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The concept of a humble programmer, coined by Dijkstra in the 1970s, fully acknowledges the complexity of programming, 
deeming it unsuitable for the human mind. This concept leads to the design of humble programming frameworks that not 
only simplify the implementation of algorithms, but also automate the optimization and scalability of algorithms across 
compute units. Such humble frameworks typically favor productivity over performance.

By contrast, hero programmers  are experts with in-depth knowledge of parallel algorithms, applicable lower bounds, 
coding, and hardware, typically seeking to achieve the highest possible efficiency on any given system. Given that hardware 
complexity and diversity are set to increase in the years to come, humble programmers will not be able to drive increasingly 
more complex and larger-scale systems using contemporary software technologies. This, combined with the scarcity of hero 
programmers at the present time and in the foreseeable future, highlights the need for humble programming models that 
can achieve good performance.

This paper starts by outlining the successful humble MapReduce and Pregel vertex-centric frameworks and identifies the 
common design factors that they share with the novel Algebraic Programming (ALP) paradigm. Satisfying the need for 
supporting multiple humble programming models while reducing demands on hero programmers, this paper proposes 
a vertex-centric programming model on top of ALP, demonstrating that multiple humble programming models can be 
supported by a single software stack. Thus, fewer heroes may support a greater number of humble programmers.

Experiments demonstrate that the resulting ALP/Pregel paradigm scales well on a shared-memory parallel system, achieving 
speedups of up to 17.8x on common graph workloads. Even though vertex-centric algorithms that solve a given problem 
commonly differ from their canonical solutions, this paper compares such an algorithm (used for ranking web pages) with a 
highly optimized canonical solution for completing the same task. The result shows that in sequential execution ALP/Pregel 
achieves up to a 8.99x speedup, outperforming the canonical solution in 12 out of 13 datasets tested. In shared-memory 
parallel execution, ALP/Pregel achieves a 0.276–5.76 times speedup over a highly optimized implementation of the canonical 
PageRank algorithm. The slowdowns, which are down to 0.276x, are mostly due to the workspace not fitting in L3 cache for 
the vertex-centric algorithm. For the smallest and largest datasets where such cache effects are less apparent, ALP/Pregel 
is faster in 3 out of 6 instances with speedups of up to 5.73x. This indicates that humble algorithms may still achieve hero 
performance, contributing a solution to the looming crisis in software productivity.
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1 Introduction

The perhaps esoteric title of "Humble Heroes" relates to 

one of the major challenges in computing: programming 

potentially highly parallel and highly heterogeneous 

resources, without complicating the task to the point where 

only a small percentage of highly skilled programmers can 

write efficient programs.

Writing software grows more and more difficult due to 

the increasing complexity of computer architectures, 

coupled with a diverse and growing range of architectures 

that programs should cope with. The recent hardware 

trends show increase both in the number of non-uniform 

memory access (NUMA) designs and the degree of non-

uniformity  — there are already four to eight NUMA domains 

on a modern CPU — while both the per-core memory 

capacity and bandwidth are decreasing. These factors will 

significantly increase pressure on future software design 

for any given architecture. Additionally, heterogeneity may 

appear on a wide spectrum from a single chip consisting 

of different types of processing units to large-scale data 

centers connecting a diverse range of architectures. Within 

and between these extremes, heterogeneity will realistically 

continue to appear.

With the diversification of architectures and the increase of 

their design complexity and heterogeneity, contemporary 

software technologies no longer scale. Maintaining standard 

libraries, for example, requires dedicated programmers 

with theoretical, algorithmic, domain, programming, 

and hardware expertise in order to achieve acceptable 

performance on a given architecture. The required breadth 

of expertise for maintaining standard libraries sets this class 

of programmers apart from the majority — colloquially, we 

call them hero programmers.

1.1 Humble Programming

1.2 The Software Bottleneck

1.3 Outline

In contrast to hero programmers, Dijkstra first coined 

the concept of a humble programmer . Paraphrasing his 

monologue [Dij72], this concept entails approaching 

programming while fully recognizing the incredible 

complexity of the task, by preferring modest and elegant 

programming languages that respect the limitations of the 

human mind . Perhaps implicit in humble programming, 

there is acceptance of a performance trade-off, favoring 

programming productivity over performance. This paper, 

however, provides evidence that performance and 

productivity need not be mutually exclusive.

Contemporary examples of humble programming models 

that scale across large-scale computational resources include 

MapReduce [DG08], Pregel [MAB+10], and Spark [ZCF+10], 

all of which make it possible to drive complex large-scale 

systems using simple, elegant, and easy-to-use abstractions 

that any programmer can understand. These programming 

models have been extremely successful in providing parallel 

compute power to humble programmers, allowing them to 

quickly deploy and scale up a variety of workloads.

Hero programmers, by contrast, strive to achieve peak 

performance — or as close to it as possible — for any given 

workload on any given architecture. They embrace the 

complexity that comes with the task, using low-level interfaces 

such as assembly language, intrinsics, threading interfaces, 

remote direct memory access, and message passing. The 

resulting code requires significant time and effort to build and 

is costly to maintain. Updating the code to novel versions of 

the architecture it was originally written for remains costly, 

while supporting completely novel architectures requires a 

ground-up duplication of all these efforts.

If the future is to be increasingly heterogeneous in nature, 

then the future software stack must not be dependent 

on hero programmers: there will never be enough expert 

programmers to support the many application domains 

that require mapping to different architectures. Instead, 

the future software stack must speak primarily to humble 

programmers, be deployable on different architectures, 

and achieve good performance — all while avoiding the 

software bottleneck.

Section 2 reviews the MapReduce and the vertex-centric 

Pregel [MAB+10] programming interfaces, providing a more 

in-depth characterization of the properties of successful 

humble programming models. Section 3 describes the 

novel Algebraic Programming (ALP) humble programming 

paradigm, and in particular ALP/GraphBLAS, which achieves 

hero-level performance on both shared- and distributed-

memory systems [YDNNS20].

Section 4 notes that, while ALP may be a significant leap 

forward for anyone comfortable with using algebraic 
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annotations to express algorithms, some humble programmers 

may prefer to use alternative paradigms. The section 

asserts that neither forcing a single paradigm on humble 

programmers nor support ing an unchecked set of 

potentially many humble paradigms solves the challenge of 

productively using future large-scale heterogeneous systems. 

Instead, it advocates the alternative approach this paper 

takes: automatic translation of one humble programming 

model into another.

Section 5 realizes this ideal for Pregel and ALP, by introducing 

a C++ API for translating vertex-centric programming into 

ALP at compile time, thus supporting multiple humble 

paradigms with a single software stack. Section 6 presents 

experimental results, showing that the cost of simulating a 

Pregel interface on top of ALP is negligible and that such 

an interface achieves comparable performance to direct 

programming in ALP/GraphBLAS — it even outperforms 

direct programming if some relaxations are permissible. 

Section 7 concludes this paper and presents a future outlook.

2 Influential Humble Programming 
Models

This section discusses two pivotal humble programming 

models that have made massively parallel computing 

accessible to the public rather than to a limited group of 

parallel programming experts: MapReduce and Pregel.

2.1 MapReduce

In MapReduce, data items are key-value pairs (k, v) from 

domains K and V, respectively, and programs are a sequence 

of two alternating phases: map and reduce.

Let D0 ⊂ K × V  be the set of initial data items. The i-th map 

phase takes each key-value pair dk from D2i, where the 

integer k is in the range of [0, |D2i|), and maps it to a 

possibly empty set of new pairs fi(dk). Then, one of the 

following may happen: the original pair dk is filtered out, 

one new pair is generated, or an arbitrary number of new 

pa i r s  i s  genera ted .  The  mapp ing  func t ion  fi :

K × V → P(K × V ) is user-defined and may be different for 

each round i. The original set of data D2i is discarded and 

replaced by the set of transformed entries D2i+1.

The i-th reduce phase operates on all keys in the current data 

set D2i+1, specifically, the set Ki = {k ∈ K s.t. ∃(k, v) ∈ D2i+1}. 

For a key k , assume there are r > 0 key-value pairs 

(k, v0), . . . , (k, vr−1), then the reduction operation computes 

v� = �r−1
i=0 vi and produces an entry (k, v�) in D2(i+1). The 

entry replaces all key-value pairs with key k in D2i+1 — this 

repeats for each key in Ki . As with the user-defined 

mapping function, the reduction operator � is user-defined 

and may differ for each round.

While the mapping operations may be arbitrary, it is 

helpful if the reduction operators are associative, in which 

case the reduction can be automatically parallelized by 

systems like ALP; otherwise, the reduce phase can only be 

parallelized over each key k ∈ Ki , limiting the amount of 

parallelism exposed.

The round-based nature of a MapReduce communication, 

which consists of the map phase and the reduce  phase, 

is closely related to the bulk synchronous parallel (BSP) 

paradigm of parallel computing [Val90]. The map phase 

induces no communication between parallel compute units 

whereas the reduce  phase does require communication. 

BSP models a parallel system as local compute units with 

local memory, interconnected by a full-duplex network. 

Each local compute unit executes a program in two rounds 

— like MapReduce does. Each round includes two phases: 

1) local computations using local memory elements, and 

2) arbitrary data movement patterns between memory 

elements. On any one compute unit, a next round may only 

proceed when all incoming and outgoing messages have 

been received and sent, respectively. This does not imply 

that a global synchronization barrier exists between rounds.

There are two differences between direct-mode BSP and 

MapReduce: 1) BSP operates at the coarse granularity of one 

task per process while MapReduce operates at the 

granularity of the dataset sizes |Di|; 2) BSP allows arbitrary 

communication patterns while MapReduce always sorts on 

keys. L. G. Valiant [Val90], however, proposed an automatic 

mode of BSP that allows the simulation of PRAM algorithms 

on a BSP architecture. The hashing mechanism employed in 

this mode is typically mirrored in MapReduce implementations 

such as Hadoop [SKRC10], in Pregel realizations such as 

Giraph [Ave11], and in the Spark framework [ZCF+10].

Such simulation techniques come at a cost and preclude the 

application of communication-optimal algorithms. Thus, 

orders of magnitude performance differences between 

humble programming frameworks and the direct-mode 

BSP are not uncommon. Suijlen and Yzelman made a 

performance comparison between ALP/GraphBLAS and 

Spark [SY19] (when both use ten nodes) and reported 
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2.2 Pregel

a two-orders of magnitude performance difference for 

the PageRank algorithm on a moderate data size (of 

approximately 298 million edges).

number of unique identifiers that remain, and the 

component to which each vertex belongs is indicated by its 

identifier.

This vertex-centric algorithm and its termination criterion 

are intuitive to understand and therefore fit the bill of a 

humble solution for solving the SCC problem. However, if 

the input to this algorithm is an undirected line graph, the 

number of rounds required will be |V |, which means that |V | 
vertex programs will be active per round, and that the work 

for this SCC algorithm amounts to Ω(|V |2). By contrast, the 

Awerbuch-Shiloach [SV80, AS87] algorithm for SCC can 

achieve O(|E| log |V |) work complexity. Algorithms with such 

improved bounds can be implemented on top of a vertex-

centric framework but will be far less humble in nature 

[SW14]. The same holds for ALP and GraphBLAS; consider, 

for example, the linear-algebraic variant of Awerbuch-

Shiloach by Zhang et al. [ZAB20]. 

Since adversarial graph structures such as line graphs do not 

naturally occur in the real world, the quadratic algorithm 

may be acceptable in practice — in which case the humble 

choice suffices. This paper, in line with its motivation, thus 

considers only easy-to-understand humble algorithms, 

leaving the important task of finding and realizing 

asymptotically optimal algorithms to the hero programmers.

2.3 Common Factors

The concepts shared by the successful MapReduce and 

Pregel programming models are as follows: First, they both 

operate on sets of data and express parallelism mainly 

by operating concurrently on data elements within those 

sets, which is known as a data-centric  approach. Second, 

both their ways of expressing parallelism are implicit. 

Programmers express operations by mutating one set of 

data into another without considering their parallelization. 

Third, operations proceed round-by-round, thus exposing 

a sequential view of the final programs. This is similar 

to the direct-mode of BSP and traditional imperative 

programming. Fourth, efficient implementations of these 

two models exploit the imposed program structure to 

enable both scalable execution and a high degree of 

overlap between executing rounds and phases — this is 

achieved by overlapping communication with computation 

and exploiting parallel slackness [Val90, MAB+10]. These 

four concepts are furthermore also shared with another 

successful humble programming model: Spark [ZCF+10].

Pregel is a programming model for graph computations 

[MAB+10]. Assume the data graph G = (V,E), then Pregel 

allows defining a round-based computation for each vertex 

v ∈ V  to execute. Each round consists of two steps: 1) 

execution of the user-defined program on each vertex; and 

2) exchange of messages via the edges E. Messages are 

broadcast from vertices v ∈ V , that is, a message m ∈ M  is 

sent to all neighbors N(v) = {w ∈ V | (v, w) ∈ E} of v.

Such vertex-centric  programming models have achieved 

great success and inspired a significant number of vertex- 

and edge-centric programming frameworks [MWM15]. The 

round-based nature of vertex-centric programming, like that 

of MapReduce, is also a variation of the BSP model — like 

MapReduce, vertex-centric programming applies parallelism 

in a fine-grained fashion by mapping the programs on the 

input data itself. Most variants of Pregel follow the principle 

that while the algorithm is strictly round-based, the 

execution of such a program need not be. As such, latency 

may be hidden by overlapping the message communication 

phase of one set of vertices with the computational phase 

of other sets of vertices. This resonates with Valiant's 

automatic-mode BSP, which performs similar latency hiding 

through overlapping communication and computation 

phases [Val90].

Consider, as an example of a vertex-centric program, the 

problem of determining the strongly connected components 

(SCCs) of an undirected graph G = (V,E), that is, identifying 

the minimum number of subsets Vk ∈ V  where (Vi, E), are 

strongly connected1. A simple vertex-centric program 

determines these subsets in two stages: 1) Each v ∈ V  is 

assigned a unique identifier; 2) During each round, each 

vertex sends its current identifier to its neighboring vertices, 

and overwrites the current identifier to the largest value 

contained in all incoming messages if that value is strictly 

larger than the current identifier. If the current identifier is 

not overwritten in the second stage, the vertex votes to halt 

the program. When all vertex programs vote to halt the 

program, the execution terminates. Once the execution 

terminates, the number of SCCs k corresponds to the   

1 A graph or subgraph is strongly connected only if there is a path 
between any two of its vertices.
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3.1 Algebraic Containers

3.2 Algebraic Structures and 
Algebraic Type Traits

The ALP paradigm provides a data-centric, sequential, and 

imperative programming approach based on algebraic 

concepts and annotations. Designed to be humble, this 

paradigm presents three algebraic concepts to programmers: 

containers, structures, and primitives. ALP/GraphBLAS, 

introduced by Yzelman et al. as a C++ realization of the 

GraphBLAS [YDNNS20, BMM+17, BBM+19], focuses on 

sparse linear algebra. In ALP/GraphBLAS, containers take 

the form of vectors and matrices; structures can be binary 

operators, monoids, or semirings; and operations can be 

element-level applications of a binary operator, a matrix–

matrix multiplication, and so on.

grb::Vector< double > x( n );

grb::Vector< bool > s( n, 1 );

grb::Matrix< void > A( m, n, parser.nz() );

Note that the element type of an ALP container appears as 

a template argument, as with the STL.

The extraction of data from ALP containers proceeds using 

iterators that can be retrieved through the begin, cbegin, 

end, and cend functions. These output iterators also 

conform to the STL, but support only the const−variants, 

that is, values in containers cannot be adapted through 

iterators. In addition to data ingestion through iterators, 

programmers may also set a vector to be a dense one with 

all its values set to a specific given value:

grb::set( x, 1.0 );

Likewise, one may set a single element of a container:

grb::setElement( s, true, n / 2 );

In the preceding examples, x corresponds to a dense vector 

(1, 1, ..., 1), while s corresponds to a sparse vector where 

only one nonzero exists at position n/2 with the value (true).

Containers in ALP, when declared, are initially empty  — 

meaning that they contain no values. By default, the 

minimum capacity of a container equals its maximum 

dimension. That is, a newly created vector of size n holds no 

values but has the capacity for n values. Similarly, a novel 

m× n matrix holds no values, and its default capacity is at 

least max{m,n}. Larger or smaller capacities may be set 

when new containers are created, while existing containers 

can be resized to hold more or fewer values through 

grb::resize . An ALP implementation may assign 

capacities that are larger than requested, but not smaller. If 

a requested minimum capacity cannot be guaranteed, an 

error will be returned.

Using standard template library (STL) compatible iterators to 

C++ STL containers, data can be ingested into ALP containers 

via the two primitives: grb::buildVectorUnique and 

grb::buildMatrixUnique. The 'Unique' suffix in these 

primitives indicates that a source container shall not contain 

duplicate entries, i.e., multiple values shall not map the 

same container coordinate. The current size of a vector is 

returned via grb::size, the row size and column size of 

a matrix are returned via grb::nrows and grb::ncols, 

respectively, and the current number of values in a container 

can be referenced via grb::nnz. All values can be erased 

via grb::clear.

The following three statements are examples of creating a 

vector with the default capacity, a vector with potentially 

smaller capacity, and a matrix with the exact initial capacity 

as returned by a matrix file parser, respectively:

An example of a binary operator is addition of double-

precision floating point numbers, which ALP exposes as a 

C++ class template:

grb::operators::add< double >

An operator � may have algebraic properties such as 

associat iv i t y  (a� (b� c) = (a� b)� c),  commutat iv i t y 

(a� b = b� a), and idempotency (a� a = a). ALP/GraphBLAS 

exposes such properties through algebraic type traits , for 

example,

• grb::is_associative< grb::operators::add< double > 
>::value, which reads true;

• grb::is_commutative< grb::operators::divide< float 
> >::value, which reads false; or

• grb::is_idempotent< grb:operators::min< unsigned int 
> >::value, which reads true.

Algebraic type traits can be inspected at compile-time, thus 

enabling semantic checks and compile-time optimizations 

guided by algebraic properties.

Richer algebraic structures include monoids and semirings, 

which may be composed of operators and identities. For 

example,

3 Algebraic Programming
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3.3 Algebraic Primitives

grb::Semiring<

    grb::operators::add< double >, 

    grb::operators::mul< double >

    grb::identities::zero, grb::identities::one

>

describes the standard numerical addition and multiplication 

over doubles, also called the plus-times semiring. Operators 

each have a domain name attached as a template argument. 

Identities must have an element in those domains and 

otherwise the code will not compile.

For any binary operator � : D1 ×D2 → D3 , the three 

domains potentially differ. Take a look at the following 

example:

typedef grb::operators::argmax< 

    std::pair< size_t, float >,

    std::pair< size_t, float >,

    size_t

> ArgmaxUINT_FP32;

This example describes the argmax operator over tuples of 

integers and floating point numbers, resulting in an integer 

as per

argmax((i0,α0), (i1,α0)) =




i0, if α1 ≤ α0

i1, otherwise.

Such binary operators may still form monoids or semirings, 

for example,

grb::Monoid< ArgmaxUINT_FP32,
    grb::identities::infinity >

depicts a valid monoid where "infinity" over unsigned 

integers will be interpreted as the maximum representable 

value maxint , while "infinity" over a tuple is composed by 

recursion over the tuple types — which, in this case, resolves 

to (maxint ,∞).

Consider element-wise application in the sparse case: 

grb::Vector< double > d( n, 1 );

grb::operators::assign_left_if< double, bool, double > 
myOp;

grb::eWiseApply( d, x, s, myOp );

While x is dense, s contains only a single nonzero. Because 

the algebraic structure of a simple binary operator does not 

allow for the interpretation of missing values from a 

container, ALP will only apply the requested binary 

operation on nonzeroes xi and si that appear on the same 

coordinate i, ignoring any values in x that do not have a 

matching value in s and vice versa. Consequently, the above 

results in a single entry, namely, dn/2 = xn/2.

An associative operator, joined with an identity, forms a 

monoid, which allows algebraic primitives to interpret missing 

values in sparse containers. The following example shows the 

behaviors of numerical multiplication as an operator rather 

than a monoid, under element-wise application:

grb::Vector< double > oneTwo( n, 1 );

grb::setElement( oneTwo, 2.0, n/2 );

grb::operations::mul< double > mulOp;

grb::Monoid<

    grb::operations::mul< double >,

    grb::identities::one

> mulMon;

grb::eWiseApply( y, x, oneTwo, mulOp );  

// y = oneTwo

grb::eWiseApply( y, x, oneTwo, mulMon ); 

// y = (1,..., 1,2,1,...1)

The grb::eWiseApply is an out-of-place primitive. The 

grb::foldl and grb::foldr provide in-place variants 

instead:

grb::foldl( y, oneTwo, mulMon );         

// y = (1,..., 1,4,1,...,1 )

Some operations require richer algebraic structures. 

Consider, for example, the sparse matrix–vector (SpMV) 

multiplication y = Ax:

grb::Semiring<

    grb::operators::add< double >, 

    grb::operators::mul< double >,

    grb::identities::zero, grb::identities::one

> mySemiring;

grb::clear( y );

grb::mxv( y, A, x, mySemiring );

ALP defines that only grb::set and grb::eWiseApply 

can operate in out-of-place fashion, whereas all other 

primitives have in-place semantics. For example, the above 

grb::mxv sets y to y ⊕Ax — with ⊕ being the additive 

operator of the given semiring — and does not set y to Ax. 

If the latter is intended, the output container must be 

cleared first, as in the above example.

An algebraic primitive combines containers and structures, 

modifying the former in a way that depends on the latter. 

Perhaps the most simplistic operation takes two input 

vectors and generates one output vector by applying a given 

binary operator in an element-wise fashion. For example, 

grb::Vector< double > y( n );

grb::eWiseApply( y, x, x, 

    grb::operators::add< double >() );

computes y = x� x, where � is given by the algebraic 

structure provided (simple numerical addition, in this 

example). Using the earlier examples that defined and 

populated x and after executing the above, y reads (2, 2, … 2).
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All primitives with container output support masking. Since 

the vector s evaluates true only at position n/2,

grb::mxv( y, s, A, x, mySemiring );

requests only the computation of yn/2, leaving any other 

elements as-is. We may also invert the effective mask 

through descriptors , which provide mechanisms that 

modify the interpretation of input containers such as 

masks, and will prove useful later in this paper. The 

following example updates all entries of y except the one 

at position yn/2
:

grb::mxv< grb::descriptors::invert_mask >( y, s, A, x, 
mySemiring );

Yzelman et al. recognized that in the blocking mode 

of execution where every primitive call must complete 

before returning [BMM+17], performance may suffer 

due to unnecessary data movement in memory-bound 

computations. Take the following code for example.

grb::operators::min< double > minOp;

grb::eWiseApply( y, x, x, minOp );

grb::eWiseApply( x, y, y, addOp );

If the two primitives are executed one by one, elements 

from x and y are brought from the main memory to the 

CPU core(s) twice2. However, this could be reduced to 

once if the two calls were fused. Hence, Yzelman et al. 

introduced the grb::eWiseLambda primitive that allows 

the execution of arbitrary lambda functions on one or more 

vector containers. The above snippet, for example, could be 

replaced with a semantical equivalent as below:

grb::operators::min< double > minOp;

grb::eWiseLambda( [&x, &y] (const size_t i) {

        grb::apply( y[ i ], x[ i ], x[ i ], minOp );

        grb::apply( x[ i ], y[ i ], y[ i ], addOp );

    }, x, y

);

This fuses the calls to y and x and may complete up to 2× 

faster than the preceding code.

The square bracket vector operator (e.g., x[ i ]) in ALP is only 

valid when 1) it is used inside a lambda function passed to

grb::eWiseLambda, and 2) index i refers to a nonzero value 

that was already present in the related container when the 

eWiseLambda was invoked. Any other use invites undefined 

2 This assumes a large enough n compared to the last-level cache of the 
target architecture.

behavior. The first vector argument to grb::eWiseLambda 

(x on the second-to-last line) defines which indices the 

eWiseLambda shall iterate over. The other vector arguments 

(such as y on that same line) must correspond to any vectors 

that are captured in the lambda. For example, the following 

snippet will only set xn/2 equal to 3.14, while leaving any other 

non-zero value of x unmodified:

grb::eWiseLambda( [&x] (const size_t i) {
        x[ i ] = 3.14;

    }, s, x

);

This element-wise lambda, apart from its intended use 

case of manually fusing ALP operations, provides critical 

functionality for translating vertex-centric programs into 

ALP (demonstrated in Section 5.4). Moreover, in the context 

of humble programming, recent work by Mastoras et 

al. provides mechanisms by which ALP/GraphBLAS may 

automatically fuse operations [MAY23, MAY22] — Section 

7.2 discusses the implications of this recent development for 

vertex-centric programs.

3.4 Element-wise Lambdas

3.5 Final Remarks

4 Motivation

The ALP paradigm expresses programs as sequential, data-

centric, and standard C++ programs. It also automatically 

manages performance and takes care of the corresponding 

code optimizations and parallelization. For example, ALP 

enables distributed-memory parallel computations that 

All ALP primitives return error codes, which this paper does 

not discuss for the sake of brevity. A special note, however, 

is that the program must guarantee sufficient capacities in 

output containers, as otherwise the related operation may 

fail. For example,

grb::set( s, false );

may fail because the requested capacity of s during 

construction was 1, which is smaller than its total size 

n. This work assumes, and in implementation ensures, 

sufficient vector capacities.

While this section has not introduced the ALP/GraphBLAS 

API or other ALP extensions in full, it lays the foundation 

for the remainder of this paper. For full details of the ALP/

GraphBLAS API and other ALP extensions, read the papers 

[BMM+17, YDNNS20, MAY23, MAY22].
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No programming model or language has been successful 

without educating programmers on its use. In the case 

of ALP/GraphBLAS, education may be relatively simple 

because most programmers already make implicit use 

of algebraic concepts, for example, linear algebra and its 

implicit use of the real semiring, or set algebraic concepts 

like orders implicitly used when sorting. Moreover, the idea 

that programming should closely follow mathematical 

concepts is not new; it forms the basis behind the design of 

the STL and generic programming [DS00, SM09, SR14] — 

standard tools and languages used by a significant portion 

of programmers. Algebraic concepts also appear in standard 

computer science texts, with the earliest references to the 

explicit use of semirings in programming included in the 

seminal works by Aho, Hopcroft, and Ullman [AHU74] and 

Cormen, Leiserson, and Rivest [CLR92].

4.1 Educate

4.2 Extend

4.3 Expand

process graphs of up to 42.5 billion edges over multiple 

multi-socket nodes using simple humble algorithms. This is 

made possible by the basic algebraic concepts with which 

ALP programmers annotate their programs. ALP makes use 

of those high-level annotations to select the appropriate 

optimizations automatically, allowing programmers to focus 

entirely on the mathematics [YDNNS20].

However, while most programmers have studied linear 

algebra at some point during their studies, most programmers 

do not consciously use linear algebraic concepts — such as 

monoids and semirings — on a daily basis. This limits the 

humble appeal of ALP. Separately, a key question is how many 

practical workloads naturally map to the ALP paradigm.

In motivating the broader use of ALP and other humble 

programming paradigms, this section identifies three broad 

approaches:

• educate programmers on the use of algebraic concepts 

in programming;

• extend ALP functionalities to support broader ranges of 

workloads; and

• expand other humble programming models into ALP.

This paper primarily focuses on the third approach.

However well programmers may prove to be in handling 

algebraic concepts explicitly, and however broad the 

scope of applicability of the ALP paradigm may prove to 

become, the humble mindset dictates that programmers 

should always be allowed to use the tools that they 

consider most intuitively suitable for different programming 

tasks. Nevertheless, unchecked growth in software stacks 

supporting different programming paradigms, many 

architectures, and many heterogeneous configurations, does 

not scale. This implies that the number of programming 

tools with distinct software stacks should be minimized.

Breaking the paradox of these seemingly conflicting demands, 

this paper proposes that humble programming models can 

be automatically expanded into other, more fundamental 

humble programming models. With such a mindset, many 

humble programming models could exist, though only very 

few should be fundamental. The many humble models 

should automatically translate to a fundamental one, and 

only fundamental programming models should be backed 

by an automatically optimizing, parallelizing, and ideally 

architecture-portable software stack.

This paper prototypes this vision by automatically 

translating the successful, scalable, and humble vertex-

centric programming model Pregel [MAB+10] into the ALP 

paradigm. It shows how automatic translation enables 

multiple humble programming paradigms that share the 

same software stack, demonstrates both the performance 

and scalability of this approach, and consequently proposes 

ALP as a fundamental humble programming model. With 

this solution, humble programmers can rely on multiple 

programming interfaces and select the most suitable ones 

for each job, while hero programmers can focus their efforts 

on a limited number of fundamental programming models 

and software stacks.

data [KG11, KJ18]. This paper already makes use of extensions 

over the C GraphBLAS standard [BMM+17, BBM+19] 

introduced by Yzelman et al. [YDNNS20], while Section 7.3 

proposes two other extensions that would enable automatic 

translation of MapReduce programs into ALP. Similar 

extensions are set to enlarge the scope of ALP applicability 

and are the subject of ongoing research. It is important that 

such extensions remain minimal as well as faithful, that is, the 

core set of ALP primitives should remain as few as possible, 

while ALP containers, structures, and primitives must have 

clear corresponding concepts in mathematics.

Ongoing research should push the boundaries of ALP 

applicability beyond linear algebra, graph computing, and big 
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5 ALP/Pregel

This section first describes the programming interface 

for a vertex-centric programming model on top of ALP/

GraphBLAS. It is a pure vertex-centric interface that does 

not expose ALP concepts, except for a commutative monoid 

over which incoming messages are to be reduced. Using 

this interface, the SCC algorithm is revisited and precisely 

formulated, and an ALP/Pregel program is introduced 

for web page ranking based on the canonical PageRank 

algorithm [PBMW99].

5.1 Interface

5.2 SCC AlgorithmThe C++ interface supports two termination mechanisms: 

vote-to-halt and inactivation of vertex programs. For the 

former, all vertex programs vote on whether to halt the 

program, which is terminated only if all active vertices vote 

to halt it. For the latter, vertex programs can set themselves 

inactive, after which point they shall no longer participate in 

subsequent rounds. If all vertex programs are inactive, then 

the overall program terminates.

Algorithm 1 shows the SCC algorithm in our vertex-centric API, 

and Algorithm 2 shows a simplified PageRank algorithm. Both 

algorithms are located in the grb::algorithms::pregel 

namespace and provide a concise way of introducing the 

ALP/Pregel interface.

For both examples, the vertex-centric program corresponds 

to the program static member function defined. Each 

program 1) operates on given vertex data of a program-

defined type, 2) expects an incoming message of a 

potentially different type, 3) generates an outgoing message 

of a potentially third different type, 4) has read access to 

program-specific data and other parameters, and 5) has 

access to a predefined PregelState type instance providing 

read access to Pregel metadata and write access to Pregel 

termination controls.

Briefly summarizing the earlier SCC example for undirected 

graphs, every vertex is initially assigned a unique identifier 

(ID) integer. Each vertex then broadcasts its ID, overwriting 

its local ID by the maximum ID received. If the current ID 

is already the maximum and no update is performed, the 

program votes to halt the execution. One may intuitively 

find that, in line with being a humble programming model, 

this algorithm indeed converges to a correct solution where 

Algorithm 1 Vertex-centric SCC algorithm

template< typename VertexIDType >

struct ConnectedComponents {

 struct Data {};

 static void program(

  VertexIDType &current_max_ID,
  const VertexIDType &incoming_message,
  VertexIDType &outgoing_message,
  const Data &parameters,

  grb::interfaces::PregelState &pregel

 ) {

  if( pregel.round > 0 ) {

   if( pregel.indegree == 0 ) {

    pregel.voteToHalt = true;

   } else if( current_max_ID < incoming_message ) {
    current_max_ID = incoming_message;
   } else {

    pregel.voteToHalt = true;

   }

  }

  if( pregel.outdegree > 0 ) {

   outgoing_message = current_max_ID;
  } else {

   pregel.voteToHalt = true;

  }

 }

};
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every component is assigned a unique ID that corresponds 

to the maximum of values initially assigned to all vertices in 

the component.

The ID type may be any integer, such as unsigned int or 

size_t, and incoming and outgoing messages are of the 

same type. The algorithm does not require any algorithm-

specific parameters (hence the empty Data class on line 

4 of Algorithm 1). It exemplifies the use of the in-degree 

(line 2 of the program body) and out-degree (line 10 of the 

program body) metadata that our Pregel API provides, and 

makes use of the vote-to-halt mechanism. The program 

terminates within d steps, where d is the maximum diameter 

of all components in G.

Execution of the strongly connected algorithm requires 

the Pregel interface to be initialized over a specific 

graph. Conversely, in ALP/GraphBLAS, a graph file is 

typically opened using a parser and then ingested into a 

grb::Matrix instance, for example, by

grb::Matrix< void > A( parser.m(), parser.n(), parser.

nz() );

grb::buildMatrixUnique( A, parser.begin(), parser.end() 

);

The same graph file should now be ingested into a Pregel 

instance:

grb::interfaces::Pregel< void > pregel(

 parser.n(), parser.m(),

 parser.begin(), parser.end()

); 

The void template parameter to the Pregel interface 

indicates that edge weights must be ignored. This is because 

Pregel algorithms determine the message patterns based on 

the edge structures. Nevertheless, the template argument 

remains for future extensions that may be considered edge-

centric, or vertex- and edge-centric, programming paradigms.

Once the Pregel instance is instantiated, it may execute any 

Pregel algorithm on the underlying graph. The execution 

employs the execute member function of the Pregel 

Algorithm 2 Vertex-centric PageRank algorithm

template< typename IOType >

struct PageRank {

 struct Data {

  IOType alpha = 0.15;

  IOType tolerance = 0.00001;

 };

 static void program(

  IOType &current_score,
  const IOType &incoming_message,
  IOType &outgoing_message,
  const Data &parameters,

  grb::interfaces::PregelState &pregel

 ) {

  // initialise

  if( pregel.round == 0 ) {

   current_score = static_cast< IOType >(1) /
    static_cast< IOType >(pregel.num_vertices); 
  }

  // compute

  if( pregel.round > 0 ) {

   const IOType old_score = current_score;
   current_score = parameters.alpha +
    ( static_cast< IOType >(1) - parameters.alpha ) * incoming_message;
   if( fabs(current_score-old_score) < parameters.tolerance ) {
    pregel.active = false;

   }

  }

  // broadcast

  if( pregel.outdegree > 0 ) {

   outgoing_message = current_score / static_cast< IOType >(pregel.outdegree);
  }

 }

};
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the underlying graph, and grb::ILLEGAL will be returned 

if any of the passed vectors do not have full capacity.

5.3 Vertex-centric PageRank Algorithm

In the second example, the vertex-centric PageRank in 

Algorithm 2 is simplified to the point where it no longer 

corresponds to the canonical algorithm [PBMW99]. Despite 

this, it is a common approximation that appears in vertex-

centric and Spark-based literature, for example, Gonzalez 

et al. [GXD+14]. The algorithm has two canonical algorithm 

parameters: α and tol. The former, α, can be viewed as the 

regularization parameter, or more intuitively, the probability 

that someone viewing a web page visits another web page 

at random rather than via a link on the current page. The 

latter, tol, signifies a desired local tolerance. Once it is met, 

the current vertex will be set to inactive.

The local state of every vertex is its PageRank score, 

represented here by the value of IOType (e.g., double). In 

each round, the vertex-centric program distributes the local 

score equally to all neighbors of the current node. 

Specifically, the local score s is divided across all neighboring 

vertices as an outgoing message with value s/d, where d is 

the out-degree. Incoming messages are aggregated via the 

standard additive monoid, resulting in an incoming score of 

s'. Finally, the vertex-centric program determines the new 

local score as α+ (1− α)s�. If the difference with the 

previous local score is less than tol, the program considers 

the local vertex converged and removes it from further 

rounds of computation. In this case, the local vertex's active 

neighboring nodes assume that the now-inactive vertex 

keeps sending the aggregator monoid identity as its 

outgoing message.

In this example, the out-degree of each vertex is used 

in computing an outgoing message. This example 

demonstrates the use of the PregelState::round 

field — used to keep track of the current round of 

computation — to initialize the vertex weights during the 

first round (lines 1–5 of the program body). Furthermore, 

this example demonstrates that in initialization, global 

information on the total number of vertices in the program 

(PregelState::num_vertices) can be employed within 

vertex-centric programs by normalizing the initial PageRank 

score3. The inner if-statement of the compute block shows 

how a vertex removes itself from computation. And, in 

this example, no novel concepts are introduced as to the 

3 This normalization is didactic – it is not necessary for this PageRank-like 
algorithm to converge.

instance. For example, in the case of starting Algorithm 1,

const size_t n = pregel.num_vertices();
const size_t max_steps = n;
size_t steps_taken;
grb::Vector< size_t > component_IDs( n ), in_msgs( n ), 
out_msgs( n );
grb::RC error_code = pregel.template execute<
 grb::operators::max< VertexIDType >,

 grb::identities::negative_infinity
> (

       &(grb::algorithms::pregel::ConnectedComponents:: 

program),

       component_IDs,
       grb::algorithms::pregel::ConnectedComponents:: 

Data(),

       in_msgs, out_msgs,
       steps_taken, max_steps
);

the execute function is a templated member function whose 

template arguments define the commutative monoid under 

which incoming messages are aggregated. Its domains must 

match that of the outgoing and incoming messages. For SCC, 

all domains should be of the same integer type. For a specific 

vertex, using a monoid structure rather than an arbitrary 

message combiner operator helps ensure the following:

• In cases when no incoming messages are received (e.g., 

because a vertex in-degree is zero or all vertices with 

edges incident to this vertex have become inactive), 

the monoid identity can be substituted as a received 

message, thus ensuring consistent behavior while 

monoid associativity ensures scalable reduction.

• In cases when multiple messages are received in 

an order that potentially differs across rounds and 

executions, the commutativity of the combiner monoid 

ensures consistent behavior.

In the SCC example, we selected the maximum component 

ID. As such, Algorithm 1 demonstrates how the max-monoid 

for message aggregation is passed to the executor. The 

non-template arguments include, in order: 1) the vertex-

centric program, 2) the vertex states as a dense vector, 3) 

the program parameters, 4) buffers for the incoming and 

outgoing messages, and 5) an output field that records the 

number of rounds the program took before termination. An 

optional argument, max_steps, limits this number of rounds. 

If max_steps is not provided, the program will run until a 

termination condition arises.

The error_code grb::SUCCESS will be returned if the 

algorithm terminates correctly, and grb::FAILED will 

be returned if the algorithm did not reach a termination 

condition after the maximum number of rounds was 

completed. grb::MISMATCH will be returned if the message 

buffers do not match the size of the number of vertices in 
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mechanisms used to broadcast outgoing messages (lines 

17–20 of the program body).

As shown in the preceding example, the PageRank program 

is executed on a Pregel instance. However, the vertex weights 

and messages are of type double instead of size_t, and a 

regular additive monoid is used instead of a max monoid. As 

per convention, ALP/Pregel algorithms also provide a static 

member function::execute that constructs the necessary 

communication buffers and monoid definition. With a Pregel 

instance constructed over some input graph as before, the 

following executes the ALP/Pregel PageRank algorithm using 

the default algorithm parameters and an unlimited number 

of rounds:

grb::Vector< double > pr_scores( n );
grb::set( pr_scores, 0 );
grb::algorithms::pregel::PageRank< double >::execute(

     pregel, pr_scores, rounds_taken
);

Theoretically, termination of this program is not guaranteed, 

especially when rounds are limited to a small number 

or when a low α is chosen [LM11]. Section 6 takes care 

to report only experiments where program executions 

terminate successfully.

As noted earlier, this PageRank algorithm does not 

correspond to the canonical version by Page et al. in that 

it lacks contributions from the dangling nodes4. A common 

extension to the original Pregel framework [MAB+10] adds 

global aggregation mechanisms, which would allow for 

correct implementation of the PageRank algorithm. The 

addition of these mechanisms corrects the PageRank updates 

with contributions from the dangling nodes and enables 

global convergence detection. Such mechanisms are provided, 

for example, by the Giraph [Ave11] vertex-centric framework. 

ALP/Pregel, however, does not provide such mechanisms, as 

the author believes they will limit the potential of automatic 

overlap of message exchanges with the execution of rounds. 

This is discussed in more detail in Section 7.2.

ALP/Pregel supports permanently removing vertices from 

execution by setting them inactive. Although this is a 

known optimization for improving convergence for the 

PageRank algorithm [LM11], it is not supported by all 

vertex-centric frameworks. While this mechanism may 

accelerate convergence for the PageRank algorithm, ALP/

Pregel also exploits inactive vertices to accelerate per-

round computations, as described in Section 5.4. The 

examples thus far have introduced all fields available in 

grb::interfaces::PregelState, except for num_edges. 

4 Nodes with out-degree zero.

Field name read or write Description

active write
Set to false to become inactive 
in subsequent rounds

voteToHalt write
Set to true to vote for halting 
the program

round read
The current computation 
round 

num_vertices read
The total number of vertices 
in the current graph

num_edges read
The total number of edges in 
the current graph

indegree read
The in-degree of the current 
vertex

outdegree read
The out-degree of the current 
vertex

vertexID read
The unique ID of the current 
vertex

Table 1  All fields available to a vertex-centric program during computation rounds. 
The fields are sorted from writable ones that control program termination, to read-

only global constants and variables, and finally to read-only constant numbers 
regarding local vertex properties.

The implementation of the vertex-centric ALP/Pregel 

interface translates the program to a while-loop around 

standard ALP/GraphBLAS primitives at compilation time. 

Each execution of the body of the while loop corresponds to 

the execution of one round of computation as well as the 

subsequent termination detection and message exchange. 

Prior to the first round, all vertices are added to the active 

list , and the outgoing message buffer is reset to the monoid 

identity. During each round, the following operations take 

place for vertices that are in the active list:

1 reset the outgoing message buffers using the aggregation 

monoid identity;

2 call the user-defined vertex-centric program, passing 

in the current vertex state the program operates on, 

the buffers for incoming and outgoing messages, the 

algorithm-specific global data (e.g., α and tol for the 

vertex-centric PageRank), and the PregelState instance;

3 determine whether all active vertices have voted to halt;

4 remove the vertices that have set themselves inactive 

from the active list;

5 determine whether all vertices have become inactive;

6 increment the round counter;

5.4 Implementation

Table 1 summarizes all available fields.
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user must be allowed to set an active node to false, which 

does require that actual Boolean values be present in the 

active list. Therefore, the update of active vertices takes place 

directly after calling the user program, and is implemented 

using grb::set (buffer, activeList, true) without 

passing in a structural descriptor. This operation is the only 

step primitive in the ALP/Pregel implementation without a 

structural descriptor. The use of the masked set operation 

ensures that there are fewer non-zeroes in the buffer. Finally, 

the buffer is swapped with the active list to be used as the 

new mask for subsequent steps of the algorithm.

An extra buffer is maintained to support this update step. 

According to the performance semantics defined by ALP/

GraphBLAS, the grb::set on a non-empty container 

implies a cost proportional to the number of non-zeroes 

before the update, plus a cost proportional to the number 

of non-zeroes after the update [YDNNS20]. As such, while 

the buffer takes up Θ(n) memory, the overhead of this 

update step is bounded as Θ(k), with k being the number of 

active vertices before the update.

Termination detection.  Termination detection using the 

vote-to-halt mechanism takes place via a reduction of the 

voteToHalt vector into a Boolean scalar using the logical 

AND monoid, whereas termination detection using the 

inactive mechanism takes place by counting the number of 

non-zeroes in the updated active list.

Message exchange. Describing how to perform message 

exchange and aggregation using vector–matrix multiplication 

may be unclear if the semiring under which this proceeds is 

not described. The given aggregation monoid functions as 

the additive monoid of such a semiring, from whence the 

requirement that the aggregation monoid needs to be a 

commutative monoid. The semiring multiplicative operator is

grb::operators::left_assign_if<
        IncomingMessageType, bool, IncomingMessageType

>

with the Boolean true as its identity element. Denoting the 

application of this multiplicative monoid operation as 

x⊗ y = left assign if (x, y), with x from a user-defined 

domain D and y ∈ {false, true}, then left assign if :

D × {false, true} → D is defined as follows:

x⊗ y = left assign if (x, y) =




x, if y equals true

0, otherwise.

In the latter case, 0 corresponds to the additive monoid 

identity.

7 reset the incoming message buffers using the aggregation 

monoid identity; and

8 exchange messages and aggregate incoming messages 

via grb::vxm. 

Steps 5–8 use the updated active list from step 4.

Data structures. The active list, incoming messages, 

outgoing message, vertex states, in-degrees, out-degrees, 

and vertex IDs are all maintained as grb::Vectors with 

non-zeroes of the following types: bool for the active list, 

user-defined for the message and state vectors, and size_

t for the degree and ID vectors. All vector sizes equal the 

number of vertices in the graph, n. On initialization of a 

grb::interfaces::Pregel instance, the active list is 

initialized to true for all vertices, and the in-degrees and 

out-degrees are computed using SpMV multiplication of the 

graph adjacency matrix with a vector of ones. The vertex 

IDs are computed via

grb::set< grb::descriptors::use_index >( 
    vertexIDs, 0 );

The use_index descriptor writes the index i to each element 

of vertexIDs, instead of the given scalar value 0.

The values of the outgoing (and incoming) message vector 

are reset each round via

grb::set< grb::descriptors::structural >(

    outgoingMessages, activeList, id

);

Here, id is the identity of the aggregation monoid, which is 

of the same type as that of outgoing messages. Note that 

the preceding code resets only the outgoingMessages of 

active vertices and throws away entries corresponding to 

inactive vertices.

Calling the user program. The user program executes 

through a call to grb::eWiseLambda. The lambda function 

passed into the eWiseLambda captures a reference to the 

active list, incoming and outgoing messages, state, in-degrees 

and out-degrees, and vertex IDs. It then calls the user-defined 

program. The eWiseLambda only executes for the vertices 

that remain active in every round by passing activeList as the 

leading mask of the element-wise lambda primitive.

Updating the active list. For efficiency, the active list 

should be maintained as a sparse vector where the number 

of non-zeroes equals the number of active vertices at the 

start of each round. All masked operations can then take 

the structural descriptor, which prevents touching the actual 

Boolean values of each entry in the active list. However, the 
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overhead, again translating to O(k) costs per round. The 

cost of executing a vector program is determined by the 

user, and is linear with k. Specifically, for a vertex-centric 

program that locally takes Θ(1) time, executing all active 

programs costs Θ(k) work.

Again in the worst-case scenario, data movement complexities 

in a shared-memory setting correspond to Θ(k) with regard 

to accessing internal vector states. The persistent state of a 

single vertex and how much of it is touched during each 

round is user-defined. However, if we assume Θ(1) memory 

movement by a vertex-centric program during any round, 

the total memory movement is also Θ(k) per round. Assume 

that the sizes of incoming and outgoing messages are Θ(1), 

the message exchange costs

O
�
k +

�
i∈activeList

di

�
                        (1)

data movement per round, where di is the in-degree of the 

i-th vertex. Although perhaps counterintuitive, exchanging 

messages also implies work. For ALP/GraphBLAS, the work 

bound equals that of Eqn. (1), except that the bound is big-

Theta instead of big-Oh.

For shared-memory parallelization, the above work bounds 

may be divided by T , where T  is the number of threads. 

Parallelization also adds a factor O(T ) to all storage, work, 

and data movement bounds. Consequently, the work bound 

corresponds to the per-thread work, while data movement 

bound considers the data volume moved across the whole 

system.

Likewise, for distributed-memory parallelization, work can 

be divided by P, which is the number of distributed-memory 

processes, while adding a factor O(P ) to all storage, work, 

and data movement bounds. Additionally, the active list 

update and the vote-to-halt termination check each amount 

to a collective reduction across all nodes. This induces O(P ) 

inter-process data movement and work, and as many as 

O(logP ) synchronization steps, where P  is the number of 

distributed processes. The message exchange adds O(k) 

inter-process data movement, assuming an  Θ(1) storage for 

the outgoing messages. Tables 2 and 3 summarize all costs.

These per-round costings are a direct application of the 

ALP/GraphBLAS performance semantics [YDNNS20]. They 

confirm that, for an increasing number of inactive vertices, 

bounds for work and both intra- and inter-process data 

movement improve.

5.5 Summary and Costing

The resulting semiring is, in fact, an improper one — 

because the aggregator identity may be user-defined, 

it may not annihilate under the multiplicative operator. 

However, if the additive monoid is the logical OR with false 

as the additive identity, the resulting semiring with left_

assign_if is, in fact, proper since it reduces to the standard 

Boolean semiring.

The way we use semiring guarantees that the multiplicative 

operator is only ever called using the multiplicative identity 

as the right-hand side input argument, thereby ensuring 

that improper cases for non-logical-OR aggregators are not 

triggered. This must be proceeded carefully as follows: The 

grb::vxm operation in = outG matches non-zeroes gij ∈ G 

to corresponding elements outi from the outgoing message 

buffer, and first applies the multiplicative operator to form a 

temporary tmp = outi ⊗Gij. Because G is a void matrix, gij 

resolves to the semiring identity, true, so that

tmp = outi ⊗ true = assign left if (outi, true) = outi.

This temporary value is then aggregated into inj using the 

user-def ined aggregator monoid.  The ALP/Pregel 

implementation thus ensures that explicit multiplication 

with zero (which may not annihilate) never occurs.

The implementation of vertex-centric programming in ALP/

GraphBLAS makes ample use of its main features:

• composability of monoids and semirings provides the 

flexibility to integrate user-defined aggregation into the 

richer algebraic semiring structure;

•  grb::eWiseLambda allows the execution of any user-

defined operation on the vertex data;

• sparsity, masks, and algebraic structures are exploited to 

achieve high performance automatically.

The implementation requires one ALP/GraphBLAS vector 

container for each of the entries in Table 1, as well as one 

buffer vector for the active list. Through these containers, 

ALP/Pregel uses Θ(n) memory for executing any Pregel 

program. Execution neither allocates nor frees any memory. 

Computing termination conditions costs Θ(k) work, with k 

being the number of active vertices in a given round. In the 

worst-case scenario, capturing vector elements as 

arguments to user-defined vertex-centric programs has O(1) 
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Storage Work Data movement

Round computation Θ(n+ T − 1) Θ(k/T + T − 1) Θ(k + T − 1)

Active list update Θ(n+ T − 1) Θ(k/T + T − 1) Θ(k + T − 1)

Termination check Θ(T ) O(k/T + T − 1) O(k + T − 1)

Message exchange Θ(n+m+ T − 1) Θ((k +
�

i
di)/T + T − 1) O(k + [

�
i
di] + T − 1)

Total Θ(n+m+ T − 1) Θ((k +
�

i
di)/T + T − 1) O(k + [

�
i
di] + T − 1)

Work Data movement Synchronizations

Round computation 0 0 0

Active list update O(P ) O(P ) O(logP )

Termination check O(P ) O(P ) O(logP )

Message exchange Θ(k) Θ(k) 1

Total Θ(k) +O(P ) Θ(k) +O(P ) O(logP )

Table 2  Costs of executing a single round of an ALP/Pregel program on a shared-memory machine. This assumes there are n vertices, of which k are active, m edges, 
Θ(1) execution time of a vertex-centric program, and Θ(1) storage for each of a single vertex state, incoming message, and outgoing message. The work corresponds 

to that of a single thread, and the data movement corresponds to that across the entire machine. The sum 
�

i di is as in Eqn. (1), while T  indicates the number of 
threads within a shared-memory machine. Sequential costs correspond to T = 1.

Table 3  Additional costs of executing a single round of an ALP/Pregel program on a distributed-memory architecture. The costs are in addition to those listed in Table 2, 
only that T should be replaced with the number of threads available at each process multiplied by the number of distributed-memory processes P. Additionally, all its 

data movement costings should be divided by P, and each of storage, work, and data movement adds a factor O(P ).

Experiments are conducted for two purposes: 1) to show 

that humble ALP/Pregel programs can achieve the scalability 

predicted in the previous section, and 2) to show that ALP/

Pregel is competitive against state-of-the-art frameworks. 

For the first purpose, the SCC algorithm is investigated, 

comparing the sequential and parallel results. Then, using 

two variants of the PageRank algorithm, the behavior of 

ALP/Pregel under an increasing number of inactive vertices 

is investigated. Finally, a scalability experiment using 

PageRank algorithms demonstrates that shared-memory 

auto-parallelization of ALP/Pregel behaves as expected also 

when the number of inactive vertices increases.

For the second purpose of comparing ALP/Pregel with state-

of-the-art frameworks, this section first summarizes the ALP/

GraphBLAS performance from the recent work by Mastoras 

et al. [MAY23], who provide an in-depth comparison of ALP/

GraphBLAS against the GNU Scientific Library (GSL), Eigen 

[GJ+10], and SuiteSparse:GraphBLAS [Dav19]. They show 

that the ALP/GraphBLAS PageRank implementation sketched 

in Algorithm 3 is 0.96–9.82 times faster than a PageRank 

6 Experiments implemented in SuiteSparse:GraphBLAS, and 0.64–14 times 

faster than one written using Eigen on shared-memory 

parallel architectures. Both SuiteSparse and Eigen auto-

parallelize over shared-memory architectures, while GSL does 

not. Eigen additionally performs loop fusion, which leads 

to speedups over the blocking ALP/GraphBLAS for small 

matrices. The nonblocking ALP/GraphBLAS implementation 

that Mastoras et al. contribute also achieves loop fusion 

and achieves speedups beyond Eigen for both smaller and 

larger matrices, but will not be considered as part of the 

experiments in this section. Mastoras et al. obtain similar 

results for two other sparse matrix and graph algorithms.

This paper focuses on comparing the ALP/Pregel PageRank-

like algorithm with the canonical ALP/GraphBLAS variant, 

which is taken as the state-of-the-art baseline. This 

paper does not compare ALP/Pregel against the existing 

vertex-centric frameworks such as Giraph [Ave11], since 

such frameworks typically exhibit orders-of-magnitude 

performance losses versus the optimized code [SY19] because 

they rely on file-based fault tolerance. Such comparisons 

are out of our scope because what we look for are humble 

programming models that achieve hero-level performance.
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Experiments are run on a dual-socket Intel x86 machine, 

consisting of two Intel Xeon 6238T processors, each having 

22 cores, a 32 kB private L1 cache per core, a 1 MB private L2 

cache per core, and a 30.25 MB shared L3 cache. The cores, 

clocked at 1.9 GHz, have hyperthreading enabled and turbo 

boost disabled. Each processor has six memory channels 

clocked at 2,933 MT/s, producing 262.2 GB/s of theoretical 

throughput across the total machine. The combined 

computational throughput of all AVX-512 enabled cores is 

2,675 Gflop/s. The single-core memory throughput ranges 

from 9.95 (vector-to-scalar reduction) to 18.4 (triad) Gbyte/s. 

These figures are relevant because ALP/Pregel computations 

are typically memory-bound, achieving far lower speedup 

than the total number of cores would indicate. Indeed, for 

this architecture, a bandwidth-bound application is expected 

to achieve 14.3–26.4 times of speedup.

Our experiments are implemented on v0.6 of ALP/GraphBLAS, 

which is available on GitHub and Gitee [Alg21a, Alg21b]. Its 

sequential reference and shared-memory parallel reference_

omp backends are used both to compile ALP/Pregel programs

and to provide a baseline PageRank implementation.

All software is compiled using GCC 9.3.1 with the -O3 

-mtune=native-march=native -DNDEBUG -funroll-loops

compiler flags. All compilations and experiments are executed

on Linux kernel version 5.8.18. Experiments using OpenMP

define OMP_PROC_BIND=true.

Experiments on small datasets such as gyro_m are repeated 

multiple times to ensure that one timing takes at least 

100 milliseconds. Then, experiments are further repeated 

at least 10 times in order to compute the sample standard 

deviation across all timings. All reported timings have a 

sample standard deviation of less than 3% of the measured 

average time. Timings with sample standard deviation being 

1% higher than the average time are printed in italics , and 

the tables only show three significant digits of each of the 

obtained averages. As such, timings printed in non-italics are 

accurate to a significant degree, while for timings printed in 

italics the least significant digit is likely to be inaccurate.

In this paper, the presented methodology is only not applied 

to three experiments benchmarking the sequential ALP/

Pregel SCC due to a very long run time.

6.1 Methodology

Dataset Name #Vertices #Edges Edges/Vertex Structured

1 gyro_m 17 361 340 431 19.6 no

2 vanbody 47 072 2 336 898 49.6 yes

3 G2_circuit 150 102 726 674 4.84 mixed

4 bundle_adj 513 351 20 208 051 39.4 adverse

5 apache2 715 176 4 817 870 6.74 yes

6 ecology2 999 999 4 995 991 5.00 yes

7 Emilia_923 923 136 41 005 206 44.4 yes

8 Serena 1 391 349 64 531 701 46.4 yes

9 G3_circuit 1 585 478 7 660 826 4.83 mixed

10 Queen_4147 4 147 110 329 499 284 79.5 yes

11 wikipedia-20070206 3 566 907 45 030 389 12.6 no

12 uk-2002 18 520 486 298 113 762 16.1 no

13 road_usa 23 947 347 57 708 624 2.41 no

Table 4  Graphs used in the experiments. All except 11 and 12 are undirected.

6.2 Datasets

Our experiments require input graphs on which to run the 

vertex-centric algorithms. Typical datasets that vertex-

centric frameworks operate on include knowledge graphs 

and graph representations from the Web and other types 

of networks. To also compare against structures that differ 

significantly from typical graphs so that we can gauge the 

effectiveness when faced with problems originating from 

other domains, we include both graphs and sparse matrices 

from various scientific computing domains in our dataset, 

as shown in Table 4.
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Dataset Sequential Shmem. parallel Speedup

1 39.3 (47) 38.6 (47) 1.03×

2 183 (53) 56.2 (53) 3.26×

3 755 (162) 255 (162) 2.96×

4 4 910 (140) 568 (140) 8.64×

5 11 100 (447) 1 970 (447) 5.63×

6 52 300 (2000) 11 400 (2000) 4.59×

7 6 930 (111) 774 (111) 8.95×

8 6 090 (59) 618 (59) 9.84×

9 27 400 (523) 4 500 (523) 6.09×

10 76 200 (178) 5 620 (178) 13.6×

11 189 000 (461) 10 800 (461) 17.5×

12 131 000 (116) 11 900 (116) 11.0×

13 6 080 000 (5681) 668 000 (5681) 9.10×

Table 5  The runtime in milliseconds for executing the ALP/Pregel SCC, Algorithm 1, compiled using the sequential and shared-memory parallel ALP/GraphBLAS backends. The 
numbers of iterations are listed in the parentheses following each timing, and the last column reports the speedup of parallel execution over sequential execution.

All datasets are from the SuiteSparse MatrixMarket collection 

[DH11], and are ordered by the number of vertices they 

contain. In the architecture described earlier, 128k 64-bit 

words (doubles or size_ts) fit into private L2 caches. As such, 

we expect significant data reuse by algorithms operating on 

datasets 1 and 2. Approximately 4M words fit into shared L3 

caches. Given that all algorithms require multiple vectors to 

operate, significant reuse of data in L3 caches should occur 

for datasets 3–10. Datasets above number 10 will always 

induce out-of-cache behavior because the corresponding 

vectors do not fit in L3 caches. As we will describe later in this 

section, performance differences between some PageRank 

implementations results from the difference in the number of 

edges per vertex (also reported in Table 4).

Apart from differences in the number of vertices and edges, 

we augment graphs that have no discernible structure 

when plotting its corresponding adjacency matrix with 

structured matrices. Discernible structures in such matrices 

include having a fixed number of diagonals in the adjacency 

matrix, and with only non-zeroes within a fixed bandwidth 

around the main diagonal. Structured matrices and graphs 

with structured corresponding adjacency matrices induce 

favorable data access patterns that modern hardware 

prefetchers implicitly exploit, which results in very different 

behavior during computations on such graphs. These 

effects are well-known in high-performance computing 

research that deals with sparse matrices. Some datasets, 

such as G3_Circuit, have both structured and unstructured 

components in the adjacency matrix, whereas bundle_

adj has an adversarial structure that has a major impact 

on the performance of linear algebraic libraries and 

programming frameworks [MAY23]. All graphs represented 

by the adjacency matrices are undirected, except 

wikipedia-20070206 and uk-2002.

6.3 SCC Algorithm

We first consider the scalability of ALP/Pregel using the SCC 

for undirected graphs in Algorithm 1. For directed graphs 

this algorithm still terminates, and returns connected 

components where for each vertex v in a given component, 

there exists at least one other vertex u in that same 

component with a path to u to v. Given Algorithm 1 over 

directed inputs retains a meaningful interpretation, our 

experiments use the full dataset in Table 4.

Table 5 compares the wall-clock time of executing the 

related ALP/Pregel SCC algorithm between two modes: 

using the sequential ALP/GraphBLAS backend and using 

the shared-memory parallel OpenMP-enabled backend. We 

emphasize that parallelization is fully automatic and the 

code presented in Algorithm 1 does not need to be changed.
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The number of rounds required by the algorithm is shown in 

the parentheses. In addition, the table also reports speedup 

obtained by shared-memory parallelization. 

The SCC algorithm employs only the vote-to-halt termination 

mechanism so that each round runs with all vertices being 

active. Moreover, parallelization should not affect the number 

of rounds computation requires. This experiment therefore 

measures only the scalability of the shared-memory parallel 

backend using the SCC algorithm.

Parallelization involves unavoidable overheads of at least 

Ω(log T ) .  In ALP/GraphBLAS, it  is bounded by O(T ) 

[YDNNS20]. Therefore, it is certain that for smaller datasets 

on a full system with 88 hyperthreads and two NUMA 

domains, speedups are expected to be far below 26.4x, which 

is achieved by the triad benchmarks5. Since the vote-to-halt 

termination mechanism depends on the vector-to-scalar 

reduction, a significant portion of the vertex-centric paradigm 

will be bound by the 14.3x of speedup for the reduction 

benchmark5. However, as the size of datasets increases, 

speedups are expected to reach the 14.3–26.4 range.

Table 5 reports the same number of rounds for both the 

sequential and shared-memory parallel ALP/Pregel SCC 

algorithms. The maximum speedup, 17.5x for dataset 11, 

falls within the upper range, indicating that parallelization 

of the non-reduction parts of the ALP/Pregel program 

achieves speedups closer to the best-case triad benchmark. 

This indicates that the ALP/Pregel implementation scales on 

shared-memory architectures for the particular case when 

all vertices remain active throughout the computation.

By contrast, the PageRank in Algorithm 2 does make use 

of the inactive vertices. In this case, as the computation 

proceeds, fewer and fewer vertices will partake in the 

computation. Termination of this program does not 

guarantee convergence in the classical 2−norm, nor in the 

inf-norm, even if dangling nodes were accounted for properly.

To compare the impact of the vertex inactivation mechanism 

on the speed of computation, we introduce a global variant 

of the ALP/Pregel PageRank by modifying Algorithm 2. 

Specifically, instead of using the inactivation mechanism, 

the algorithm is modified to use vote-to-halt on local 

convergence detection. As such, we subsequently refer to 

the original Algorithm 2 as the local variant, because it does 

5 See Section 6.1.

not consider a global inf-norm computation but a greedy 

local version of it.

Both the global and local ALP/Pregel PageRank algorithms 

are further compared against the standard PageRank 

implementation using and bundled with ALP/GraphBLAS. 

This algorithm does account for dangling nodes and 

implements convergence detection in the standard 2−

norm [YDNNS20]. Algorithm 3 provides a simplified listing 

of that algorithm for the sake of completeness6. Because 

of the algorithmic differences relating to dangling nodes, 

the standard equivalence of norms does not apply, and 

we therefore cannot directly compare errors between the 

ALP/Pregel implementations and the ALP/GraphBLAS 

implementation (the algorithms are different and converge 

to different values). As described in Section 5.3, the vertex-

centric PageRank is commonly applied, and its global 

variant is most often applied. Table 6 therefore compares 

the local vertex-centric variant against its global variant 

in terms of performance and speed of convergence. It also 

compares both Pregel variants and the canonical PageRank 

approaches to web page ranking in terms of performance.

In terms of the number of iterations, among the three 

different algorithms we compare, it is not the case that the 

vertex-centric algorithms always incur fewer iterations than 

the canonical PageRank, nor that the local variant of the 

ALP/Pregel PageRank always incurs fewer iterations than 

its global variant. Indeed, as Table 6 shows, any algorithm 

can incur the fewest number of iterations, depending on 

the input graphs. The vertex-centric variants do require 

significantly more iterations for the large undirected graphs, 

IDs 11 and 12, to converge, but this may well be due to the 

common presence of dangling nodes in those graphs.

In terms of the execution speed, the local variant is faster 

than the global variant. This is because, as the rounds 

progress, increasingly more vertices become inactive. This is 

confirmed by the time per iteration reported in Table 6. As 

such, we may conclude that our ALP/Pregel implementation 

becomes faster as the number of active nodes decreases. 

One disadvantage of using the element-wise lambda noted 

by Yzelman et al. is that the compiler is no longer able to 

apply vectorization when possible [YDNNS20]. Thus, the 

ALP/GraphBLAS PageRank may be faster than the global 

ALP/Pregel variant even though the former performs more 

operations7. This benefit is expected to decrease as the 

number of edges per vertex increases.

6 See the ALP/GraphBLAS repository [Alg21a] for the full algorithm.
7 i.e., dangling node corrections and 2−norm computations.

6.4 Sequential PageRank
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6.5 Shared-memory Parallel PageRank

The time per iteration reported in the preceding table shows 

that the ALP/GraphBLAS outperforms the global variant, and 

even the local vertex-centric variant in 6 out of 13 cases. For 

the larger graphs, the latter is explained by the observation 

that low edge count per vertex favors vectorization (datasets 

6, 9, and 13). Additionally, a performance gain for the pure 

ALP/GraphBLAS algorithm on small graphs is observed. 

This gain increases on the shared-memory parallel ALP/

GraphBLAS variant, as presented and analyzed in more detail 

in the next section.

In summary, in terms of the time per iteration, the local ALP/

Pregel PageRank is up to 16.8x faster than its global variant, 

and up to 6.84x faster than a state-of-the-art canonical 

PageRank algorithm. In terms of the end-to-end runtime, the 

local variant is up to 7.48x faster than the global one, and 

up to 8.99x faster than the state-of-the-art baseline — the 

biggest slowdown is limited at 0.95x. The local ALP/Pregel 

algorithm is fastest overall in 12 out of 13 cases.

when the arithmetic, including both its precision and order, 

remains unchanged. Although numerical error propagation 

could cause minor variations, comparison of Tables 6 and 

7 reveals no difference in the required number of iterations 

for our algorithms and datasets.

In terms of the execution speed, including both the end-to-

end runtime and the time per iteration, there is no instance 

where the global variant outperforms the local variant. 

In terms of the end-to-end runtime, the state-of-the-art 

PageRank implemented directly on top of ALP/GraphBLAS is 

fastest in eight cases, which are exactly the ones where the 

canonical PageRank achieves the fastest time per iteration. 

However, there is one exception where the local variant does 

achieve the fastest end-to-end runtime, even though in terms 

of the time per iteration the baseline outperforms the local 

variant. Indeed, differences in the time per iteration are more 

pronounced between the state-of-the-art baseline and the 

local variant, with speedups ranging 0.403–10 times.

Table 8 collects the speedups for all variants, similar to 

the SCC study in Section 6.3. The speedups ALP/Pregel 

achieves on bundle_adj (9.24-11.0x) are significantly higher 

than the speedups achieved by the baseline (1.81x). This 

is due to the adversarial structure of the graphs, which 

ALP/Pregel ms. per iteration

Dataset Global Local Baseline Global Local Baseline

1 34.8 (40) 24.7 (39) 31.4 (52) 0.870 0.633 0.604

2 192 (43) 118 (41) 197 (52) 4.47 2.88 3.79

3 175 (38) 78.8 (36) 90.0 (48) 4.61 2.19 1.88

4 3 070 (66) 2 070 (51) 2 330 (60) 46.5 40.6 38.8

5 707 (31) 456 (33) 434 (43) 22.8 13.8 10.1

6 976 (31) 63.5 (34) 375 (30) 31.5 1.87 12.5

7 2 840 (36) 1 180 (36) 2 960 (45) 78.9 32.8 65.8

8 5 090 (40) 2 500 (33) 4 750 (44) 127 75.8 108

9 1 960 (38) 987 (36) 1 100 (48) 51.6 27.4 22.9

10 20 800 (35) 2 780 (35) 25 000 (46) 594 79.4 543

11 40 500 (103) 11 400 (96) 18 100 (55) 393 119 329

12 153 000 (115) 46 100 (104) 72 100 (73) 1330 443 988

13 87 600 (78) 58 800 (72) 62 200 (78) 1120 817 797

Table 6  Results, in milliseconds, of executing sequential PageRank algorithms, comparing the ALP/Pregel variants using global and local convergence against the baseline 
ALP/GraphBLAS PageRank implementation. The numbers of iterations implemented before convergence are listed in the parentheses. The last three columns report the time 

per iteration, with the fastest marked in bold.

Similar to the SCC algorithm, in the case of parallelization 

of PageRank, the number of iterations will not change 
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groups high-degree vertices in one cluster. Since the ALP/

GraphBLAS baseline employs dense unmasked vectors only, 

the shared-memory parallel ALP backend reverts to static 

scheduling during SpMV multiplication. The ALP/Pregel 

variants, however, use a sparse structural mask for which 

the backend reverts to dynamic scheduling during SpMV 

multiplication. This, in turn, avoids the imbalance induced 

by the adversarial graph structure.

The ALP/GraphBLAS PageRank algorithm generally achieves 

better speedups than the ALP/Pregel variants, and the 

global variant tends to achieve better speedups than the 

local variants. While all implementations rely on the same 

OpenMP-enabled ALP/GraphBLAS backend, they rely on 

different OpenMP scheduling: as discussed earlier, the 

ALP/GraphBLAS variant employs static scheduling during 

sparse matrix–vector multiplication, whereas the ALP/

Pregel variants employ dynamic scheduling. Additionally, 

ALP/Pregel employs dynamic scheduling while executing 

the vertex-centric program through the element-wise 

lambda. This is because the user-defined lambda may 

Algorithm 3 A simplified representation of the ALP/GraphBLAS PageRank

using namespace grb;

void pagerank(

    Vector< double > &pr, const Matrix< NonzeroT > &L,

    Vector< double > &temp, Vector< double > &pr_buffer,
    Vector< double > &row_sum,
    const double alpha,

    const double conv

) {

    Monoid< operators::add< double >, identities::zero > addM;

    Semiring< operators::add< double >, operators::mul< double >,

        identities::zero, identities::one > realRing;

    const size_t n = nrows( L );
    set( temp, 1 );

    set( row_sum, 0 );
    vxm< descriptors::dense | descriptors::transpose_matrix >( row_sum, temp, L, realRing );
    eWiseLambda( [ &row_sum, &alpha, &zero ]( const size_t i ) {
            if( row_sum[ i ] > 0 ) { row_sum[ i ] = alpha / row_sum[ i ]; }
        }, row_sum );

    double dangling, residual;

    do {

        residual = dangling = 0;

        foldl< descriptors::invert_mask >( dangling, pr, row_sum, addM );
        set( temp, 0 );

        eWiseApply( temp, pr, row_sum, operators::mul< double >() );
        dangling = ( alpha * dangling + 1 - alpha ) / static_cast< double >( n );
        set( pr_buffer, 0 );
        vxm( pr_buffer, temp, L, realRing );
        foldl< descriptors::dense >( pr_buffer, dangling, addM );
        dot< descriptors::dense >( residual, pr, pr_buffer, addM, operators::abs_diff< double >() );
        if( residual <= conv ) { break; }

        std::swap( pr, pr_buffer );
    } while( true );

}

induce varying workload, depending on the index on which 

it operates. Moreover, some dense vector–vector operations 

in the baseline revert to static scheduling, while the same 

operations in the ALP/Pregel variants are part of the 

dynamically scheduled element-wise lambda. Some ALP/

Pregel metadata updates performed via level-1 operations 

in the global variant also employ static scheduling, whereas 

in the local variants they revert to dynamic scheduling.

Another major effect is regarding the workspace of the 

ALP/Pregel programs. Recall that executing any Pregel 

program requires eight vectors, whereas the ALP/GraphBLAS 

PageRank implementation in Algorithm 3 requires only 

four. This translates to a benefit for smaller graphs, as the 

baseline implementation induces higher data reuse for 

the same problems within the same limited caches. This is 

compounded by an explicit materialization of the messages 

between vertices in the form of incoming and outgoing 

messages, meaning that computed values are copied twice 

as many times as in the baseline implementation, which 

holds zero such copies.
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Speedup vs. Itself Speedup vs. Baseline

Dataset Global Local Baseline Global Local

1 1.12 0.846 0.835 1.21 1.29

2 4.43 3.19 3.66 1.24 1.45

3 2.98 2.03 3.10 0.493 0.746

4 11.0 9.24 1.81 4.61 5.76

5 4.50 3.59 12.4 0.224 0.276

6 4.81 1.02 11.7 0.158 0.515

7 10.8 7.24 31.8 0.354 0.571

8 12.4 9.19 32.5 0.354 0.537

9 5.34 4.06 12.5 0.239 0.361

10 17.8 8.35 35.7 0.599 2.11

11 16.6 13.0 3.60 2.06 5.73

12 13.3 10.4 26.2 0.239 0.622

13 8.94 7.78 23.2 0.273 0.354

Table 8  Speedups of the parallel PageRank variants from Table 7 versus the sequential variants from Table 6.

ALP/Pregel ms. per Iteration

Dataset Global Local Baseline Global Local Baseline

1 31.1 ( 40 ) 29.2 ( 39 ) 37 .6 ( 52 ) 0.778 0.749 0.723

2 43.3 ( 43 ) 37.0 ( 41 ) 53 .8 ( 52 ) 1.01 0.902 1.03

3 58.8 ( 38 ) 38.9 ( 36 ) 29.0 ( 48 ) 1.55 1.08 0.604

4 280 ( 66 ) 224 ( 51 ) 1290 ( 60 ) 4.24 4.39 21.5

5 157 ( 31 ) 127 ( 33 ) 35.1 ( 43 ) 5.06 3.85 0.816

6 203 ( 31 ) 62 .3 ( 34 ) 32.1 ( 30 ) 6.55 1.83 1.07

7 263 ( 36 ) 163 ( 36 ) 93 .0 ( 45 ) 7.31 4.53 2.07

8 412 ( 40 ) 272 ( 33 ) 146 ( 44 ) 10.3 8.24 3.32

9 367 ( 38 ) 243 ( 36 ) 87.7 ( 48 ) 9.66 6.75 1.83

10 1170 ( 35 ) 333 ( 35 ) 701 ( 46 ) 33.4 9.51 15.2

11 2440 (103) 878 ( 96 ) 5030 ( 55 ) 23.7 9.15 91.5

12 11500 (115) 4420 (104) 2750 ( 73 ) 100 42.5 37.7

13 9800 ( 78 ) 7560 ( 72 ) 2680 ( 78 ) 126 105 34.4

Table 7  Results, in milliseconds, of executing shared-memory parallel PageRank algorithms. Like in Table 6, this table compares the ALP/Pregel variants 
against the baseline shared-memory parallel ALP/GraphBLAS variant.
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7 Conclusions

The paramount challenge in contemporary research on 

programming models and compilers lies in striking a balance 

between providing easy-to-use programming interfaces that 

make future highly parallel and heterogeneous compute 

systems accessible to humble programmers, and the 

necessity to:

• support an ever-increasing number of architectures,

• deploy over increasingly large-scale systems that involve 

multiple architectures, and

• deal with a mixture of shared- and distributed-memory 

connectivity across compute units.

In the interest of exposing humble programming models 

that are usable by the vast majority of programmers, a hit 

in performance and scalability may be acceptable. Ideally, 

however, humble code — once compiled — should perform 

on par with expert code, thus turning humble programmers 

into heroes. A recent study shows that the humble ALP/

GraphBLAS outperforms the state-of-the-art frameworks for 

three graph and sparse matrix algorithms [MAY23]. ALP/

Pregel exposes a vertex-centric programming model and 

translates vertex-centric programs into ALP/GraphBLAS at 

compile time, while offering benefits in terms of its shared- 

and distributed-memory auto-parallelization and other 

optimizations. This work demonstrates that a vertex-centric 

SCC algorithm implemented using ALP/Pregel obtains up 

to 17.5× speedup on a dual-socket Intel Xeon machine. 

7.1 Outlook

Similarly, an auto-parallelized vertex-centric PageRank-

like algorithm obtains speedups up to 17.8×, confirming 

that ALP/Pregel programs are able to scale. Furthermore, 

comparing the vertex-centric program against a highly 

optimized canonical PageRank algorithm results in faster 

sequential execution in 12 out of 13 cases, and speedups 

of up to 8.99×. In shared-memory parallel execution, 

the ALP/Pregel algorithm is fastest in 5 out of 13 cases, 

with speedups of up to 5.76×. These results confirm that 

humble programs may achieve hero-level performance, and 

demonstrate that novel approaches based on such humble 

programming interfaces may even outperform highly 

optimized canonical solutions.

Different groups of humble programmers may prefer 

different humble programming interfaces. As such, the 

compute industry and researchers should strive to identify a 

set of humble programming models that together appeal to 

the vast majority of programmers. Furthermore, in an ideal 

scenario, only a few humble programming interfaces with 

corresponding optimized software stacks would be required. 

This paradox can be resolved by translating many useful 

humble programming interfaces into just a few optimized 

humble software stacks.

The reported speedups from the ALP/Pregel programs are 

achieved even though those programs are expanded into an 

ALP program, making use of its standard implementation. This 

not only validates the notion of supporting multiple humble 

programming models on top of a single software stack, but 

also demonstrates that this is possible without significant 

performance overheads. It also solves the software bottleneck 

as it frees hero programmers of addressing optimization and 

portability concerns for the few fundamental software stacks 

only — in this case, the ALP stack.

Even so, this paper does not argue that ALP should be 

the only fundamental programming model. It remains an 

open question as to how much of the general-purpose 

programming demands can be covered by ALP, as well as 

how many popular humble programming interfaces can be 

implemented on top of ALP without incurring significant 

performance overheads. Instead, this paper humbly argues 

that the future of software would be vastly improved if the 

industry and research communities explore more scalable 

humble programming interfaces, as well as identify the 

smallest possible subsets of foundational software stacks 

into which these humble programming models translate.

The switch from static to dynamic scheduling, the loss of 

data locality, and the explicit materialization of messages 

result in a worst-case slowdown of 0.340×, comparing the 

baseline with global variants. Additional uses of dynamic 

instead of static scheduling in vector–vector and vector–scalar 

operations compound the worst-case slowdown to 0.212×, 

comparing the baseline with local variants. The effects of 

losing data locality should be reduced for larger problems.

Although these slowdowns indicate that ALP/Pregel 

programs scale worse than pure ALP/GraphBLAS ones, 

this may be resolved partially by investigating alternative 

dynamic scheduling techniques within ALP. However, the 

overheads incurred from copying messages and the loss 

of data reuse opportunities for small problems remain 

unavoidable. Nevertheless, the local variant leads to the 

fastest end-to-end shared-memory parallel execution in 5 

out of 13 cases, with speedups of up to 5.76× compared to 

the baseline.
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7.3 Beyond ALP/Pregel

7.2 Improving ALP/Pregel

Pregel programs are naturally loosely coupled. At any point in 

time during execution, not all vertices are required to be 

executing the same round. Specifically, vertices whose round-i 

messages have been received can immediately continue with 

round i+ 1, regardless of whether other vertices have yet to 

execute the ith computation phase or whether they are 

waiting on incoming round-i messages. This insight can be 

applied recursively to realize pipelines of arbitrary length, 

bounded only by the underlying graph structure and the 

available memory for caching in-flight messages.

For example, a Pregel program running on the source vertex 

of a line graph can progress arbitrary round numbers ahead 

of other vertices. This leads to a pipeline depth bounded by 

the length of the graph. However, a Pregel program running 

on any vertex of a fully connected graph must execute in 

lock-step with all other programs due to being connected 

in an all-to-all fashion. While ALP/Pregel transforms the 

program into a series of level-1 operations separated by a 

message exchange driven by an SpMV multiplication, the 

use of a nonblocking implementation of ALP/GraphBLAS 

such as by Mastoras et al. [MAY23, MAY22] realizes overlap 

between the communication and computation phases of a 

single round. Introducing buffers for incoming messages in 

ALP/GraphBLAS may likewise enable overlapping rounds of 

vertex-centric computations. This will be the next step to take 

to enhance the ALP/Pregel performance. Such overlapping 

should be particularly effective on distributed-memory 

architectures, which, although supported by the current ALP/

Pregel implementation, has not been evaluated in this work. 

Such comparison will be included in our future work, in which 

we will also compare the effects of loosely coupled execution. 

However, this requires bringing the nonblocking ALP/

GraphBLAS capabilities to the distributed-memory parallel 

case. From the single-node perspective, a nonblocking variant 

that exploits the underlying graph structure in order to 

eliminate the need for caching incoming messages — thereby 

While this paper shows that realizing the Pregel humble 

programming model on top of ALP is possible and thus 

may benefit from the high performance and scalability 

guaranteed by ALP, not all algorithms and workloads are 

amenable to either pure ALP or vertex-centric programming. 

We need to expand the range of humble models that we 

can automatically translate into ALP. For MapReduce, for 

example, the following insights may automatically translate 

MapReduce programs into ALP:

• a one-to-one map phase corresponds to the element-

wise lambda function;

• one-to-none or one-to-many maps may be realized by 

the parallel I/O mode introduced by ALP/GraphBLAS 

[YDNNS20]; and

• a reduce phase may be realized by a four-step process:

(1) unzipping a key-value ALP/GraphBLAS vector of 

length n into two vectors of n keys and n values,

(2) zipping the two vectors into an ALP/GraphBLAS 

matrix of size k × n,

(3) performing the reduction via an SpMV multiplication, 

and

(4) transforming the resulting vector of values back 

into a vector of key-value pairs.

This ALP/MapReduce approach is currently under 

implementation and will be evaluated and released as the 

next additional humble programming interface to ALP. 

Inspirations to further humble interfaces on top of ALP 

include NumPy [ADH+01] and Spark [ZCF+10] as other 

examples of high-impact humble programming models, as 

well as programming models based on set algebra [BVSS+21, 

BKK+21] and commutative sets [KPW+07, PGZ+11].

saving memory resources and increasing data reuse — seems 

a most promising direction.
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