Bulk Synchronous Parallel

Albert-Jan Yzelman

28 October 2011

The model

- 1 The model
- ② Distributed-memory programming
- Shared-memory programming
- 4 Sparse matrix-vector multiplication

How to program parallel machines? By using bridging models:

- Message Passing Interface (MPI)
- Bulk Synchronous Parallel (BSP)

Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 (1990), pp. 103–111

Homogeneous processing speeds

A BSP computer has p processors each running at r flops per second

• Local processor memory

Inter-process communication is only allowed through the network

All-to-all network

Utilising the network, processes can synchronise in / time, and send data (full duplex) at a bandwidth rate of g^{-1}

- Homogeneous processing speeds (p, r)
- Local processor memory
- All-to-all network (I, g)

A Bulk Synchronous Parallel algorithm:

- Computations are grouped into supersteps
- An algorithm does not communicate during computation
- Communication only occurs in-between supersteps

- suppose we have a BSP computer with (p, r, l, g),
- ullet suppose the algorithm we run has t supersteps,

- suppose we have a BSP computer with (p, r, l, g),
- suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,

- suppose we have a BSP computer with (p, r, l, g),
- ullet suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,
- the amount of data sent after superstep i by process s is $t_i^{(s)}$,

- suppose we have a BSP computer with (p, r, l, g),
- suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,
- the amount of data sent after superstep i by process s is $t_i^{(s)}$,
- the amount received after superstep i by process s is $c_i^{(s)}$.

- suppose we have a BSP computer with (p, r, l, g),
- suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,
- ullet the amount of data sent after superstep i by process s is $t_i^{(s)}$,
- the amount received after superstep i by process s is $c_i^{(s)}$.

Define
$$h_i^{(s)} = \max\{t_i^{(s)}, c_i^{(s)}\}$$
 (full-duplex).

- suppose we have a BSP computer with (p, r, l, g),
- suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,
- ullet the amount of data sent after superstep i by process s is $t_i^{(s)}$,
- the amount received after superstep i by process s is $c_i^{(s)}$.

Define
$$h_i^{(s)} = \max\{t_i^{(s)}, c_i^{(s)}\}$$
 (full-duplex).

Then the algorithm run time T on this BSP computer is:

$$T = \frac{1}{r} \cdot \sum_{i=1}^{t} \max_{s} w_i^{(s)}$$

- suppose we have a BSP computer with (p, r, l, g),
- suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,
- the amount of data sent after superstep i by process s is $t_i^{(s)}$,
- the amount received after superstep i by process s is $c_i^{(s)}$.

Define
$$h_i^{(s)} = \max\{t_i^{(s)}, c_i^{(s)}\}$$
 (full-duplex).

Then the algorithm run time T on this BSP computer is:

$$T = \frac{1}{r} \cdot \sum_{i=1}^{t} \max_{s} w_{i}^{(s)} + \sum_{i=1}^{t-1} \left(I \right)$$

- suppose we have a BSP computer with (p, r, l, g),
- suppose the algorithm we run has t supersteps,
- the amount of work in superstep i by process s is $w_i^{(s)}$,
- the amount of data sent after superstep i by process s is $t_i^{(s)}$,
- the amount received after superstep i by process s is $c_i^{(s)}$.

Define
$$h_i^{(s)} = \max\{t_i^{(s)}, c_i^{(s)}\}$$
 (full-duplex).

Then the algorithm run time T on this BSP computer is:

$$T = \frac{1}{r} \cdot \sum_{i=1}^{t} \max_{s} w_{i}^{(s)} + \sum_{i=1}^{t-1} \left(I + g \cdot \max_{s} h_{i}^{(s)} \right)$$

Distributed-memory programming

- 1 The model
- 2 Distributed-memory programming
- Shared-memory programming
- 4 Sparse matrix-vector multiplication


```
bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()
```



```
bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()
```

bsp_nprocs()
bsp_pid()

- bsp_init(...)
 bsp_begin(P)
 bsp_end()
 bsp_abort()
- bsp_nprocs()
 bsp_pid()
- bsp_sync()

- bsp_init(...)
 bsp_begin(P)
 bsp_end()
 bsp_abort()
- bsp_nprocs()
 bsp_pid()
- bsp_sync()
- bsp_put(source, dest, dest_PID)bsp_get(source, source_PID, dest)


```
bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()
```

- bsp_nprocs()
 bsp_pid()
- bsp_sync()
- bsp_put(source, dest, dest_PID)
 bsp_get(source, source_PID, dest)
- bsp_send(data, dest_PID) bsp_qsize() bsp_move()

Example: inner product kernel

Goal: calculate $\alpha = x^T \cdot y$ with $x, y \in \mathbb{R}^n$, in parallel.

Definition (Vector distribution)

Let $x \in \mathbb{R}^n, p \in \mathbb{N}$. A distribution ϕ of x over p processors is a function:

$$\phi: [0, n-1] \to [0, p-1]$$

A vector distribution gives us a way to decide which vector elements are stored at which of the p processors.

Definition (Block distribution)

Let x, p as before. Then the distribution with

$$\phi_{\mathsf{block}}(i) = i \ \mathsf{div} \ \lceil n/p \rceil$$

defines a block distribution on x.

Definition (Cyclic distribution)

Let x, p as before. Then the distribution with

$$\phi_{\rm cyclic}(i) = i \bmod p$$

defines a cyclic distribution on x.

We have to choose the distributions ϕ_x and ϕ_y of the vectors x, y.

The inner product kernel continuously multiplies two entries $x_i y_i$,

We have to choose the distributions ϕ_x and ϕ_y of the vectors x, y.

The inner product kernel continuously multiplies two entries x_iy_i ,

so ϕ_{x} should be equal ϕ_{y} .

We have to choose the distributions ϕ_x and ϕ_y of the vectors x, y.

The inner product kernel continuously multiplies two entries $x_i y_i$,

so ϕ_x should be equal ϕ_y .

This means the exact distribution we choose is irrelevant!

Of course, 'irrelevant' up to the demand for load-balance:

the amount of work each processor has to do corresponds exactly with the number of nonzeroes distributed to it, so for all processors s:

$$\#\{i \in \{0,\ldots,n-1\} | \phi(i) = s\} \approx n/p.$$

When n is not a multiple of p, then using the block distribution might give unbalanced results.

So let us assume the cyclic distribution $(\phi_x = \phi_y : i \to i \mod p)$.

```
t = \text{new double}[P]
   \alpha = 0
   for i = 0 to x.length do
        add x_i \cdot y_i to \alpha
   for s = 0 to P
         bsp\_put(s, \alpha, t, bsp\_pid())
   bsp_sync()
\alpha = 0
   for s = 0 to P
         add t_s to \alpha
   return \alpha
```

•
$$P = bsp_nprocs()$$

 $t = new double[P]$
 $\alpha = 0$
for $i = 0$ to x .length do
 $add x_i \cdot y_i$ to α
for $s = 0$ to P
 $bsp_put(s, \alpha, t, bsp_pid())$
 $bsp_sync()$
• $\alpha = 0$

for
$$s = 0$$
 to P add t_s to α return α

$$\forall s: w_0^{(s)} = p + n/p$$

$$P = bsp_nprocs()$$

$$t = new double[P]$$

$$\alpha = 0$$

$$for i = 0 to x.length do$$

$$add x_i \cdot y_i to \alpha$$

$$for s = 0 to P$$

$$bsp_put(s, \alpha, t, bsp_pid())$$

$$bsp_sync()$$

$$\forall s: w_0^{(s)} = p + n/p, \ t_0^{(s)} = p$$

$$P = bsp_nprocs()$$

$$t = new double[P]$$

$$\alpha = 0$$

$$for i = 0 to x.length do$$

$$add x_i \cdot y_i to \alpha$$

$$for s = 0 to P$$

$$bsp_put(s, \alpha, t, bsp_pid())$$

$$bsp_sync()$$

$$\forall s: w_0^{(s)} = p + n/p, \ t_0^{(s)} = p, \ c_0^{(s)} = p$$

$$P = bsp_nprocs()$$

$$t = new double[P]$$

$$\alpha = 0$$

$$for i = 0 to x.length do$$

$$add x_i \cdot y_i to \alpha$$

$$for s = 0 to P$$

$$bsp_put(s, \alpha, t, bsp_pid())$$

$$bsp_sync()$$

$$\forall s: w_0^{(s)} = p + n/p, \ t_0^{(s)} = p, \ c_0^{(s)} = p, \ h_0^{(s)} = p$$

- $P = bsp_nprocs()$ t = new double[P] $\alpha = 0$ for i = 0 to x.length do $add x_i \cdot y_i to \alpha$ for s = 0 to P $bsp_put(s, \alpha, t, bsp_pid())$ $bsp_sync()$
- $\alpha = 0$ for s = 0 to Padd t_s to α

$$\forall s: w_0^{(s)} = p + n/p, \ t_0^{(s)} = p, \ c_0^{(s)} = p, \ h_0^{(s)} = p, \ w_1^{(s)} = p;$$

- $P = bsp_nprocs()$ t = new double[P] $\alpha = 0$ for i = 0 to x.length do $add x_i \cdot y_i$ to α for s = 0 to P $bsp_put(s, \alpha, t, bsp_pid())$ $bsp_sync()$
- $\alpha = 0$ for s = 0 to Padd t_s to α

$$\forall s: w_0^{(s)} = p + n/p, \ t_0^{(s)} = p, \ c_0^{(s)} = p, \ h_0^{(s)} = p, \ w_1^{(s)} = p;$$

$$T_{\text{inprod}} = 1/r(2p + n/p) + l + gp.$$

The cost of many other BSP algorithms can be expressed:

$$\begin{split} T_{\text{LU}} &\approx 1/r(\frac{2n^3}{3p} + \frac{3n^2}{2\sqrt{p}}) + 8ln + g\frac{3n^2}{\sqrt{p}} \\ T_{\text{FFT, } 1$$

 $T_{\text{inprod}} = 1/r(2p + n/p) + l + gp$

See:

 Rob H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press, 2004

 $T_{\mathsf{SpMV_sh}} = 1/r \left(2 \max_{s} \mathsf{nz}_s + \max_{s} w_2^{(s)} \right) + I + g \max_{s} \left(h_0^{(s)} + h_1^{(s)} \right)$

 Yzelman and Bisseling, An Object-Oriented BSP Library for Multicore Programming, Concurrency and Computation: Practice and Experience, 2011 (in press)

Shared-memory programming

- 1 The model
- 2 Distributed-memory programming
- Shared-memory programming
- 4 Sparse matrix-vector multiplication

The modulo mapped, or naive, cache (k = 1):

Divide the main memory (RAM) in stripes of size L_S .

The *i*th line in RAM is mapped to the cache line *i* mod *L*:

The 'ideal' cache (k = L):

Instead of a naive modulo mapping, new lines are assigned according to pre-defined policy.

For instance, the 'Least Recently Used (LRU)' policy:

	Req. x_1, \ldots, x_4		Req. x ₂		Req. x ₅
	<i>x</i> ₄		<i>x</i> ₂		X ₅
\Rightarrow	<i>x</i> ₃	\Rightarrow	<i>X</i> 4	\Rightarrow	<i>X</i> ₂
	x_2		<i>X</i> ₃		<i>X</i> ₄
	x ₁		X ₁		X3

Realistic caches (1 < k < L):

1 < k < L, combining modulo-mapping and the LRU policy

Realistic cache architectures employ multi-level caching:

Intel	Core2 (Q6600)	AMD Phenom	II (945e)
L1:	32kB	k = 8	S = 64kB	k = 2
L2:	4MB	k = 16	S = 512kB	k = 8
L3:	_	-	S = 6MB	k = 48

BSP: (4, 3GHz, *I*, *g*)

BSP: (4, 2.4GHz, I, g); but Non-Uniform Memory Access (NUMA)!

Some g, I values for different architectures (in ms.):

Processor (p)	1	g
Intel Q6600 (2)	0.013	0.0003
AMD 945e (2)	0.036	0.0004
Intel Q6600 (4)	0.048	0.0005
AMD 945e (4)	0.050	0.0014
Cray T3E (64)	0.052	0.0022

See:

- Rob H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press, 2004
- Yzelman and Bisseling, An Object-Oriented BSP Library for Multicore Programming, Concurrency and Computation: Practice and Experience, 2011 (in press)

BSP-style programming

MulticoreBSP is a BSP programming library for shared-memory parallel computing. It defines a new function:

bsp_direct_get, a blocking variant of the normal bsp_get.

This primitive can *potentially* save a superstep, as no explicit synchronisation is necessary after a BSP get.

In the case of the inner-product kernel:

```
t = \text{new double}[P]
   \alpha = 0
   for i = 0 to x.length do
         add x_i \cdot y_i to \alpha
   for s = 0 to P
         bsp\_put(s, \alpha, t, bsp\_pid())
   bsp_sync()
\alpha = 0
   for s = 0 to P
         add t_s to \alpha
   return \alpha
```

The shared-memory direct-get variant becomes:

$$\begin{array}{l} \bullet \quad P = bsp_nprocs() \\ \tilde{\alpha} = 0 \\ \text{for } i = 0 \text{ to } x. \text{length do} \\ \text{add } x_i \cdot y_i \text{ to } \tilde{\alpha} \\ bsp_sync() \end{array}$$

$$\begin{aligned} \alpha &= 0 \\ \text{for } s &= 0 \text{ to } P \\ \text{add } bsp_direct_get(s, \tilde{\alpha}) \text{ to } \alpha \end{aligned}$$

Not that much effect:

$$T_{\text{inprod}} = 1/r(2p + n/p) + l + gp$$

 $T_{\text{inprod_sh}} = 1/r(p + n/p) + l + gp$

Alternative programming libraries

There are other dedicated programming models for shared-memory computing, such as, for instance, POSIX threads (PThreads).

One common difference of BSP (and MPI) with dedicated shared-memory libraries,

Alternative programming libraries

There are other dedicated programming models for shared-memory computing, such as, for instance, POSIX threads (PThreads).

One common difference of BSP (and MPI) with dedicated shared-memory libraries, is the existance of a shared memory.

Alternative programming libraries

There are other dedicated programming models for shared-memory computing, such as, for instance, POSIX threads (PThreads).

One common difference of BSP (and MPI) with dedicated shared-memory libraries, is the existance of a shared memory.

BSP ignores this (except for the direct-get), other systems may explicitly model a shared memory (PThreads, UPC, BSPRAM);

However, this opens up the way for some pitfalls.


```
Input:
```

- s the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output:
$$x^T y$$

- double $\alpha = 0.0$
- for i = s to n step p
- \bullet $\alpha += x_i y_i$
- ullet return lpha

```
Input:
```

- the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output:
$$x^T y$$

- double $\alpha = 0.0$
- for i = s to n step p
- \bullet α += $x_i y_i$
- \bullet return α

Data race!

(For
$$n = p = 2$$
, output can be x_0y_0 , x_1y_1 , **or** $x_0y_0 + x_1y_1$)

Input:

- the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output:
$$x^T y$$

- double $\alpha[p]$
- for i = s to n step p
- $\alpha_s += x_i y_i$
- return $\sum_{i=0}^{p-1} \alpha_i$

```
Input:
```

- the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output: $x^T y$

- double $\alpha[p]$
- for i = s to n step p
- $\bullet \qquad \alpha_s \mathrel{+=} x_i y_i$
- return $\sum_{i=0}^{p-1} \alpha_i$

False sharing!

(Various processors access and update the same cache lines)


```
Input:
```

- the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output:
$$x^T y$$

- double $\alpha[8p]$ (for architectures with $L_s \leq 64$ bytes (in which 8 doubles fit)
- for i = s to n step p
- $\alpha_{8s} += x_i y_i$
- return $\sum_{i=0}^{p} \alpha_{8i}$

```
Input:
```

- the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output:
$$x^T y$$

- double $\alpha[8p]$ (for architectures with $L_s \leq 64$ bytes (in which 8 doubles fit)
- for i = s to n step p
- $\alpha_{8s} += x_i y_i$
- return $\sum_{i=0}^{p} \alpha_{8i}$

Inefficient cache use!

(All threads access virtually all cache lines; $\Theta(pn)$ data movement)

Input:

- the current processor ID,
- p the total number of processors (threads),
- n the size of the input vectors.

Output: x^Ty

- double $\alpha[8p]$ (for architectures with $L_s \leq 64$ bytes, in which 8 doubles fit)
- for $i = s \cdot \lceil n/p \rceil$ to $(s+1) \cdot \lceil n/p \rceil$
- $\alpha_{8s} += x_i y_i$
- return $\sum_{i=0}^{p} \alpha_{8i}$

Solution: block distribution

(Now inefficiency only at boundaries; $\mathcal{O}(n+p-1)$ data movement)

Sparse matrix-vector multiplication

- 1 The model
- 2 Distributed-memory programming
- Shared-memory programming
- Sparse matrix-vector multiplication

Another example: Sparse matrix-vector multiplication

Definition (Matrix distribution)

Let A be an $m \times n$ matrix, and $I = \{0, \dots, m-1\} \times \{0, \dots, n-1\}$. Then

$$\phi: I \to \{0, \ldots, p-1\}$$

defines a matrix distribution of A over p processors. Or equivalently,

$$\phi: I \to \{0, \dots, M-1\} \times \{0, \dots, N-1\}$$

with $p = M \cdot N$.

(Equivalent since we can take the processor map $f:(i,j)\to sN+t$.)

Definition (2D matrix distribution)

Let A, m, n, I be as previously. Then a 2D matrix distribution is:

$$\phi(i,j)=(\phi_0(i,j),\phi_1(i,j)).$$

Definition (Cartesian matrix distribution)

Let A, m, n, I be as previously. Then a matrix distribution with:

$$\phi(i,j) = (\phi_0(i),\phi_1(j))$$

is called Cartesian.

Definition (1D row distribution)

$$\phi(i,j) = (\phi_0(i), 0)$$
, with $M = p$ and $N = 1$.

Definition (1D column distribution)

$$\phi(i,j) = (0, \phi_1(j))$$
, with $M = 1$ and $N = p$.

Definition (Block matrix distribution)

$$\phi(i,j) = (\phi_{\mathsf{block}}(i),\phi_{\mathsf{block}}(j)) = (i \ \mathsf{div} \ \lceil \mathsf{m}/\mathsf{M} \rceil \,, j \ \mathsf{div} \ \lceil \mathsf{n}/\mathsf{N} \rceil).$$

Definition (Cyclic matrix distribution)

$$\phi(i,j) = (\phi_{\text{cyclic}}(i), \phi_{\text{cyclic}}(j)) = (i \mod M, j \mod N).$$

Step 1 (fan-out): not all processors have the elements from x they need; processors need to get the missing items. Only one communication is needed, x is distributed well.

Step 2 (*mv*): use received elements from *x* for multiplication.

Step 3 (fan-in): send local results to the correct processors; here, y is distributed cyclically, obviously a bad choice.

The original BSP algorithm:

- for all nonzeroes k from A if column of k is not local request element from x from the appropriate processor synchronise
- for all nonzeroes k from A do the SpMV for k send all non-local row sums to the correct processor synchronise
- **3** add all incoming row sums to the corresponding y[i]

Alternative (2-step) SpMV algorithm in MulticoreBSP:

- for all nonzeroes k from A
 if both row and column of k are local
 add do the SpMV for k
 if column of k is not local
 direct get element from x, and do SpMV for k
 send all non-local row sums to the correct processor
 synchronise
- **2** add all incoming row sums to the corresponding y[i]

If interested in writing parallel programs on your computer:

http://www.multicorebsp.com

These slides & further practice material can be found at:

http://people.cs.kuleuven.be/~albert-jan.yzelman/education.php

