ALP User Documentation 0.7.0
Algebraic Programming User Documentation
Namespaces | Functions
blas2.hpp File Reference

Defines the ALP/GraphBLAS level-2 API. More...

Go to the source code of this file.

Namespaces

namespace  grb
 The ALP/GraphBLAS namespace.
 

Functions

template<typename Func , typename DataType , typename RIT , typename CIT , typename NIT , Backend implementation = config::default_backend, typename... Args>
RC eWiseLambda (const Func f, const Matrix< DataType, implementation, RIT, CIT, NIT > &A, Args...)
 Executes an arbitrary element-wise user-defined function f on all nonzero elements of a given matrix A. More...
 
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend>
RC mxv (Vector< IOType, backend, Coords > &u, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Vector< InputType1, backend, Coords > &v, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr)
 Right-handed in-place sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication. More...
 
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend>
RC mxv (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr)
 Right-handed in-place doubly-masked sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication. More...
 
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend>
RC mxv (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &mask, const Matrix< InputType2, backend, RIT, NIT, CIT > &A, const Vector< InputType1, backend, Coords > &v, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr)
 Right-handed in-place masked sparse matrix–vector multiplication, \( u = u + Av \), over a given commutative additive monoid and any binary operator acting as multiplication. More...
 
template<Descriptor descr = descriptors::no_operation, class Semiring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend>
RC mxv (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &u_mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const Semiring &semiring=Semiring(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_semiring< Semiring >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value, void >::type *const =nullptr)
 Right-handed in-place doubly-masked sparse matrix times vector multiplication, \( u = u + Av \). More...
 
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , Backend implementation = config::default_backend>
RC mxv (Vector< IOType, implementation, Coords > &u, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Vector< InputType1, implementation, Coords > &v, const Ring &ring, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr)
 Right-handed in-place sparse matrix–vector multiplication, \( u = u + Av \), over a given semiring. More...
 
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename RIT , typename CIT , typename NIT , typename Coords , enum Backend implementation = config::default_backend>
RC mxv (Vector< IOType, implementation, Coords > &u, const Vector< InputType3, implementation, Coords > &mask, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Vector< InputType1, implementation, Coords > &v, const Ring &ring=Ring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr)
 Right-handed in-place masked sparse matrix–vector multiplication, \( u = u + Av \), over a given semiring. More...
 
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend>
RC vxm (Vector< IOType, backend, Coords > &u, const Vector< InputType1, backend, Coords > &v, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr)
 Left-handed in-place sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication. More...
 
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , Backend backend>
RC vxm (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &mask, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, const typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!std::is_same< InputType2, void >::value, void >::type *const =nullptr)
 Left-handed in-place doubly-masked sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication. More...
 
template<Descriptor descr = descriptors::no_operation, class Semiring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename InputType4 , typename Coords , typename RIT , typename CIT , typename NIT , enum Backend backend>
RC vxm (Vector< IOType, backend, Coords > &u, const Vector< InputType3, backend, Coords > &u_mask, const Vector< InputType1, backend, Coords > &v, const Vector< InputType4, backend, Coords > &v_mask, const Matrix< InputType2, backend, RIT, CIT, NIT > &A, const Semiring &semiring=Semiring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Semiring >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!grb::is_object< InputType3 >::value &&!grb::is_object< InputType4 >::value &&!grb::is_object< IOType >::value, void >::type *=nullptr)
 Left-handed in-place doubly-masked sparse matrix times vector multiplication, \( u = u + vA \). More...
 
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename Coords , typename RIT , typename CIT , typename NIT , enum Backend implementation = config::default_backend>
RC vxm (Vector< IOType, implementation, Coords > &u, const Vector< InputType1, implementation, Coords > &v, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Ring &ring=Ring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr)
 Left-handed in-place sparse matrix–vector multiplication, \( u = u + vA \), over a given semiring. More...
 
template<Descriptor descr = descriptors::no_operation, class AdditiveMonoid , class MultiplicativeOperator , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename Coords , typename RIT , typename CIT , typename NIT , Backend implementation>
RC vxm (Vector< IOType, implementation, Coords > &u, const Vector< InputType3, implementation, Coords > &mask, const Vector< InputType1, implementation, Coords > &v, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const AdditiveMonoid &add=AdditiveMonoid(), const MultiplicativeOperator &mul=MultiplicativeOperator(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_monoid< AdditiveMonoid >::value &&grb::is_operator< MultiplicativeOperator >::value &&!grb::is_object< IOType >::value &&!grb::is_object< InputType1 >::value &&!grb::is_object< InputType2 >::value &&!std::is_same< InputType2, void >::value, void >::type *=nullptr)
 Left-handed in-place masked sparse matrix–vector multiplication, \( u = u + vA \), over a given commutative additive monoid and any binary operator acting as multiplication. More...
 
template<Descriptor descr = descriptors::no_operation, class Ring , typename IOType , typename InputType1 , typename InputType2 , typename InputType3 , typename Coords , typename RIT , typename CIT , typename NIT , enum Backend implementation = config::default_backend>
RC vxm (Vector< IOType, implementation, Coords > &u, const Vector< InputType3, implementation, Coords > &mask, const Vector< InputType1, implementation, Coords > &v, const Matrix< InputType2, implementation, RIT, CIT, NIT > &A, const Ring &ring=Ring(), const Phase &phase=EXECUTE, typename std::enable_if< grb::is_semiring< Ring >::value, void >::type *=nullptr)
 Left-handed in-place masked sparse matrix–vector multiplication, \( u = u + vA \), over a given semiring. More...
 

Detailed Description

Defines the ALP/GraphBLAS level-2 API.

Author
A. N. Yzelman
Date
30th of March 2017