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How to program parallel machines? By using bridging models:

Message Passing Interface (MPI)

Bulk Synchronous Parallel (BSP)

Leslie G. Valiant, A bridging model for parallel computation,

Communications of the ACM, Volume 33 (1990), pp. 103–111

Albert-Jan Yzelman
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Assumptions:

Homogeneous processing speeds

A BSP computer has p processors each running at r flops per second
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All-to-all network

Utilising the network, processes can synchronise in l time, and send
data (full duplex) at a bandwidth rate of g−1
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A Bulk Synchronous Parallel algorithm:

Computations are grouped into supersteps

An algorithm does not communicate during computation

Communication only occurs in-between supersteps

Superstep 1 Superstep 2

...and so on

Synchronisation & Communication Synchronisation...

1

2

3

4
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The Bulk Synchronous Parallel cost model:

suppose we have a BSP computer with (p, r , l , g),

suppose the algorithm we run has t supersteps,

the amount of work in superstep i by process s is w
(s)
i ,

the amount of data sent after superstep i by process s is t
(s)
i ,

the amount received after superstep i by process s is c
(s)
i .

Define h
(s)
i = max{t(s)

i , c
(s)
i } (full-duplex).

Then the algorithm run time T on this BSP computer is:

T =
1

r
·

t∑
i=1

max
s

w
(s)
i +

t−1∑
i=1

(
l + g ·max

s
h

(s)
i

)
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BSP primitives:

bsp_init(...)
bsp_begin(P)
bsp_end()
bsp_abort()

bsp_nprocs()
bsp_pid()

bsp_sync()

bsp_put(source, dest, dest_PID)
bsp_get(source, source_PID, dest)

bsp_send(data, dest_PID)
bsp_qsize()
bsp_move()
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Example: inner product kernel

Goal: calculate α = xT · y with x , y ∈ Rn, in parallel.

Definition (Vector distribution)

Let x ∈ Rn, p ∈ N. A distribution φ of x over p processors is a
function:

φ : [0, n − 1]→ [0, p − 1]

A vector distribution gives us a way to decide which vector elements
are stored at which of the p processors.

Albert-Jan Yzelman
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Definition (Block distribution)

Let x , p as before. Then the distribution with

φblock(i) = i div dn/pe

defines a block distribution on x .

Definition (Cyclic distribution)

Let x , p as before. Then the distribution with

φcyclic(i) = i mod p

defines a cyclic distribution on x .

Albert-Jan Yzelman
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We have to choose the distributions φx and φy of the vectors x , y .

The inner product kernel continuously multiplies two entries xiyi ,

so φx should be equal φy .

This means the exact distribution we choose is irrelevant!
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Of course, ‘irrelevant’ up to the demand for load-balance:

the amount of work each processor has to do corresponds exactly with
the number of nonzeroes distributed to it, so for all processors s:

#{i ∈ {0, . . . , n − 1}|φ(i) = s} ≈ n/p.

When n is not a multiple of p, then using the block distribution might
give unbalanced results.

So let us assume the cyclic distribution (φx = φy : i → i mod p).

Albert-Jan Yzelman



Bulk Synchronous Parallel > Distributed-memory programming

2-step inner product calculation:

1 P = bsp nprocs()
t = new double[P]
α = 0
for i = 0 to x .length do

add xi · yi to α
for s = 0 to P

bsp put(s, α, t,bsp pid())
bsp sync()

2 α = 0
for s = 0 to P

add ts to α
return α

∀s : w
(s)
0 = p + n/p, t

(s)
0 = p, c

(s)
0 = p, h

(s)
0 = p , w

(s)
1 = p;

Tinprod = 1/r(2p + n/p) + l + gp.
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The cost of many other BSP algorithms can be expressed:

Tinprod = 1/r(2p + n/p) + l + gp

TLU ≈ 1/r(
2n3

3p
+

3n2

2
√

p
) + 8ln + g

3n2

√
p

TFFT, 1<p≤
√

n = 1/r
5n log2 n

p
+ 3l + g

2n

p

TSpMV = 1/r
(

2 max
s

nzs + max
s

w
(s)
2

)
+ 2l + g(max

s
h

(s)
0 + max

s
h

(s)
1 )

TSpMV sh = 1/r
(

2 max
s

nzs + max
s

w
(s)
2

)
+ l + g max

s

(
h

(s)
0 + h

(s)
1

)
See:

Rob H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University
Press, 2004

Yzelman and Bisseling, An Object-Oriented BSP Library for Multicore Programming, Concurrency and
Computation: Practice and Experience, 2011 (in press)
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Bulk Synchronous Parallel > Shared-memory programming

The modulo mapped, or naive, cache (k = 1):

Divide the main memory (RAM) in stripes of size LS .

The ith line in RAM is mapped to the cache line i mod L:

Main
memory

(RAM)

Albert-Jan Yzelman



Bulk Synchronous Parallel > Shared-memory programming

The ‘ideal’ cache (k = L):

Instead of a naive modulo mapping, new lines are assigned according
to pre-defined policy.

For instance, the ‘Least Recently Used (LRU)’ policy:

x1

⇒

Req. x1, . . . , x4

x4

x3

x2

x1

⇒

Req. x2

x2

x4

x3

x1

⇒

Req. x5

x5

x2

x4

x3

Albert-Jan Yzelman



Bulk Synchronous Parallel > Shared-memory programming

Realistic caches (1 < k < L):

1 < k < L, combining modulo-mapping and the LRU policy

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack
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Realistic cache architectures employ multi-level caching:

Main
memory

(RAM)����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Cache Cache
(L1) (L2)CPU

Intel Core2 (Q6600) AMD Phenom II (945e)
L1: 32kB k = 8
L2: 4MB k = 16
L3: - -

S = 64kB k = 2
S = 512kB k = 8
S = 6MB k = 48
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64kB L1 64kB L1 64kB L1 64kB L1

Core 1 Core 2 Core 3 Core 4

512kB L2512kB L2512kB L2512kB L2

System interface

6MB shared L3 cache

BSP: (4, 3GHz, l , g)
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System interface

4MB L2

BSP: (4, 2.4GHz, l , g); but Non-Uniform Memory Access (NUMA)!

Albert-Jan Yzelman



Bulk Synchronous Parallel > Shared-memory programming

Some g , l values for different architectures (in ms.):

Processor (p) l g

Intel Q6600 (2) 0.013 0.0003
AMD 945e (2) 0.036 0.0004

Intel Q6600 (4) 0.048 0.0005
AMD 945e (4) 0.050 0.0014
Cray T3E (64) 0.052 0.0022

See:

Rob H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University
Press, 2004

Yzelman and Bisseling, An Object-Oriented BSP Library for Multicore Programming, Concurrency and
Computation: Practice and Experience, 2011 (in press)
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BSP-style programming

MulticoreBSP is a BSP programming library for shared-memory parallel
computing. It defines a new function:

bsp_direct_get, a blocking variant of the normal bsp get.

This primitive can potentially save a superstep, as no explicit
synchronisation is necessary after a BSP get.

Albert-Jan Yzelman



Bulk Synchronous Parallel > Shared-memory programming

In the case of the inner-product kernel:

1 P = bsp nprocs()
t = new double[P]
α = 0
for i = 0 to x .length do

add xi · yi to α
for s = 0 to P

bsp put(s, α, t,bsp pid())
bsp sync()

2 α = 0
for s = 0 to P

add ts to α
return α

Albert-Jan Yzelman



Bulk Synchronous Parallel > Shared-memory programming

The shared-memory direct-get variant becomes:

1 P = bsp nprocs()
α̃ = 0
for i = 0 to x .length do

add xi · yi to α̃
bsp sync()

2 α = 0
for s = 0 to P

add bsp direct get(s, α̃) to α
return α

Not that much effect:

Tinprod = 1/r(2p + n/p) + l + gp
Tinprod sh = 1/r(p + n/p) + l + gp

Albert-Jan Yzelman



Bulk Synchronous Parallel > Shared-memory programming

Alternative programming libraries

There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads).

One common difference of BSP (and MPI) with dedicated
shared-memory libraries,

is the existance of a shared memory.

BSP ignores this (except for the direct-get), other systems may
explicitly model a shared memory (PThreads, UPC, BSPRAM);

However, this opens up the way for some pitfalls.
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BSP ignores this (except for the direct-get), other systems may
explicitly model a shared memory (PThreads, UPC, BSPRAM);

However, this opens up the way for some pitfalls.
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Bulk Synchronous Parallel > Shared-memory programming

Alternative programming libraries

There are other dedicated programming models for shared-memory
computing, such as, for instance, POSIX threads (PThreads).

One common difference of BSP (and MPI) with dedicated
shared-memory libraries, is the existance of a shared memory.

BSP ignores this (except for the direct-get), other systems may
explicitly model a shared memory (PThreads, UPC, BSPRAM);

However, this opens up the way for some pitfalls.
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α = 0.0

for i = s to n step p

α += xiyi

return α

Data race!
()
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α = 0.0

for i = s to n step p

α += xiyi

return α

Data race!
(For n = p = 2, output can be x0y0, x1y1, or x0y0 + x1y1)
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[p]

for i = s to n step p

αs += xiyi

return
∑p−1

i=0 αi

!
()
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[p]

for i = s to n step p

αs += xiyi

return
∑p−1

i=0 αi

False sharing!
(Various processors access and update the same cache lines)
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s to n step p

α8s += xiyi

return
∑p

i=0 α8i

Inefficient cache use!
(All threads access virtually all cache lines associated with x , y)
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes (in which 8 doubles fit)

for i = s to n step p

α8s += xiyi

return
∑p

i=0 α8i

Inefficient cache use!
(All threads access virtually all cache lines; Θ(pn) data movement)
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Bulk Synchronous Parallel > Shared-memory programming

Suppose x and y are in a shared memory. We calculate an
inner-product in parallel, using the cyclic distribution.
Input:

s the current processor ID,
p the total number of processors (threads),
n the size of the input vectors.

Output: xT y

double α[8p] (for architectures with Ls ≤ 64 bytes, in which 8 doubles fit)

for i = s · dn/pe to (s + 1) · dn/pe
α8s += xiyi

return
∑p

i=0 α8i

Solution: block distribution
(Now inefficiency only at boundaries; O(n + p − 1) data movement)
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Sparse matrix–vector multiplication

1 The model

2 Distributed-memory programming

3 Shared-memory programming

4 Sparse matrix–vector multiplication
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Another example: Sparse matrix–vector multiplication

Definition (Matrix distribution)

Let A be an m × n matrix, and I = {0, . . . ,m − 1} × {0, . . . , n − 1}.
Then

φ : I → {0, . . . , p − 1}

defines a matrix distribution of A over p processors. Or equivalently,

φ : I → {0, . . . ,M − 1} × {0, . . . ,N − 1}

with p = M · N.

(Equivalent since we can take the processor map f : (i , j)→ sN + t.)
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Definition (2D matrix distribution)

Let A,m, n, I be as previously. Then a 2D matrix distribution is:

φ(i , j) = (φ0(i , j), φ1(i , j)).

Definition (Cartesian matrix distribution)

Let A,m, n, I be as previously. Then a matrix distribution with:

φ(i , j) = (φ0(i), φ1(j))

is called Cartesian.
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Definition (1D row distribution)

φ(i , j) = (φ0(i), 0), with M = p and N = 1.

Definition (1D column distribution)

φ(i , j) = (0, φ1(j)), with M = 1 and N = p.

Definition (Block matrix distribution)

φ(i , j) = (φblock(i), φblock(j)) = (i div dm/Me , j div dn/Ne).

Definition (Cyclic matrix distribution)

φ(i , j) = (φcyclic(i), φcyclic(j)) = (i mod M, j mod N).

Albert-Jan Yzelman



Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Albert-Jan Yzelman



Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Albert-Jan Yzelman



Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Albert-Jan Yzelman



Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Albert-Jan Yzelman



Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Step 1 (fan-out): not all processors have the elements from x they
need; processors need to get the missing items. Only
one communication is needed, x is distributed well.
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Step 2 (mv): use received elements from x for multiplication.
Step 3 (fan-in): send local results to the correct processors;

here, y is distributed cyclically, obviously a bad choice.
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

The original BSP algorithm:

1 for all nonzeroes k from A
if column of k is not local

request element from x from the appropiate processor
synchronise

2 for all nonzeroes k from A
do the SpMV for k

send all non-local row sums to the correct processor
synchronise

3 add all incoming row sums to the corresponding y [i ]
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

Alternative (2-step) SpMV algorithm in MulticoreBSP:

1 for all nonzeroes k from A
if both row and column of k are local

add do the SpMV for k
if column of k is not local

direct get element from x , and do SpMV for k
send all non-local row sums to the correct processor
synchronise

2 add all incoming row sums to the corresponding y [i ]
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Bulk Synchronous Parallel > Sparse matrix–vector multiplication

If interested in writing parallel programs on your computer:

http://www.multicorebsp.com

These slides & further practice material can be found at:

http://people.cs.kuleuven.be/~albert-jan.yzelman/

education.php

Albert-Jan Yzelman
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