
Multi-BSP computing: the next step?

3rd of December 2014
Albert-Jan Yzelman

Outline

1 The Multi-BSP model

2 Philosophy

3 Algorithm design

2/46

The Multi-BSP model

1 The Multi-BSP model

2 Philosophy

3 Algorithm design

3/46

Three concepts

The Bulk Synchronous Parallel

1 computer,
2 algorithm,
3 cost model.

4/46

BSP computer
CPUs, memory, network.

A BSP computer (p, g, l).

5/46

BSP algorithm

– computations are grouped into phases,
– no communication during computation,
– communication is only allowed between computation phases.

Compute phase

Superstep 1

Synchronisation & Communication

1

2

3

4

...and so on

Superstep 0

6/46

BSP cost model

The cost of computation during the ith superstep is

Tcomp,i = max
s

w(s)
i .

The total cost of communication during the ith superstep is

Tcomm,i = hig.

Adding up superstep costs, separated by the latency l, yields the full
BSP cost:

T =

N−1∑
i=0

(
Tcomp,i + Tcomm,i + l

)
=

N−1∑
i=0

(
max w(s)

i + hig + l
)
,

7/46

Multi-BSP

Multi-BSP is the recursive application of the BSP model.

– BSP: a computer consists out of p CPUs/processors/cores/...
– Multi-BSP: a computer consists out of

1 p other Multi-BSP subcomputers (recursively), or
2 p units of execution (leaves).

– Each Multi-BSP computer:
• connects its subcomputers or leaves via a network, and
• provides local memory.

Reference:

Valiant, Leslie G. “A bridging model for multi-core computing.”
Journal of Computer and SystemSciences 77.1 (2011): 154-166.

8/46

Multi-BSP computer model
CPUs, memory, network.

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

9/46

Multi-BSP computer model
CPUs, memory, network.

2

ML−1ML−1

pL−1

ML−1 ML−1

0 1

gL−1, lL−1

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

9/46

Multi-BSP computer model
CPUs, memory, network.

gL−1, lL−1 gL−1, lL−1

0

2

ML−1

1 2

ML−1 ML−1 ML−1 ML−1ML−1

pL−1

ML−1ML−1

0 pL−1

p0

0 1

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

9/46

Multi-BSP computer model
CPUs, memory, network.

p00

0

0 1 2

ML−1 ML−1ML−1

pL−10 1 2

ML−1 ML−1 ML−1ML−1

pL−1

g0, l0

gL−1, lL−1 gL−1, lL−1

ML−1

M0 M0

∞

A BSP computer (p0, g0, l0,M0) · · · (pL−1, gL−1, lL−1,ML−1).

9/46

Multi-BSP computer model

10/46

Multi-BSP computer model

M2

1 0 0 01 1 1

M2 M2 M2 M2 M2 M2 M2

0

10

1010

0

g2, l2 g2, l2 g2, l2

g1, l1

g0, l0

g2, l2

g1, l1

M1 M1M1M1

M0 M0

∞

10/46

Multi-BSP algorithm model
This change of computer model changes the algorithmic model:
– only local communication allowed using the local (lk, gk),
– local memory requirements do not exceed the local memory Mk,
– ‘local’ is given by the current tree level k.

11/46

Multi-BSP cost model

We require extra notation:
– L: number of levels in the tree,
– Ni: number of supersteps on the ith level,
– hk,i: the maximum of all h-relations within the ith superstep on

level k,
– wk,i: the maximum of all work within the ith superstep on level k.

The decomposability of Multi-BSP algorithms, just as with the ‘flat’ BSP
model, again results in a transparent cost model:

T =

L−1∑
k=0

Nk−1∑
i=0

wk,i + hk,igk + lk

 .

12/46

Half-time summary

– Multi-BSP is a better model for modern parallel architectures. It
closely resembles

• contemporary shared-memory multi-socket machines,
• multi-level shared and private cache architectures, and
• multi-level network topologies (e.g., fat trees).

– Hierarchical modeling also has drawbacks. It is more difficult to
• prove optimality of hierarchical algorithms, and
• portably implement hierarchical algorithms.

Would you like to:
– prove optimality of an algorithm in 16 parameters?
– develop algorithms for a four-level machine?

Multi-BSP can actually simplify these issues!

13/46

Half-time summary

– Multi-BSP is a better model for modern parallel architectures. It
closely resembles

• contemporary shared-memory multi-socket machines,
• multi-level shared and private cache architectures, and
• multi-level network topologies (e.g., fat trees).

– Hierarchical modeling also has drawbacks. It is more difficult to
• prove optimality of hierarchical algorithms, and
• portably implement hierarchical algorithms.

Would you like to:
– prove optimality of an algorithm in 16 parameters?
– develop algorithms for a four-level machine?

Multi-BSP can actually simplify these issues!

13/46

Philosophy

1 The Multi-BSP model

2 Philosophy

3 Algorithm design

14/46

Motivation

Reasons for parallel computing:
1 to speed up a long computation, or
2 to split up a huge computation.

That is,

we wish to scale in time and memory.

15/46

Speedup

Definition (Speedup)
Let Tseq be the sequential running time required for solving a problem.
Let Tp be the running time of a parallel algorithm using p processes,
solving the same problem. Then the speedup is given by

S = Tseq/Tp.

Scalable in time:
Ideally, S = p;
if we are lucky, S > p;
realistically, 1� S < p;
if we do very badly, S < 1.

But what is a good speedup?

16/46

Speedup

Definition (Speedup)
Let Tseq be the sequential running time required for solving a problem.
Let Tp be the running time of a parallel algorithm using p processes,
solving the same problem. Then the speedup is given by

S = Tseq/Tp.

Scalable in time:
Ideally, S = p;
if we are lucky, S > p;
realistically, 1� S < p;
if we do very badly, S < 1.

But what is a good speedup?

16/46

Maximum attainable speedup

Consider a graph G = (V ,E) of a given algorithm, e.g.,

– Nodes correspond to data,
edges indicate which data is
combined to generate a certain
output.

Question: If we had an infinite
number of processors, how fast
would we be able to run the
algorithm shown on the right?

f(a)

h(f(a))...

a

g(a)

17/46

Maximum attainable speedup

Consider a graph G = (V ,E) of a given algorithm, e.g.,

– Nodes correspond to data,
edges indicate which data is
combined to generate a certain
output.

Question: If we had an infinite
number of processors, how fast
would we be able to run the
algorithm shown on the right?
Answer: Tseq = |V | = 9, while the
critical path length T∞ equals 4.
The maximum speedup hence is:

Tseq/T∞ = 9/4.

f(a)

h(f(a))...

a

g(a)

17/46

What is parallelism?

Definition (Parallelism)
The parallelism of a given algorithm is its maximum attainable speedup:

Tseq/T∞.

T∞ is known as the critical path length or the algorithmic span.

This leads to a theoretical upper bound on speedup:

S = Tseq/Tp ≤ Tseq/T∞.

This type of analysis forms the basis of

fine-grained parallel computation.

18/46

Fine-grained parallel computing

Decompose a problem into many small tasks, that run concurrently (as
much as possible). A run-time scheduler assigns tasks to processes.

– What is small? Grain-size.
– Performance model? Parallelism.

Algorithms can be implemented as graphs either explicitly or implicitly:
– Intel: Threading Building Blocks (TBB),
– OpenMP,
– Intel / MIT / Cilk Arts: Cilk,
– Google: Pregel,
– . . .

By contrast, BSP computing is coarse-grained.

19/46

OpenMP

Example via SpMV multiplication. Assuming a Hilbert nonzero ordering:

A =

4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

COO (triplet) storage:

A =

V [7 1 4 1 2 3 3 2 1 1]
J [0 0 0 1 2 2 3 3 3 2]
I [3 2 0 0 1 0 1 2 3 3]

#omp parallel for private(k) schedule(dynamic, 8)
for k = 0 to nz− 1 do
add Vk · xJk to yIk

20/46

OpenMP

Example via SpMV multiplication. Assuming a Hilbert nonzero ordering:

A =

4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

COO (triplet) storage: Tseq/T∞ = 2nz..?

A =

V [7 1 4 1 2 3 3 2 1 1]
J [0 0 0 1 2 2 3 3 3 2]
I [3 2 0 0 1 0 1 2 3 3]

#omp parallel for private(k) schedule(dynamic, 8)
for k = 0 to nz− 1 do
add Vk · xJk to yIk

20/46

OpenMP

Example via SpMV multiplication. Assuming a Hilbert nonzero ordering:

A =

4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

COO (triplet) storage: data race! (concurrent writes to the same yi)

A =

V [7 1 4 1 2 3 3 2 1 1]
J [0 0 0 1 2 2 3 3 3 2]
I [3 2 0 0 1 0 1 2 3 3]

#omp parallel for private(k) schedule(dynamic, 8)
for k = 0 to nz− 1 do
add Vk · xJk to yIk

20/46

OpenMP

Example via SpMV multiplication. Assuming row-major nonzero ordering:

A =

4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

CRS storage:

A =

V [4 1 3 2 3 1 2 7 1 1]
J [0 1 2 2 3 0 3 0 2 3]
Î [0 3 5 7 10]

#omp parallel for private(i, k) schedule(dynamic, 8)
for i = 0 to m− 1 do
for k = Îi to Îi+1 − 1 do
add Vk · xJk to yi

21/46

OpenMP

Example via SpMV multiplication. Assuming row-major nonzero ordering:

A =

4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1

CRS storage: Tseq/T∞ = nz/maxi |ai:| (with ai: the ith row of A)

A =

V [4 1 3 2 3 1 2 7 1 1]
J [0 1 2 2 3 0 3 0 2 3]
Î [0 3 5 7 10]

#omp parallel for private(i, k) schedule(dynamic, 8)
for i = 0 to m− 1 do
for k = Îi to Îi+1 − 1 do
add Vk · xJk to yi

21/46

Cilk
Only two parallel programming primitives:

1 (binary) fork, and
2 (binary) join.

22/46

Cilk
Only two parallel programming primitives:

1 (binary) fork, and
2 (binary) join.

Example: calculate x4 from xn = xn−2 + xn−1 given x0 = x1 = 1:

int f(int n) {
if(n == 0 || n == 1) return 1;
int x1 = cilk_spawn f(n-1); //fork
int x2 = cilk_spawn f(n-2); //fork
cilk_sync; //join
return x1 + x2;

}

int main() {
int x4 = f(4);
printf("x_4 = %d\n", &x4);
return 0;

}

22/46

Cilk
Only two parallel programming primitives:

1 (binary) fork, and
2 (binary) join.

Definition (Overhead)
The overhead of parallel computation is any extra effort expended over
the original amount of work Tseq

To = pTp − Tseq.

The parallel computation time can be expressed in To:

Tp =
Tseq + To

p .

22/46

Cilk
Only two parallel programming primitives:

1 (binary) fork, and
2 (binary) join.

Spawned function calls are assigned to one of the available processes by
the Cilk run time scheduler.

The Cilk scheduler guarantees, under some assumptions on the
determinism of the algorithm, that

To = O(pT∞),

resulting in a parallel run-time Tp bounded by

O(T1/p + T∞).

22/46

MapReduce
Google Pregel is a successor of MapReduce, a parallel framework that
operates on large data sets of key-value pairs

S ⊆ K × V ,

with K a set of possible keys and V a set of values.

MapReduce defines two operations on S:

map: K × V → K × V ;

reduce(k): P({k} × V)→ K × V , k ∈ K .

– The map operation is embarrasingly parallel: every key-value pair
is mapped to a new key-value pair, an entirely local operation.

– The reduction reduces all pairs in S that have the same key k, into
one single key-value pair: global communication.

23/46

MapReduce
Google Pregel is a successor of MapReduce, a parallel framework that
operates on large data sets of key-value pairs

S ⊆ K × V ,

with K a set of possible keys and V a set of values.

MapReduce defines two operations on S:

map: K × V → K × V ;

reduce(k): P({k} × V)→ K × V , k ∈ K .

– The map operation is embarrasingly parallel: every key-value pair
is mapped to a new key-value pair, an entirely local operation.

– The reduction reduces all pairs in S that have the same key k, into
one single key-value pair: global communication.

23/46

MapReduce

Calculating α = xTy using MapReduce:

Let S = {(0, {x0, y0}), (1, {x1, y1}), . . .}.

1 Map: for each pair (i, {a,b}) write (partial,a · b). Applying this map
adds {(partial, x0y0), (partial, x1y1), . . .} to S.

2 Reduce: for all pairs with key ‘partial’, combine their values by
addition and store the result using key α. Applying this reduction
adds (α,

∑n−1
i=0 xiyi) to S.

3 Done: S contains a single entry with key α and value xTy.
The set S is safely stored on a resilient file system to cope with
hardware failures.

24/46

Pregel

Consider a graph G = (V ,E). Graph algorithms may be phrased in an
SPMD fashion as follows:
– For each vertex v ∈ V , a thread executes a user-defined SPMD

algorithm;
– each algorithm consists of successive local compute phases and

global communication phases;
– during a communication phase, a vertex v can only send messages

to N(v), where N(v) is the set of neighbouring vertices of v; i.e.,
N(v) = {w ∈ V | {v,w} ∈ E}.

MapReduce and Pregel are variants of the BSP algorithm model!
– a type of fine-grained BSP.
– parallelism in Pregel is slightly odd to think about;

e.g., what does its compute graph look like?

25/46

Fine-grained summary

Optimisation targets and performance metrics:

– Optimise algorithms to maximise parallelism and (thus) minimise
the algorithmic span;

– run-time scheduler with bounded overhead (e.g., pT∞ for Cilk).

Questions:
1 does this account for all realistic overheads, in your experience?
2 does more parallelism always mean better performance?
3 we wrote Cilk bounded the parallel run-time by O(T1/p + T∞). Is

there a difference between Tseq and T1?

26/46

Fine-grained summary
Answers:

– Q: does this account for all realistic overheads, in your experience?
– A: no. Not accounted for are: memory overhead, and, most

importantly, the costs of data movement!

Definition (Memory overhead)
Let Mseq be the memory requirement of a sequential algorithm, and let
Mp be the memory requirement of a parallel algorithm that solves the
same problem. Then the parallel overhead in memory is

Mo = pMp −Mseq, or, rewritten:

Mp =
Mseq + Mo

p .

(Cilk bounds Mo, whereas other fine-grained schemes may not.)

27/46

Fine-grained summary

Answers:

– Q: does more parallelism always mean better performance?
– A: No; for starters, we typically have less than∞ processors. Also:

maximum speedup is relative to the chosen algorithm; other
algorithms that solve the same problem may be preferable!

Example:

Consider the naive Θ(n2) Fourier transformation; its span is Θ(log n), so
its parallelism is Θ(n2/ log n). Lots of parallelism!
The FFT formulation has work Θ(n log n), also with span Θ(log n)

resulting in Θ(n log n
log n) = Θ(n) parallelism. Less parallelism...

Question: how many processors do you need to achieve a theoretical
parallel processing time equal to the span, for both the naive and the fast
algorithm?

27/46

Fine-grained summary

Answers:

– Q: does more parallelism always mean better performance?
– A: No; for starters, we typically have less than∞ processors. Also:

maximum speedup is relative to the chosen algorithm; other
algorithms that solve the same problem may be preferable!

Example:

Consider the naive Θ(n2) Fourier transformation; its span is Θ(log n), so
its parallelism is Θ(n2/ log n). Lots of parallelism!
The FFT formulation has work Θ(n log n), also with span Θ(log n)

resulting in Θ(n log n
log n) = Θ(n) parallelism. Less parallelism...

Question: how many processors do you need to achieve a theoretical
parallel processing time equal to the span, for both the naive and the fast
algorithm? Answer: naive Θ(n2) processors, FFT Θ(n) processors.

27/46

Fine-grained summary

Answers:

– Q: is there a difference between considering Tseq or T1?
– A: definitely; there may be multiple sequential algorithms to solve

the same problem. When comparing, always compare to the best.
For parallel sorting:

Sodd-even sort = Tqsort
seq /Todd-even sort

p .

In some cases, however, using T1 does make sense; for instance,
when measuring To to see if the implementation behaves as
expected from a theoretical analysis:

Todd-even sort
o = pTodd-even sort

p − Todd-even sort
seq .

27/46

Questions

Regarding the Cilk parallelisation of xn = xn−1 + xn−2, x0 = x1 = 1:

int f(int n) {
if(n == 0 || n == 1) return 1;
int x1 = cilk_spawn f(n-1); //fork
int x2 = cilk_spawn f(n-2); //fork
cilk_sync; //join
return x1 + x2;

}

Questions:
– what is T1 (asymptotically)?
– what is T∞ (asymptotically)?
– what is Tseq?
– is this trivial parallelisation a good idea?

28/46

Questions

Regarding the Cilk parallelisation of xn = xn−1 + xn−2, x0 = x1 = 1:

int f(int n) {
if(n == 0 || n == 1) return 1;
int x1 = cilk_spawn f(n-1); //fork
int x2 = cilk_spawn f(n-2); //fork
cilk_sync; //join
return x1 + x2;

}

– T1 = Θ(2n), T∞ = Θ(n), but
– Tseq = n! This parallelisation makes no sense.

28/46

Questions

In the bulk synchronous parallel setting, how do the concepts such as
span and overhead translate?

Question:
– how do the computation graph, T∞, and To look for BSP?

29/46

BSP and scalability

Q: what is the BSP computation graph, span, and overhead?
Graph:
– Sequential part, SPMD (supersteps), sequential part.
– The SPMD part is coarse-grained over p processors.

Communication phase

Compute phase

Main Main (exit)

Additional supersteps

w
(0)
0

w
(1)
0

h0g + l

w
(p−1)
0

30/46

BSP and scalability

Q: what is the BSP computation graph, span, and overhead?

Span:
– Critical path follows compute phases with maximum work w(s)

i , and
– communication phases with cost proportional to hi;
– T∞ = Tp =

∑N−1
i=0 (maxs w(s)

i + hig + l).
– The span is the BSP cost!

30/46

BSP and scalability

Q: what is the BSP computation graph, span, and overhead?

Overhead (as in Tp =
Tseq+To

p):

To = p
(N−1∑

i=0
max

s
w(s)

i + hig + l
)
− Tseq.

Data movement, latency costs, and extra computations on top of the bare
minimum required, all add up to the overhead.

30/46

BSP and scalability

Definition (Efficiency)
Given Tseq, p, and Tp, the efficiency E of the parallel algorithm is

E = S/p =
Tseq
pTp

.

An algorithm is scalable (in time) if E is constant as p,Tseq →∞.

Question:
– Express E in terms of Tseq and To

31/46

BSP and scalability
Express E in terms of Tseq and To, answer:

E−1 =
pTp − Tseq

Tseq
+ 1 =

To
Tseq

+ 1.

The efficiency only depends on Tseq and To:

E(Tseq,p) =
1

1 +
To(Tseq,Tp)

Tseq

.

An algorithm is scalable if To/Tseq is kept constant. This principle is
known as iso-efficiency (as advocated by Grama et al.).

Questions: how is iso-efficiency affected when considering
1 strong scalability, i.e., S =

Tseq
Tp

= Ω(p) as p→∞ while Tseq is
assumed constant.

2 weak scalability, i.e., S = O(1) as Tseq →∞ while p is constant.

32/46

BSP and scalability
Express E in terms of Tseq and To, answer:

E−1 =
pTp − Tseq

Tseq
+ 1 =

To
Tseq

+ 1.

The efficiency only depends on Tseq and To:

E(Tseq,p) =
1

1 +
To(Tseq,Tp)

Tseq

.

An algorithm is scalable if To/Tseq is kept constant. This principle is
known as iso-efficiency (as advocated by Grama et al.).

Questions: how is iso-efficiency affected when considering
1 strong scalability, i.e., S =

Tseq
Tp

= Ω(p) as p→∞ while Tseq is
assumed constant.

2 weak scalability, i.e., S = O(1) as Tseq →∞ while p is constant.

32/46

BSP and scalability

Questions: how is iso-efficiency affected when considering
1 strong scalability, i.e., S =

Tseq
Tp

= Ω(p) as p→∞ while Tseq is
assumed constant.

2 weak scalability, i.e., S = O(1) as Tseq →∞ while p is constant.

Answers:
1 strong scalability:

E ∼ S/p =
Ω(p)

p = Ω(1).

2 weak scalability,
E ∼ O(1)

p = O(1).

That is, both strong and weak scalability induce iso-efficiency.

33/46

BSP and scalability

Question: Is a BSP algorithm with Tp = O(Tseq/p + p) strongly
scalable? How about weakly? What is its iso-efficiency?

Answer: no, yes, and p2/Tseq. (Tseq grows quadratically w.r.t. p.)

I.e., when Tp = O(Tseq/p + p), there is no strong scalability.

Question: for a small constant c, do we have strong scalability if
1 Tp = Tseq/p + cTseq,
2 Tp = Tseq/p + c,
3 Tp = Tseq/p + c/p.

Answers:
1 No: To = cpTseq,
2 No: To = cp,
3 Yes: To = c; strong scalability means constant overhead.

34/46

BSP and scalability

Question: Is a BSP algorithm with Tp = O(Tseq/p + p) strongly
scalable? How about weakly? What is its iso-efficiency?
Answer: no, yes, and p2/Tseq. (Tseq grows quadratically w.r.t. p.)

I.e., when Tp = O(Tseq/p + p), there is no strong scalability.

Question: for a small constant c, do we have strong scalability if
1 Tp = Tseq/p + cTseq,
2 Tp = Tseq/p + c,
3 Tp = Tseq/p + c/p.

Answers:
1 No: To = cpTseq,
2 No: To = cp,
3 Yes: To = c; strong scalability means constant overhead.

34/46

BSP and scalability

Question: Is a BSP algorithm with Tp = O(Tseq/p + p) strongly
scalable? How about weakly? What is its iso-efficiency?
Answer: no, yes, and p2/Tseq. (Tseq grows quadratically w.r.t. p.)

I.e., when Tp = O(Tseq/p + p), there is no strong scalability.

Question: for a small constant c, do we have strong scalability if
1 Tp = Tseq/p + cTseq,
2 Tp = Tseq/p + c,
3 Tp = Tseq/p + c/p.

Answers:
1 No: To = cpTseq,
2 No: To = cp,
3 Yes: To = c; strong scalability means constant overhead.

34/46

BSP and scalability

Question: Is a BSP algorithm with Tp = O(Tseq/p + p) strongly
scalable? How about weakly? What is its iso-efficiency?
Answer: no, yes, and p2/Tseq. (Tseq grows quadratically w.r.t. p.)

I.e., when Tp = O(Tseq/p + p), there is no strong scalability.

Question: for a small constant c, do we have strong scalability if
1 Tp = Tseq/p + cTseq,
2 Tp = Tseq/p + c,
3 Tp = Tseq/p + c/p.

Answers:
1 No: To = cpTseq,
2 No: To = cp,
3 Yes: To = c; strong scalability means constant overhead.

34/46

BSP and scalability
For non-embarrasingly parallel applications, strong scalability does not
exist. But is that a bad thing?

Definition (Amdahl’s Paradox)
Given an algorithm with a serial part of size c and a parallel part of size
(1− c), then the maximum speedup of that algorithm is given by

S =
Tseq

Tseq(c + (1− c)/p)
=

1
1/p− c/p + c .

Note that for p→∞, S→ 1
c , ‘and therefore parallel computing is of

extremely limited use’ (paraphrased from Amdahl).

If c = 10−2 (one percent), the maximum speedup is 100. For c = 10−6,
S ≤ 106, etc.

So to scale, we need a lot more parallelisable work than
non-parallelisable work. ‘This naturally happens when Tseq →∞’
(paraphrased from Gustavson); this is what led to weak scalability.

35/46

BSP and scalability
For non-embarrasingly parallel applications, strong scalability does not
exist. But is that a bad thing?

Definition (Amdahl’s Paradox)
Given an algorithm with a serial part of size c and a parallel part of size
(1− c), then the maximum speedup of that algorithm is given by

S =
Tseq

Tseq(c + (1− c)/p)
=

1
1/p− c/p + c .

Note that for p→∞, S→ 1
c , ‘and therefore parallel computing is of

extremely limited use’ (paraphrased from Amdahl).

If c = 10−2 (one percent), the maximum speedup is 100. For c = 10−6,
S ≤ 106, etc. So to scale, we need a lot more parallelisable work than
non-parallelisable work. ‘This naturally happens when Tseq →∞’
(paraphrased from Gustavson); this is what led to weak scalability.

35/46

BSP and scalability

Recall that for BSP algorithms:

To = p
(N−1∑

i=0
max

s
w(s)

i + hig + l
)
− Tseq.

Iso-efficiency then requires that the following expression be kept
constant:

E−1 = 1 + To/Tseq = p
(N−1∑

i=0

maxs w(s)
i + hig + l
Tseq

)
.

For BSP, usually Tp > Tseq/p + g + l; we never expect strong scalability;
but like always, making sure that Tp ∼ Tseq gets us weak scalability.

36/46

Algorithm design

1 The Multi-BSP model

2 Philosophy

3 Algorithm design

37/46

Multi-BSP: broadcasting

38/46

Multi-BSP: broadcasting

38/46

Multi-BSP: broadcasting

38/46

Multi-BSP: broadcasting

38/46

Multi-BSP: broadcasting

38/46

Multi-BSP: broadcasting

38/46

Multi-BSP: broadcasting

Question: can we do better?

Perform more balanced communication, two phases:
1 communicate value upwards only (until the root node has it);
2 broadcast values downwards.

Due to the imposed Multi-BSP computer model, each node must be
visited, even in this minimal example.

For any non-trivial Multi-BSP algorithm,

To ≥ 2p
L−1∑
k=0

(gk + lk).

Question: is storing the broadcast value 2p− 1 times mandatory?

39/46

Multi-BSP: broadcasting

Question: can we do better?

Perform more balanced communication, two phases:
1 communicate value upwards only (until the root node has it);
2 broadcast values downwards.

Due to the imposed Multi-BSP computer model, each node must be
visited, even in this minimal example.

For any non-trivial Multi-BSP algorithm,

To ≥ 2p
L−1∑
k=0

(gk + lk).

Question: is storing the broadcast value 2p− 1 times mandatory?

39/46

Multi-BSP: broadcasting

Question: can we do better?

Perform more balanced communication, two phases:
1 communicate value upwards only (until the root node has it);
2 broadcast values downwards.

Due to the imposed Multi-BSP computer model, each node must be
visited, even in this minimal example.

For any non-trivial Multi-BSP algorithm,

To ≥ 2p
L−1∑
k=0

(gk + lk).

Question: is storing the broadcast value 2p− 1 times mandatory?

39/46

Multi-BSP: broadcasting

Question: can we do better?

Perform more balanced communication, two phases:
1 communicate value upwards only (until the root node has it);
2 broadcast values downwards.

Due to the imposed Multi-BSP computer model, each node must be
visited, even in this minimal example.

For any non-trivial Multi-BSP algorithm,

To ≥ 2p
L−1∑
k=0

(gk + lk).

Question: is storing the broadcast value 2p− 1 times mandatory?

39/46

Multi-BSP: broadcasting

Memory embedding (shared address space):

0

0 1 2 3 5 6 74

0 4

Memory requirements are now bounded from below as Mp ≥Mseq/p + p.

40/46

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

Start SPMD section, entry at leaf level, leaf 6 is source.

41/46

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this local BSP computer, communicate val to PID 0 and move up.

41/46

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this upper level, send val to PID 0, broadcast, and move down.

41/46

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this level, only PID 0 has val; broadcast, and done.

41/46

Multi-BSP: broadcasting

Optimal algorithm with embedding (shared address space):

0 1 2 3 5

0

74

0 4

6

On this level, only PID 0 has val; broadcast, and done.

41/46

Multi-BSP: broadcasting
Input: val (a value or ∅),

Output: the value that was broadcast.
if val 6= ∅ then
set source = true

else
set source = false

while not on the Multi-BSP root do
if source and bsp_pid() 6= 0 then
send val to PID 0

move upwards in the Multi-BSP tree
while not on a leaf node do
if bsp_pid() = 0 then
for k = 1 to bsp_nprocs() do
send val to PID k

move downwards in the Multi-BSP tree
return val

42/46

New Multi-BSP primitives

To control the flow up and down the Multi-BSP tree:
– bsp_up(), and
– bsp_down().

These are synchronising primitives, like bsp_sync().

To inspect Multi-BSP tree information:
– bsp_lid(), the leaf ID of this SPMD program;
– bsp_leaf(), whether this SPMD program runs on a leaf;
– bsp_sleaves(), the number of leaf nodes in this subtree;
– bsp_nleaves(), the total number of leaf nodes in the full tree.

That’s it!

43/46

Multi-BSP summary

– Non-trivial Multi-BSP algorithms require that

Tp = Ω(Tseq/p +

L−1∑
k=0

(gk + lk));

If each node in the tree runs an SPMD program and is non-trivial, then
– leaf nodes distribute the sequential work,
– internal nodes communicate at least one word and synchronise once

while going up the Multi-BSP computer tree, and
– synchronise again while going down the tree.

The minimal non-trivial parallel cost thus is as given above.

44/46

Multi-BSP summary

– non-trivial Multi-BSP algorithms require that

pMp = Ω(Mseq + p), i.e., Mo = Ω(p);

Each Multi-BSP node is represented in memory, together with at least the
Mseq data required for the entire problem, from which the above follows.

45/46

Multi-BSP summary

– communication can still be done using ‘horizontal’ primitives.
Algorithm data does not need to be replicated by using memory
embedding. This also enables horizontal communication, just like
what we are used to from ‘flat’ BSP.

46/46

Multi-BSP summary

– in general, no compute on non-leaf nodes.

In principle, the leaf node with PID 0 could handle the computation of its
parent Multi-BSP node. Higher-level nodes can choose a representative
in a recursive fashion, similar to memory embedding.

Distributing part of the computational cost over non-leaf nodes in this
fashion, necessarily uses less than p processors. Doing so leaves the
remaining processes idle, thus contributing unnecessary overhead.

46/46

Multi-BSP summary

– we have demonstrated a Multi-BSP broadcasting algorithm with cost

Tmultibsp-bcast
p =

L−1∑
k=0

(
gk + lk + Tbsp-bcast

k

)
, with

Tbsp-bcast
k = min

b∈{2,...,p}
((b− 1)gk + lk) logb pk.

The Multi-BSP broadcast traverses the Multi-BSP tree a minimal
number of times; only once up, and once down.

– we can still use known BSP algorithms within Multi-BSP algorithms;
– only a few additional primitives enable writing portable codes.

46/46

Multi-BSP summary

– Non-trivial Multi-BSP algorithms require that

Tp = Ω(Tseq/p +

L−1∑
k=0

(gk + lk));

– non-trivial Multi-BSP algorithms require that

pMp = Ω(Mseq + p), i.e., Mo = Ω(p);

– communication can still be done using ‘horizontal’ primitives;
– in general, no compute on non-leaf nodes;
– we have demonstrated a Multi-BSP broadcasting algorithm and

determined its Multi-BSP cost;
– we can still use known BSP algorithms within Multi-BSP algorithms;
– only a few additional primitives enable writing portable codes.

46/46

	The Multi-BSP model
	Philosophy
	Algorithm design

