes the context
for the SLAW scheduler, including work-first and help-first
scheduling polices and the Habanero-Java (HJ) language [12].
Section III describes the SLAW adaptive scheduling algorithm,
and Section IV describes extensions to SLAW for locality-
awareness. Sections V to VII contain our experimental results,
related work discussion and conclusions respectively.

II. BACKGROUND: SLAW CONTEXT

A. Work-stealing Scheduling Policies

Work-first and help-first are two commonly used task
scheduling policies used when spawning a task. Under the
work-first policy, the worker will execute the spawned task
eagerly and leave the continuation to be stolen. Under the help-
first policy, the worker will make the spawned task available
for stealing and itself will continue execution on the parent
task.

Both work-first and help-first policies will yield coarse-grain
tasks to the thief because the stealing is from the root of the
spawn tree towards the leaves.

The work-first policy and help-first policy have different
stack and memory requirements and have performance issues
in complementary scenarios.

1) Performance Issues: Context switches represent a major
source of overhead in a work-stealing scheduler [13]. A
context switch is performed when the worker cannot continue
normal sequential execution. This happens in two situations:
a) When the current task terminates, and the worker cannot
resume execution of its parent task. This can happen when
the continuation of the parent task is stolen or the current
task is not spawned under the work-first policy. b) When the
current task reaches a synchronization point, and there are still
unfinished descendant tasks. In both situations, the worker will
return to the scheduler to request a new task. In the second
situation, the task is suspended and the context switch will also
save the activation frame of the current task to the heap, so
that it can be resumed later. Compared to normal sequential
execution, the overhead of context switches primarily arises
from bookkeeping overhead in the scheduler and from cache
misses.

Under the work-first policy, if there is only 1 worker thread,
it will execute all tasks in the same order as the equivalent
sequential program, thereby requiring no context switch at
task synchronization points. In general, the work-first policy
works well for situations where steals are infrequent [10].
However, for applications whose spawn trees are shallow and
wide, the steals can become frequent because there each steal
yields a limited amount of work. Consider a scenario in which
one busy worker creates N tasks consecutively and the other
N — 1 workers are idle and looking for tasks. In order to
distribute N tasks to the N — 1 idle workers under the work-
first policy, continuations must be passed from the victim
worker to the thief through stealing and there will be N — 1
such steals of continuations. More importantly, these steals
must be serialized thereby limiting scalability and contributing
to a large steal overhead.

On the other hand, under the help-first policy, the steals
are performed more efficiently. The steal contains two parts:
task retrieval from the victim and the following context switch
to execute the task. Under the help-first policy, although the
tasks have to be popped from the victim’s queue in order, the
context switches can be done in parallel. However, if steals
are rare, using the help-first policy may increase the 1-thread
execution time relative to sequential execution, because of the
context switches that can occur at every task synchronization
point.

In general, the work-first policy works better for recursive
parallelism in which the task spawn tree is deep and the
help-first policy works better for flat parallelism in which the
task spawn tree is shallow and wide. In the extreme case,
our experimental results show that, for 64 threads, the help-
first policy can be 9.2x slower than the work-first policy
on Fib micro-benchmark, and the work-first policy can be



1 class V. {

2 V [] neighbors;

3 V parent;

4 V (int 1) {super(i); }

5 boolean tryLabeling(V n) {

6 isolated { if (parent == null)
7 parent = n; }

8 return parent == n;

9 }

10 wvoid compute () {

11 for (int i=0; i<neighbors.length; i++) {
12 V e = neighbors[i];

13 if (e.tryLabeling(this))

14 async e.compute () ;

15 }

16 }

17 wvoid DFS() {

18 parent = this;

19 finish async compute () ;

20 1}

Fig. 1. HIJ code for a parallel-DFS (PDFS) spanning tree algorithm
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Fig. 2. A possible spawn tree for parallel DFS program (PDFES) in Figure 1.
Solid edge is spawn edge and dash edge indicates a chain of spawn edges.
For PDFS, the depth of the spawn tree (S1) is only bounded by the size of
graph in the worse case.

3.7x slower than the help-first policy for the Fork-Join micro-
benchmark.

2) Stack and Memory Bounds: The work-first and help-
first policies face different challenges with respect to stack
and memory bounds.

It is well known that work-stealing schedulers that use the
work-first policy are provably space-efficient [14]. If the serial
depth-first execution of parallel application uses S; memory,
the memory usage of the P-processor execution is bounded
by S1P. However, because the work-first policy is usually
implemented as a sequential call to the spawn task to minimize
the 1-thread execution time, the stack usage of the work-
first scheduler is the same as the depth-first scheduler. This
becomes a significant disadvantage for computations, such as
the Parallel Depth First Search (PDFS) benchmark shown in
Figure 1, where the depth of the task spawn tree is proportional
to the program’s data size. Work-stealing schedulers using
the work-first policy will terminate prematurely due to stack
overflow for large graphs because of the stack limit in
current environment. Although it is possible to instead allocate
stack frames in the heap, these solutions are mostly OS and
architecture dependent, and may incur overhead compared to
the simple function call.

Figure 1 shows a parallel recursive program to build a
spanning tree on a graph (the semantics of the async, finish,
and isolated constructs are explained in Section II-B) and

Figure 2 shows the spawn tree of the application. Although
the program expresses the parallelism correctly and elegantly,
such recursive programs are not guaranteed to run successfully
on many current work-stealing runtimes that use the work-first
policy, because the sequential version of PDFS may overflow
the stack for large applications.

On the other hand, under the help-first policy, the worker
will not execute the spawned task eagerly; instead, it will
continue executing the parent task until it is suspended or
it terminates. When the task is suspended, the scheduler
will switch context to a new task. The whole process is
implemented by throwing an exception that be caught by the
scheduler, which then calls the run method of the new task.
The unnecessary stack pressure of ancestor tasks are released.

Despite their stack bound, work-scheduling schedulers that
use the help-first policy are not provably space-efficient. In the
worst case, if the parent task spawns an unbounded number of
child tasks, all these child tasks will be saved to a deque on the
heap, which may lead to heap overflow. However, the serial
depth-first execution of the same program runs with bounded
memory.

B. Habanero-Java Language (HJ)

This section describes the Habanero-Java (HJ) language
currently supported by the SLAW scheduler, and used for the
experimental results. HJ is a Java-based dynamic task parallel
language derived from X10 v1.5 [3].

The async construct is used to create (fork) a new
asynchronous task. The statement, async (stmt), causes the
parent task to create a new child task that executes (stmt).
The parent task and the child task can run in parallel. An
async statement can optionally include a schedule clause
and/or a place clause as follows: async [schedule(wf|hf|dyn)]
[place(p)] (stmt).

The schedule clause can take one of three possible values:
wf, hf or dyn, which correspond to the work-first, help-first and
dynamic(default) scheduling policies respectively. For dyn, the
scheduling policy is selected adaptively on a per-task basis at
runtime as described later in Section III. The place clause
takes a place expression p, and serves as an affinity hint to
constrain the execution of the async to a designated subset of
workers as described below.

The statement finish (stmt) causes the parent task to execute
(stmf) and then wait until all sub-tasks created within (swmz)
have terminated (including transitively spawned tasks). The
main function is enclosed by an implicit finish scope.

A place is a virtual partition of tasks. Each async task
executes in a designated place for its lifetime, though it can
switch among multiple workers in the same place. A task ob-
tains a reference to the current place by evaluating the constant
here, which is also the default value for the place clause in
the async statement. The number of places is fixed when the
program is launched; there is no construct to create a new
place. This is consistent with current programming models,
such as MPI, UPC, and OpenMP, that require the number
of processes/threads to be specified when an application is



launched. For the purpose of this paper, a place is implemented
as a set of worker threads in a work-stealing scheduler such
that no stealing is permitted across places. Note that places
are multi-threaded in general and stealing can occur within a
place. The mapping of worker threads to places is specified
when the program is launched, and is also referred to as
the deployment. This mapping includes a binding of worker
threads to processor cores. Unlike X10, the HJ subset used
in this paper only associates places with tasks(async’s) and
not with data. Data locality is instead achieved indirectly by
assigning async’s with data affinity to execute in the same
place.

The isolated construct is HIJ’s renaming of X10’s atomic
construct. As stated in [3], an atomic block in X10 is intended
to be “executed by a task as if in a single step during which
all other concurrent tasks in the same place are suspended”.
This definition implies strong atomicity semantics for the
atomic construct. However, all X10 implementations that we
are aware of are lock-based and do not enforce any mutual
exclusion guarantees between computations within and outside
an atomic block. As advocated in [15], we use the isolated
keyword instead of atomic to make explicit the fact that the
construct supports weak isolation rather than strong atomicity.

III. SCALABLE ADAPTIVE SCHEDULING

This section presents SLAW’s adaptive scheduling algo-
rithm for a single place. The extension to multiple places
is summarized in Section IV. We first informally give an
overview of the adaptive scheduler, followed by the scheduling
model and taxonomy assumed in this paper. We then present
our adaptive scheduling algorithm, along with theoretical
worst-case space bounds. This section concludes with a sum-
mary of the compiler support and the runtime implementation
for the adaptive scheduling algorithm.

A. Overview of the Adaptive Scheduler

There are two major scalability concerns when designing
the adaptive scheduler: (1) establishing space bounds which
include stack space for worker threads as well as the total
memory space; and (2) selection of help-first and work-first
policy in different scenarios for better scalability.

As described in Section II-A2, a stack-based implementation
of the work-first policy increases stack pressure, where as the
help-first policy can be used to reduce stack pressure (but at
the expense of additional context switches). Let us assume that
S is the space limit (or threshold) for a worker’s stack. If the
input program has a spawn tree depth greater than .S, then it is
necessary at some point to use the help-first policy to ensure
that a worker’s stack space does not exceed threshold .S. This
decision is presented as stack condition in the spawn rule for
Algorithm 1 discussed later.

Besides the stack bound, we also consider the total memory
bound. The total memory bound is determined by the memory
usage of both started and fresh tasks. Started tasks are those
that have been executed by some processor; fresh tasks have
been spawned but never executed. When only spawning under

work-first policy, there will be no fresh tasks and the total
memory bound of started tasks has been established by past
research on work-stealing schedulers [14], [16]. However,
under the help-first policy, all child tasks will be created as
fresh tasks and saved on the heap. In order to provide a total
memory guarantee for the adaptive work-stealing scheduler:
the scheduler must switch to the work-first policy when the
number of fresh tasks exceeds a threshold; this ensures that the
total memory used by fresh tasks are bounded. The threshold
is called the fresh task threshold denoted as F'. This decision
is presented as fresh task condition in the spawn rule for
Algorithm 1.

These two conditions are enough to establish the stack and
total memory bounds for the adaptive scheduling algorithm.
One thing that is important to notice is that the adaptive
scheduler treats stack bound as a hard bound and gives the
stack condition higher priority than the fresh task condition.
When the stack threshold is reached, help-first policy will
always be used to avoid stack overflow regardless of the
number of fresh tasks created.

SLAW employs a runtime heuristic to select the policy
if neither of these two conditions is met. This heuristic is
not required to establish the worst-case stack and memory
space bound, but is designed to achieve better scalability
and performance in practice. For this reason, the heuristic is
described below but is not presented in the algorithm.

Before describing the heuristic, we first discuss two tech-
niques used to reduce the overhead of adaptation and evalua-
tion of the task spawning policy. First, each worker maintains
its own spawning policy and the heuristic used to evaluate
the spawning policy consists only of thread-local operations.
We show in the Section V-B1 that the overhead is lower
than 5%. Second, SLAW does not re-evaluate the spawning
policy at every spawning point. Instead, it starts with the
help-first policy at the beginning and re-evaluate the spawning
policy periodically at an interval for every INT spawned tasks.
The reason that it starts with the help-first policy is because
steals are usually frequent at the beginning of the application,
and help-first policy can raise parallelism when stealing is
frequent. Evaluating the policy periodically further amortized
the overhead.

The heuristic used by SLAW is based on a simple estimation
on the likelihood of the new spawned task being stolen. It
computes the number of tasks that were stolen from the worker
during the last interval. If the number of steals is greater than
INT, this implies the steal rate is higher than the task creation
rate. The scheduler will use the help-first policy for the new
task in the next interval to increase the rate of distributing
tasks to other workers. Otherwise, the scheduler assumes the
new task will not be stolen and thus uses work-first policy for
the next interval to reduce the overhead of context switches.

In summary, the thresholds S and F' for the stack condition
and the fresh task condition are used to bound the algorithm’s
stack and total space requirements respectively. The third
parameter INT is used to control the policy re-evaluation
interval in SLAW to reduce overhead. Later in Section V-B, we



present experimental results on the sensitivity of performance
to these parameters and also discuss selection of their default
values.

B. Scheduling Model

As in past work [14], [16], we model the execution of a
multi-threaded program as a dag of dynamic instructions con-
nected by dependency edges. The instructions are connected
by continue edges into tasks, and tasks are connected into
a spawn tree using spawn edges. Given a task 7y, we use
ST spawn(7y) to denote the set of tasks in ’s subtree (including
) in the spawn tree of the dag and PRgpqun(7y) to denote
~’s spawn tree parent. Tasks in the dag are also connected by
sync edges for task synchronization. If there is no sync edge
from the last instruction of the task, an implicit sync edge to
the root task is assumed (corresponding to the implicit finish
in the main program). In a strict computation, sync edges can
only go from a task to its ancestor in the spawn tree. In a
fully-strict computation, sync edges can only go from a task
to spawn tree parent. In terminally-strict computations created
by async-finish constructs, there is only one sync edge starting
from the last instruction of a task, but it can go to any spawn
tree ancestor [16].

The sync tree for terminally-strict computations can be
defined as follows. Each node in the sync tree corresponds
to a task. There is an edge from task 7, to 7, in the sync tree
if there is a sync edge in the dag from ~; to ~,. Given a task
v, we use STy nc(7y) to denote the set of tasks in 4’s subtree
(including ) in the sync tree and use PRgyn.(7y) to denote
~’s parent in the sync tree.

//T1
S1: finish { R
//T1
S2: async { @
//T2
S3: async T3;
S4: finish { @
//T2 .
S5 Fig. 4. Spawn Tree for the HJ Code
: async T4 H L.
S6: Snippet in Figure 3
: }
S7: }
S8: finish {
//11 @ ©®
S9: async T5
S10: 1}
Fig. 3. HJ Code Fig. 5. Sync Tree for the HJ Code

Snippet in Figure 3

In fully-strict computations, like those created by Cilk’s
spawn-sync constructs, the spawn tree is same as the sync
tree. This is not the case for terminally-strict computations
created by async-finish constructs. As an example, Figures 4
and 5 show the spawn tree and the sync tree respectively for
the HJ code in Figure 3. Notice that 75 spawns 73 at S3, so
Ty is T3’s parent in the spawn tree. However, both 75 and 75
have the same sync tree parent, 77.

C. Taxonomy

We use the notation G(V, E, S1) to represent a computation
dag with set of tasks V' tasks, set of edges F, and stack depth
S1 which is defined as the total memory space required for
serial depth-first execution.

A P-processor schedule X of a dag is defined as a sequence
of steps, where each step consists of at most P instructions,
one for each processor. For a given dag, X (¢,p) denotes the
task of the instruction executed by processor p at step t.

1) Task terminates: a task ~ terminates after step ¢, if its
last instruction is executed at step ¢ by processor p. We
also say processor p finishes/terminates ~y at step ¢.

2) Suspended task: A task ~ is suspended before step ¢
if v cannot be run at step ¢ due to dependency. We say
processor p suspends a task v at step ¢ if v = X (¢,p)
and + is suspended before step t+1.

3) Task ready: A task is ready if it is not suspended. A
task becomes ready before step ¢ if it is suspended before
step t-1 and it is ready before step t.

4) Fresh task: A task ~ is said to be fresh before step t
if it is has been spawned by processor p before step ¢,
but is never executed by any processor. Processor p is
called v’s owner. Fresh task is saved on the heap. We
assume the size of any fresh task is O(1).

5) Preempted task: Task ~ is said to be preempted by
processor p at step t if v = X(t — 1,p) and +y is not
suspended before step t and v # X(¢,p). No task is
preempted at step 0.

Task ~ is preempted and owned by processor p before
step ¢ if:
a) v # X(t—1,q) for any processor ¢
b) ~ is either preempted and owned by p before step
t-1 or preempted by processor p at step t-1 .

In the adaptive algorithm, a task is preempted only when
it performs a work-first spawn (Action 1 in Algorithm 1).

6) Making progress: A task « is making progress due to
processor p at step t if X (¢,p) € STspauwn (7). A task
is said to be making progress at step ¢ if it is making
progress due to any processor at step ¢.

7) Progressive schedule: We say a schedule is progressive
if all non-fresh tasks are making progress for every step.

If all non-fresh tasks are removed from the spawn tree, a
progressive schedule has the busy leaf property [14] and has
the following memory bound.

Theorem 3.1: For any P-processor progressive schedule X
for a dag G(V, E, S1), for any step, the memory usage of all
non-fresh tasks is bounded by S; P.

Theorem 3.1 provides the bound for non-fresh tasks in a
progressive schedule '. If the memory usage of fresh tasks
is also bounded, the total memory space will be bounded. In
the following subsection, we present our adaptive scheduling
algorithm which is progressive and has a bound for non-fresh
tasks if the stack threshold is not exceeded.

'Due to space limit, we omit the proof of all theorem.



Subroutine 1 Idle Subroutine for Processor p Before Step ¢

Algorithm 1 Adaptive Work-Stealing Algorithm - ADP(S,F)

1) If p owns any fresh task or preempted task, remove one. If multiple
such tasks exist, the following tie breaker is used:

a) Return one that is the deepest in sync tree.
b) Return preempted tasks before fresh task
¢) Return one that is the deepest in spawn tree

If success, goto 4.

2) In this case, processor p does not own any task. It will go stealing.
It will attempt to remove task 7 in the pool that meets one of the
following stealing restrictions.

(a) if  is fresh and created by some processor g, v is the one that
was created earliest among all fresh tasks created by gq.

(b) if « is preempted and owned by some processor ¢, v is the
one that was preempted earliest among all tasks preempted and
owned by gq.

If success, goto 4.
3) Processor p remains idle. Goto 1.
4) Processor p returns the task for execution at step .

D. Scheduling Algorithm

We use P-ADP(S, F) to denote a P-processor adaptive
schedule that can be generated by the adaptive work-stealing
algorithm shown in Algorithm 1. As mentioned earlier, S
and F' denote the stack threshold and fresh-task threshold
respectively.

To abstract the runtime call stack, some tasks are flagged on-
stack-p where p is a processor id. The activation frame of those
tasks flagged on-stack-p is considered to be on processor p’s
runtime call stack. The algorithm always flags a task + as on-
stack-p if processor p starts executing . This flag will not be
cleared when v spawns a new task under the work-first policy,
since work-first task spawn is implemented as a sequential call
in SLAW. However, when a processor p does a context switch
to start executing a fresh-task, or resume a suspended task, all
on-stack-p flags for that particular processor p are cleared.

Actions 1-5 in the algorithm and the idle subroutine,
guarantee that all adaptive schedules execute tasks in a depth-
first order when a task is suspended or terminates. However,
when many tasks have the same depth, the tie breakers in the
idle subroutine are important to ensure progress-ness of the
schedule, which leads the space bound of the algorithm.

Theorem 3.2: All adaptive schedules are progressive.

E. Theoretical Space Bound

Given a dag G(V, E,S7), the following theorem presents
the space bound for any P-processor adaptive schedule.

Theorem 3.3: If S1 <= S, the memory space of any P —
ADP(S, F) schedule is bounded by S; P + O(FP). If S; >
S, the memory space of any P — ADP(S, F') schedule is
bounded by S; P 4+ O(V).

Theorem 3.3 establishes the memory space bound for the
adaptive schedule. If S; <= S, this is the case that work-
first can run successfully without exceeding the stack bound.
The work-first work-stealing scheduler’s memory bound in this
case is S1P. The memory space of the adaptive scheduler is
bounded by S1 P + O(FP). If S; > S, this is the case that
work-first will overflow the stack. The adaptive schedule will
never overflow the stack and the memory space is bounded by
S1P+O(V).

1) Environment: There are P processors and a shared task pool where
every processor can remove and put tasks. All operations are assumed
to be atomic.

The algorithm proceeds step by step. Note that both the spawn tree
and the sync tree are unfolded online as the algorithm progresses.

When a processor p is idle before step ¢, it will call the idle subroutine
in Subroutine 1 to attempt to remove and execute task for the step ¢.

2) Step 0: At step 0, one processor will start executing the root task. All
other processors are idle.

3) Step t+1: For step ¢, the task will decide the task to execute for step
t+1. If processor p executes task v, at step ¢, it will execute the next
instruction in task -y, unless y, spawns, suspended or terminates. In
these cases, the following rules a)-c) are followed respectively:

a) Spawn: Let v, spawns -,. Processor p will use the following
rule to decide the spawn policy:

i) If the space of the activation frames of all tasks marked on-
stack-p > S, use help-first (stack condition);
ii) Otherwise if the number of fresh tasks currently owned by
p before t is > F', use work-first (fresh-task condition);
iii) Otherwise free to use any heuristic. See Section III-A for
SLAW’s heuristic.

e Action 1: If the spawn is under work-first policy, return v,
to the pool and execute y;, for step t+1.

e Action 2: If the spawn is under help-first policy, put v, to
the pool and continue to execute next instruction of v, for
step t+1.

b) Suspended: If the task ~, is suspended, processor p will return
“Ya to the pool, do a context switch and clears all on-stack-p
flags on tasks. Then

e Action 3: processor p will remove any fresh task it created
in STsync(va)-

If not success, p becomes idle.

c¢) Terminates: If the task -, terminates and if v, is the root task,

then the schedule ends. Otherwise, let 71 be PRspawn (Ya) and

Ty, be PRsync(7a). Processor p will:

e Action 4: If 77 is preempted and owned by p, remove T3
and execute it for step t.
If Action 4 is not taken, the processor p will do a context
switch and clears all on-stack-p flags on tasks. Then it will

e Action 5: Check if 73, becomes ready before step t+1 If yes,
processor p will attempt to remove 73, from the pool and
execute T, for step t 4 1.
If the Action 5 is not taken, processor p will become idle.

It is important to notice that the S; is related to the input
data size [17] because it is the space requirement of serial
depth-first execution. However, F' is a preset parameter and
is not related to the input data size. The constant of the
O(FP) is the size of the holder of the fresh task on the heap,
which is usually small. In SLAW, the task holder contains only
the value of input parameters to the task function and a few
bookkeeping fields.

F. Runtime Implementation and Compiler Support

Many work-stealing schedulers use the deque data structure
to store tasks. Deque is a double-ended queue. The steal
operations are performed at the top-end of the deque; only
the owner of the deque will push and pop tasks at the bottom-
end of the deque. SLAW’s deque implementation is based on
the dynamic circular deque implementation described in [18].

SLAW implements the adaptive scheduling algorithm using
two deques per worker: one for preempted tasks owned by
the worker; the other for fresh tasks created by the worker.
When a task is preempted at a work-first spawn, it is pushed



to the bottom-end of the preempted task deque. When a
fresh task is created using the help-first policy, it is pushed
to the bottom-end of the fresh task deque. When a thief
is stealing, it steals from the top-end of other workers’
deques. For computations created by async-finish constructs,
this implementation guarantees that tasks in the preempted task
deque from top-end to bottom-end are from shallow to deep
in the spawn tree, (also shallow to deep in the sync tree). The
tasks in the fresh-task deque, from top-end to bottom-end, are
from shallow to deep in the sync tree. This property simplifies
the implementations for Action 2, 4 and the idle subroutine.

HJ compiler takes HJ language as input and performs
automatic code generation to support execution on the SLAW
work-stealing runtime. To enable adaptive work-stealing at
runtime, the HJ compiler generates both work-first and help-
first code under the two branches of a conditional branch. The
branch taken at runtime is decided by a query to the runtime
for the scheduling policy.

IV. LOCALITY-AWARE SCHEDULING

SLAW is designed for locality-aware scheduling in combi-
nation with adaptive scheduling, using locality hints provided
by the programmer. SLAW scheduler groups workers into
places. Each place has a single mailbox to receive tasks from
workers in other places. When a remote-place task is created,
it is sent to the mailbox of the destination place. All place-
local tasks are scheduled according to the adaptive scheduling
algorithm described in Section III. The tasks in the mailbox
of a place have lower priority than the tasks in the deques for
workers executing in the same place. When a worker becomes
idle, it will first check tasks in its local deque, then tasks in
other workers’ deque within the same place, and finally it will
check the mailbox.

In our current implementation, cross-place steals are dis-
abled to avoid counter-productive steals, which can occur in
the following situations for places p; and po: 1) a task from
p1 is stolen by a worker in po when there are still idle workers
in pp. 2) two tasks for p; and ps are created consecutively and
all workers in p; are busy. In this case, if the worker in ps
steals and executes the first task, the cache locality for ps’s
other tasks may be polluted.

V. EXPERIMENTAL RESULTS
A. Setup

In this paper, we report performance results obtained on the
following two machines:

1) Niagara 2: This system includes a 8-core 64-thread
1.2GHz UltraSPARC T2 processor with 32GB main
memory. All cores share a single 4MB L2 cache, thus
it is not interesting to locality-aware scheduling. Only
locality-oblivious deployment is used (1 place for all
workers) on Niagara 2.

2) Xeon SMP: This system includes four Quad-Core Intel
E7330 processors running at 2.40GHz with 32GB main
memory. Each Quad-core processor has two core-pairs

and each core-pair share a 3MB L2 cache. The locality-
aware deployment provided for the SLAW scheduler has
8 places, with 1 or 2 workers per place.

The implementation used to evaluate SLAW in this pa-
per is based on Java to facilitate portability across the
above systems. Each worker is implemented as a sepa-
rate Java thread. The JVM used on both machines is Sun
Hotspot JDK 1.6. In both cases, the JVM was invoked
with the following parameters: “-Xmx2g -Xms2g -Xmnlg -
server -Xss8M -XX:+UseParallelGC -XX:+UseParallelOldGC
-XX:+UseBiasedLocking -XX:+AggressiveOpts”. The exper-
iment also includes some Cilk++ results. The Cilk++ release
used is based on gcc v4.2.4. Both Cilk++ code and the serial
C code were compiled using the -O2 option.

We evaluate the SLAW work-stealing scheduler on a variety
of benchmarks listed in Table I. To reduce the impact of JVM
overheads in the evaluation, including JIT compilation and
garbage collection, the execution time reported is the average
of the three best benchmark iterations from three separate
VM invocations. Each VM invocation performs 10 benchmark
iterations.

B. Sensitivity Analysis of Parameters in SLAW Scheduler

Figures 6(a) - 6(f) contain performance results obtained
on the Niagara 2 machine to analyze the sensitivity of the
INT, F, and S parameters on the performance of the SLAW
scheduler, as discussed in the following subsections. Based on
this sensitivity analysis, the default parameter value of SLAW
is presented in Table II.

1) Impact of INT Parameter: Figures 6(a) - 6(d) study
the impact of the policy evaluation interval, INT, on the
performance of the SLAW scheduler.

Figure 6(a) shows the impact of INT on the execution time
of the Fib(35) microbenchmark on 1 worker, with S and F
set to their default values of 256 and 128 respectively. Since
no stealing occurs in the 1-worker case, the adaptive heuristic
will switch very quickly from help-first to work-first, and each
subsequent re-evaluation will keep the policy as work-first for
this case. The largest overhead is incurred when INT=1, since
the spawning policy is re-evaluated for every spawned task.
This suggests that INT should not be made too small. However,
even in the INT=1 worst case, the overhead of the adaptive
policy is only about 5% compared to the work-first policy. The
overhead rapidly approaches zero with increasing values of
INT. The execution time for the help-first policy is too big to fit
in Figure 6(a) (about 9x slower than the work-first policy due
to the context switching incurred at every task synchronization
point).

Figure 6(b) repeats the evaluation in Figure 6(a), but with
32 workers instead of 1 worker. In this case, we see a negative
performance impact of selecting an INT value that’s too large.
If the interval is too large, the performance degrades as shown
in Figure 6(b) and 6(d). This is because, for a recursive
benchmark like Fib, work-first is the best spawning policy.
The SLAW scheduler will start with the help-first policy at the
beginning and then switch to work-first. However, if INT is too



Benchmark | Type Description Source
Fib(35) Micro Recursive Two-way recursive Fibonacci for n=35, with no sequential threshold/cutoff Cilk++
FI(1024) Micro Flat Create 1024 dummy tasks and join them JGF

SOR Loop 2D Successive Over-Relaxation algorithm on a 2000 x 2000 float array JGF
CG.A Loop Conjugate Gradient, size A NPB 3.0
MG.A Loop Multi-Grid, size A NPB 3.0
Sort Recursive Parallel Merge Sort on 50331648 random integers BOTS [19]
Matmul Recursive Recursive Matrix Multiplication. (two 1500*1500 double matrix , Threshold=64) Cilk++
LU Recursive Recursive LU Decomposition (2048%2048 double matrix, BlockSize=64) JCilk

GC Recursive Graph Coloring using Parallel Constraint Satisfaction Search(CLIQUE_10,10 colors) | [20]
PDFS Irregular Recursive | Parallel-DFS(Figure 1) on a Torus graph with 4M nodes XWS [21]

TABLE I
LIST OF BENCHMARKS IMPLEMENTED IN HJ AND THEIR SOURCES

large, then some noticeable context switch overhead will be
observed before the policy switch occurs. The same situation
occurs for the PDFS benchmark in Figure 6(d). When we
increase the INT value past 64, the throughput of the parallel
depth first search benchmark declines.

Figure 6(c) shows the impact of INT on the execution time
of SOR on 64 workers. In this fork-join version of SOR, 64
tasks are distributed among 64 workers in each outer (time-
step) iteration, and these tasks are joined with a finish construct
at the end of each iteration. Note that stealing is very frequent
in this example, since 63 out of 64 tasks will be stolen
in each iteration, thereby implying that the stealing rate is
high and help-first policy is the best choice. . Because the
adaptive schedule starts with help-first policy and re-evaluates
the policy after every INT spawns, this experiment suggests
that the INT should be set to be greater or equal the number of
workers. Doing so will ensure that at least one task is spawned
for each worker using the help-first policy before the worker
switches to work-first policy. If a worker switches to the work-
first policy too early, it will delay task creation and negatively
affect the performance of the entire application. For the same
reason, the fresh deque threshold should also be to be equal
or greater than the number of workers to hold at least one task
for each worker.

For the reasons described above, since the maximum num-
ber of workers is 64 (on Niagara 2), the default value of INT
is set to 64 for the experiments presented in this paper.

2) Impact of Parameter F: Figure 6(e) shows how the
throughput of the PDFS benchmark varies for different values
of the fresh task threshold, F'. The other two parameters
INT and S are fixed at 50 and 256 respectively. INT is
fixed at 50 for this example because (INT=50,S=256) was
the best combination we found for PDFS after enumerating
the parameter space. All other experimental results reported
in this paper use the default parameter value unless otherwise
specified.

We do not find any correlation between the throughput and
F'. This is in part because F' is a soft bound that has lower
priority in the SLAW algorithm than the stack bound. The
worker will always use the help-first policy to create fresh
tasks regardless of the number of existing fresh tasks, if the
stack bound prevents the use of the work-first policy.

In the previous discussion on the parameter INT, we also

mentioned the reason why F' should be equal or greater than
the number of workers. The default value of F' in SLAW is
set to 128.

3) Impact of Parameter S: Figure 6(f) shows the throughput
of the PDFS benchmark as a function of the stack threshold S.
When S is set to 1, the adaptive schedule becomes equivalent
to the work-first schedule. Interestingly, if the stack threshold
is set too large, the performance also degrades. This is
because if the stack becomes too deep, the number of memory
pages spanned by the runtime call stack increases, which in
turn leads to an increase in TLB misses. The default stack
threshold in SLAW is set to 256 activation frames. Among
the benchmarks used in this paper, only the PDFS benchmark
requires a stack that grows proportionally with the input
problem size. The stack requirement for other benchmarks is
bounded by a small number; consequently they do not hit the
stack bound.
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Parameter INT | F S
Default Value | 64 128 | 256 activation frames

TABLE 1T
DEFAULT ADAPTIVE SCHEDULE PARAMETERS VALUE

C. Benchmark Results

Recursive parallelism and flat parallelism are two common
patterns for task parallelism. In recursive parallelism, the
parallelism is expressed recursively. Thus the task spawn tree
is usually deep. On the other hand, flat parallelism corresponds
to those do-cross loops and pointer-chasing cases, where
asynchronous tasks are iteratively spawned. In flat parallelism,
the depth of the task spawn tree is usually wide and shallow.

In work-stealing, each steal will yield the whole sub-tree
for the thief to work on. Intuitively, for a spawn tree with
large depth, it implies that each worker will get more work
compared to a shallow spawn tree. As a result, stealing is
generally considered rare in recursive task parallelism but
frequent in flat parallelism.

One optimization that has been studied in previous research
is to transform some flat loops to recursive style [22], [5].
This optimization requires compiler support, and only applies
to do-all loops on a divisible region and does not apply
to do-cross loops or pointer-chasing programs. As the main
contribution of this paper is to show the robustness of the
runtime, we do not apply such optimizations. However, for
the FJ microbenchmark, we do show the performance results
of with and without the recursive loop optimization.

We use two microbenchmarks, Fib and FJ, to show the
extreme cases where work-first policy is better than help-
first policy and the help-first policy is better than the work-
first policy respectively. Fib is used as the extreme case
for recursive parallelism and FJ without the recursive loop
optimization is used as the extreme case for flat parallelism.
Table III shows the execution time of Fib on Niagara 2.
Figure 7 shows the number of fork-joins performed per second.
For Fib, the work-first policy is 10.2x faster than the help-
first policy due to fewer context switches. In FJ, steals are
frequent and the help-first policy is 4.6 x faster than the work-
first policy. In both micro-benchmarks, the performance of the
adaptive scheduler is close to that of the better policy.

Figure 8 shows the number of fork-joins performed per
second in a recursive-style fork-join (£ j—rec), and compares
the number to the iterative fork-join (£3). In £j-rec, the
tasks are recursively spawned. In order to spawn 1024 parallel
tasks, the depth of the task spawn tree is 11. When the number
of threads is small (<= 8), the work-first policy performs than
better than the help-first policy. This is because the number
of steals is infrequent compared to the task spawned. As the
number of threads increase, the steal becomes more frequent
(considering the depth of the task spawn is 10 for 1024 tasks),
and the help-first policy performs better than the work-first
policy. This example is interesting because it shows that the
best choice of scheduling policy is more a dynamic choice than
a static choice, although the shape of a program can probably
give some clue. The experiment also confirms that £ j-rec is

Wrks | 1 2 4 8 16 32 64

hf 334.14 | 173.64 | 79.43 | 39.71 | 21.43 | 11.04 | 8.04

wi 34.45 17.13 8.65 431 2.24 1.23 0.87

adp 34.25 16.99 8.54 4.36 2.25 1.25 0.90
TABLE III

PERFORMANCE RESULTS FOR FIB(35) MICROBENCHMARK ON NIAGARA 2
USING 1 TO 64 WORKERS. EXECUTION TIME (IN SECONDS) IS REPORTED.
(SMALLER IS BETTER.)

/ /\\ g
%\H—.._..\- e

FJ-adp
1 2 4 8 16 32 64

3000
2500
2000
1500
1000

500

Number of Fork-Joins
per Second

Number of Workers

Fig. 7. Performance results for FJ(1024) microbenchmark (tasks are spawned
iteratively) on Niagara 2 using 1 to 64 workers. Number of fork-joins
performed per second is reported. (Bigger is better.)

more scalable than f j, as the task spawns are now performed
in parallel as well. However, the sequential overhead of the
fj-rec is higher than the iterative fj, which explains the
lower performance when the number of threads is small.

Figure 9 shows the speedup of the SLAW scheduler on
Niagara 2 over the Java-serial version with one exception
for PDFS, whose speedup is based on 1-thread help-first
execution. Both the serial version and the work-first schedule
of PDFS will overflow the stack as described in Section II-A2.
This is why there is no bar for the wf in the figure. This
exception also applies to Figure 10.

Three scheduling policies are compared: help-first only,
work-first only and the adaptive scheduling algorithm de-
scribed in Section III. As all cores on Niagara 2 share the
same L2 cache, this experiment uses the locality-oblivious
deployment, which specifies only 1 place with all 64 workers.
No processor binding is used.

CG.A, MG.A and SOR are flat, loop-based parallel bench-
marks. In these benchmarks, the help-first policy performs
better than the work-first policy. The results in Figure 9 show
that the adaptive scheduling algorithm matches or exceeds the
performance of the help-first policy for these benchmarks.

Sort, Matmul, LU and GC are task recursive parallel bench-
marks. In these benchmarks, the work-first policy is better
than or almost the same as the help-first policy. The result
shows the adaptive scheduling algorithm matches or exceeds
the performance of work-first policy in those benchmarks.

PDFS is an irregular graph computation. Irregular graph
computations are interesting because the structure of the spawn
tree depends on the order in which nodes are visited (labeled)
in parallel. We used the Parallel Depth First Search benchmark
(PDFS) studied in [21] (kernel code shown in Figure 1), and
applied it to a two-dimensional 2000 x 2000 torus graph
consisting of 4 million nodes. Our results show that the
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adaptive approach outperformed the help-first policy for this
benchmark because of its ability to combine help-first and
work-first policies. At the beginning, all workers are idle
and stealing is frequent thereby making help-first the more
desirable policy. After each worker gets some work, they begin
traversing the graph and stealing becomes less frequent, thus
causing the adaptive runtime to switch to the work-first policy.
The work-first policy incurs no synchronization overhead and
executes the tasks as if they are sequential calls. Finally,
according to the stack condition in the adaptive scheduling
algorithm, the runtime will switch back to the help-first policy
when it becomes necessary to avoid overflowing the stack size
limit.

Figure 10 shows the speedup of the SLAW scheduler on
Xeon SMP using the three scheduling policies. For reference,
we report also Cilk++’s speedup for those benchmarks for
which Cilk version is available(SORT, MATMUL, LU). We
also translate the JGF SOR to Cilk++ and use the cilk_for to
parallelize the loop. To factor out uniprocessor performance
differences between Java and C, the speedup for SLAW in
this figure is based on the Java-serial version and Cilk++’s
speedup is based on the C-serial version. This experiment uses
the locality-oblivious deployment. The experimental results
of the locality-aware scheduling are presented later in the
Section V-D.

For Sort, Matmul and LU, SLAW achieves over 10x
speedup on Xeon SMP. SLAW scales almost linearly on
Matmul. Cilk++ also scales almost linearly from 1 worker
to 16 workers, but its speedup looks smaller because Cilk++’s
1-worker case is 2.4x slower than the C-serial version due to
some optimizations that are disabled by the Cilk++ compiler.
CG, MG and SOR do not scale beyond 4x hit a memory-
bandwidth wall. The scalability of CG and SOR can be
significantly improved by locality-aware scheduling as shown
next in Section V-D. We also discuss the scalability issue of
GC and PDFS in Section V-E,

D. Locality-aware Scheduling Results

We show the performance improvement on memory-
bandwidth bound applications by locality-aware work-stealing
scheduling with the locality hints provided by the programmer
on Xeon SMP. With 4 quad-core processors in Xeon SMP,
there are in total of eight(8) L2 shared caches on the machine

with a total size of 24M. Thus, the locality-aware deployment
provided for the SLAW scheduler has 8-places, with 1 or 2
workers per place. The SLAW scheduler will bind workers to
virtual processors.

Figure 11 shows the performance results of the SLAW
locality-aware scheduler using two locality-aware deploy-
ments: one with 8-places and 1 worker per place with a total
of 8 workers; the other has 8-places and 2 workers per place
with a total of 16 workers. The scheduling policy used for
task scheduling with each place is the adaptive schedule. The
speedup reported for Cilk++ is also based on the Java-serial
version in order to compare the execution time.

For SOR, the total data size is 2000 x 2000 float matrix.
Divided by 8 places, the data for each place fits into the 3M
L2 cache. The 8-place-8-worker locality-aware scheduling is
2.1x faster than the locality-oblivious scheduling using the
adaptive scheduling and the speedup for 8-place-16-worker
locality-aware scheduling is 2.6 x.

For CG.A, the total data size is 2198000 double sparse
matrix elements. Divided by 8 places, the data set for each
place also fits the L2 cache, thus enable temporal data-
reuse. Experimental results of the 8-place-8-worker locality-
aware scheduling is 1.7x faster than the locality-oblivious
scheduling. We do not get improvement from 1 worker per
place to 2 workers per place. This is due to the cache
contention between two workers under the same place.

MG.A cannot benefit from temporal reuse on Xeon SMP
because the memory footprint of each place exceeds the
capacity of the L2 cache.
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Fig. 11. Comparing Locality-aware scheduler with locality-oblivious sched-

uler on SOR and CG on Intel Xeon SMP. The locality-aware deployment for
adp+locality has 8 places with 1 or 2 workers per place. The workers are
binded to virtual processors.

E. Other Scalability Issues

Benchmarks like PDFS and GC scale well on Niagara
2 with one shared L2 cache, but not on Xeon SMP with
separate L2 caches. This trend has also been observed by other
researchers and some explanations are proposed, such as the
allocation wall theory [23]. Besides allocation-wall, we also
observe the false-sharing between application objects accessed
from different worker threads. For parallel graph algorithms,
there are lots of small objects(e.g. graph nodes) accessed by
multiple worker threads. Without padding these objects, this
may cause two objects accessed by two different threads lay
in the same cache line and thus will cause false sharing.
But automatic padding for application objects in Java is not
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place, 64 workers) with no processor binding.

straightforward. The full investigation of the scalability issue
for these benchmarks involves the JVM memory management
system and is beyond the scope of this paper.

VI. RELATED WORK

Following the popular Cilk-5 work-stealing runtime [4],
many task parallel runtime systems have been developed in the
last 10 years including Cilk++ [5], Intel Threading Building
Blocks [22], Java’s ForkJoin Framework [7], Microsoft’s Task
Parallel Library [8], StackThreads/MP [9], and XWS [21].
These runtimes are either exposed as library routines, or serve
as implementations of new language constructs, or some com-
bination thereof. SLAW is a work-stealing runtime designed
for a task parallel language called HJ, which is derived from
X10 v1.5. In our implementation, the HJ compiler generates
calls to the SLAW runtime. However, it is possible to use
the techniques introduced in this paper to support a library
approach as well.

Some work-stealing runtime schedulers use the work-first
policy inspired by Cilk [4], [5], [9] while others use the
help-first policy [22], [8], [7]. Especially, Intel TBB uses
the “depth-first execution and breadth-first theft” principle to
raise parallelism as well as to maintain locality [6], which
is similar to the help-first policy. XWS exposes low-level
deque operations, but does not have compiler support for
either policy. SLAW includes compiler and runtime support
for both work-first and help-first policies. The programmer
has the option of selecting a fixed scheduling policy in HJ
or using SLAW’s default adaptive scheduler that selects the
policy on a per-task basis at runtime.

Two approaches in past work have been shown to be prov-
ably space-efficient. One category consists of work-stealing
schedulers with the work-first policy, which were first proven
to be space-efficient for fully-strict computations [14]. The
same result was later extended for terminally-strict computa-
tions [16] in languages like X10 and HJ. Another category
of techniques is based on depth-first schedulers [17] such
as DFDeques [24], which can use less memory than work-
stealing schedulers. All these scheduling techniques focus on
the memory space usage without bounding the stack pressure
of individual processors, because all models assume that a se-
rial depth-first schedule can run successfully. SLAW’s adaptive
scheduling algorithm addresses this problem by tracking the
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stack pressure and generating schedules with bounded stack
usage, even in cases when a sequential execution cannot run
successfully.

Previous research has compared the pros and cons of
different scheduling policies [10]. Work-first works better
for situations when steals are rare, while help-first works
better when steals are frequent. [25] compared depth-first and
breadth-first task spawning policy in OpenMP task scheduling
and found that depth-first performed slightly better than the
breadth-first policy. Their breadth-first policy is different from
the help-first policy in work-stealing because it uses a global
task pool to store all untied tasks, while work-stealing uses
local pool per worker. Second, the benchmarks they used to
evaluate the performance are mostly task recursive parallel
programs where steals are rare.

Another area of research aims to reduce scheduling over-
head by increasing task granularity. This can be done by
chunking a parallel loop or by using a cut-off technique to
run the task sequentially if the task is too fine-grained [26],
[22]. These techniques are applicable to SLAW as well. [27]
proposed a back-tracked scheduling approach in which the
program runs normally in sequential mode and back-tracks
upon a steal request. This approach requires the programmer
to explicitly write roll-back code at the language level.

The locality issue in work-stealing has also received a lot
of attention in past work. Acar et al. [11] provide a theoretical
bound on the number of cache misses for randomized work-
stealing and gives a locality-guided work-stealing implementa-
tion on a single-core SMP. SLAW’s locality-aware scheduling
is designed for multicore SMPs and stealing occurs within a
single place but not across places. Chen et al. [28] studied
and compared the cache behavior between work-stealing and
parallel depth-first scheduler on simulators for cores that
share the L2 cache. They proposed approaches to control the
task granularity and promote constructive cache sharing. In
a multicore SMP environment, the concept of places in HJ
can be used to enable constructive cache sharing on a single
multicore processor.

Intel TBB has the affinity_partitioner structure to
utilize temporal cache-reuse by binding the same iteration to
the same worker thread that previously executed the iteration.
TBB allows stealing regardless of the affinity and has a
mechanism to reduce counter-productive stealing. SLAW cur-



rently disables cross-place stealing in order to avoid counter-
productive stealing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced SLAW, a scalable locality-
aware adaptive work-stealing scheduler. SLAW uses a novel
adaptive scheduling algorithm with guaranteed space bounds,
and performs locality-aware scheduling in accordance with
locality hints (place annotations) provided by the programmer.
Experimental results show that the use of the adaptive sched-
uler delivered up to 4.5 speedup over the work-first policy on
iterative loop parallelism (FJ) and 9.2 speedup over the help-
first policy on recursive task parallelism (Fib). In addition,
the adaptive algorithm can achieve scalable performance with
support for large data sizes (as in the case of PDFS) that
cannot be achieved by the use of a fixed policy. Finally, our
results show that locality-aware scheduling can achieve up
to 2.6x speedup over locality-oblivious scheduling, for the
benchmarks and platforms studied in this paper.

For future work, we will extend the place-locality model and
implementation to allow load balancing across places while
avoiding counter-productive stealing. Another direction for
future research is to extend the work-stealing runtime system
presented in this paper to support additional language features
such as futures and phasers. We also plan to investigate other
scalability bottlenecks such as the impact of JVM memory
management system on the work-stealing runtime.
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