
146 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

The concept of a humble programmer, coined by Dijkstra in the 1970s, fully acknowledges the complexity of programming,
deeming it unsuitable for the human mind. This concept leads to the design of humble programming frameworks that not
only simplify the implementation of algorithms, but also automate the optimization and scalability of algorithms across
compute units. Such humble frameworks typically favor productivity over performance.

By contrast, hero programmers are experts with in-depth knowledge of parallel algorithms, applicable lower bounds,
coding, and hardware, typically seeking to achieve the highest possible efficiency on any given system. Given that hardware
complexity and diversity are set to increase in the years to come, humble programmers will not be able to drive increasingly
more complex and larger-scale systems using contemporary software technologies. This, combined with the scarcity of hero
programmers at the present time and in the foreseeable future, highlights the need for humble programming models that
can achieve good performance.

This paper starts by outlining the successful humble MapReduce and Pregel vertex-centric frameworks and identifies the
common design factors that they share with the novel Algebraic Programming (ALP) paradigm. Satisfying the need for
supporting multiple humble programming models while reducing demands on hero programmers, this paper proposes
a vertex-centric programming model on top of ALP, demonstrating that multiple humble programming models can be
supported by a single software stack. Thus, fewer heroes may support a greater number of humble programmers.

Experiments demonstrate that the resulting ALP/Pregel paradigm scales well on a shared-memory parallel system, achieving
speedups of up to 17.8x on common graph workloads. Even though vertex-centric algorithms that solve a given problem
commonly differ from their canonical solutions, this paper compares such an algorithm (used for ranking web pages) with a
highly optimized canonical solution for completing the same task. The result shows that in sequential execution ALP/Pregel
achieves up to a 8.99x speedup, outperforming the canonical solution in 12 out of 13 datasets tested. In shared-memory
parallel execution, ALP/Pregel achieves a 0.276–5.76 times speedup over a highly optimized implementation of the canonical
PageRank algorithm. The slowdowns, which are down to 0.276x, are mostly due to the workspace not fitting in L3 cache for
the vertex-centric algorithm. For the smallest and largest datasets where such cache effects are less apparent, ALP/Pregel
is faster in 3 out of 6 instances with speedups of up to 5.73x. This indicates that humble algorithms may still achieve hero
performance, contributing a solution to the looming crisis in software productivity.

Abstract

A. N. Yzelman

Humble Heroes

Communications of HUAWEI RESEARCH | 147

Collaborative Optimization

June 2024

1 Introduction

The perhaps esoteric title of "Humble Heroes" relates to

one of the major challenges in computing: programming

potentially highly parallel and highly heterogeneous

resources, without complicating the task to the point where

only a small percentage of highly skilled programmers can

write efficient programs.

Writing software grows more and more difficult due to

the increasing complexity of computer architectures,

coupled with a diverse and growing range of architectures

that programs should cope with. The recent hardware

trends show increase both in the number of non-uniform

memory access (NUMA) designs and the degree of non-

uniformity — there are already four to eight NUMA domains

on a modern CPU — while both the per-core memory

capacity and bandwidth are decreasing. These factors will

significantly increase pressure on future software design

for any given architecture. Additionally, heterogeneity may

appear on a wide spectrum from a single chip consisting

of different types of processing units to large-scale data

centers connecting a diverse range of architectures. Within

and between these extremes, heterogeneity will realistically

continue to appear.

With the diversification of architectures and the increase of

their design complexity and heterogeneity, contemporary

software technologies no longer scale. Maintaining standard

libraries, for example, requires dedicated programmers

with theoretical, algorithmic, domain, programming,

and hardware expertise in order to achieve acceptable

performance on a given architecture. The required breadth

of expertise for maintaining standard libraries sets this class

of programmers apart from the majority — colloquially, we

call them hero programmers.

1.1 Humble Programming

1.2 The Software Bottleneck

1.3 Outline

In contrast to hero programmers, Dijkstra first coined

the concept of a humble programmer . Paraphrasing his

monologue [Dij72], this concept entails approaching

programming while fully recognizing the incredible

complexity of the task, by preferring modest and elegant

programming languages that respect the limitations of the

human mind . Perhaps implicit in humble programming,

there is acceptance of a performance trade-off, favoring

programming productivity over performance. This paper,

however, provides evidence that performance and

productivity need not be mutually exclusive.

Contemporary examples of humble programming models

that scale across large-scale computational resources include

MapReduce [DG08], Pregel [MAB+10], and Spark [ZCF+10],

all of which make it possible to drive complex large-scale

systems using simple, elegant, and easy-to-use abstractions

that any programmer can understand. These programming

models have been extremely successful in providing parallel

compute power to humble programmers, allowing them to

quickly deploy and scale up a variety of workloads.

Hero programmers, by contrast, strive to achieve peak

performance — or as close to it as possible — for any given

workload on any given architecture. They embrace the

complexity that comes with the task, using low-level interfaces

such as assembly language, intrinsics, threading interfaces,

remote direct memory access, and message passing. The

resulting code requires significant time and effort to build and

is costly to maintain. Updating the code to novel versions of

the architecture it was originally written for remains costly,

while supporting completely novel architectures requires a

ground-up duplication of all these efforts.

If the future is to be increasingly heterogeneous in nature,

then the future software stack must not be dependent

on hero programmers: there will never be enough expert

programmers to support the many application domains

that require mapping to different architectures. Instead,

the future software stack must speak primarily to humble

programmers, be deployable on different architectures,

and achieve good performance — all while avoiding the

software bottleneck.

Section 2 reviews the MapReduce and the vertex-centric

Pregel [MAB+10] programming interfaces, providing a more

in-depth characterization of the properties of successful

humble programming models. Section 3 describes the

novel Algebraic Programming (ALP) humble programming

paradigm, and in particular ALP/GraphBLAS, which achieves

hero-level performance on both shared- and distributed-

memory systems [YDNNS20].

Section 4 notes that, while ALP may be a significant leap

forward for anyone comfortable with using algebraic

148 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

annotations to express algorithms, some humble programmers

may prefer to use alternative paradigms. The section

asserts that neither forcing a single paradigm on humble

programmers nor support ing an unchecked set of

potentially many humble paradigms solves the challenge of

productively using future large-scale heterogeneous systems.

Instead, it advocates the alternative approach this paper

takes: automatic translation of one humble programming

model into another.

Section 5 realizes this ideal for Pregel and ALP, by introducing

a C++ API for translating vertex-centric programming into

ALP at compile time, thus supporting multiple humble

paradigms with a single software stack. Section 6 presents

experimental results, showing that the cost of simulating a

Pregel interface on top of ALP is negligible and that such

an interface achieves comparable performance to direct

programming in ALP/GraphBLAS — it even outperforms

direct programming if some relaxations are permissible.

Section 7 concludes this paper and presents a future outlook.

2 Influential Humble Programming
Models

This section discusses two pivotal humble programming

models that have made massively parallel computing

accessible to the public rather than to a limited group of

parallel programming experts: MapReduce and Pregel.

2.1 MapReduce

In MapReduce, data items are key-value pairs (k, v) from

domains K and V, respectively, and programs are a sequence

of two alternating phases: map and reduce.

Let D0 ⊂ K × V be the set of initial data items. The i-th map

phase takes each key-value pair dk from D2i, where the

integer k is in the range of [0, |D2i|), and maps it to a

possibly empty set of new pairs fi(dk). Then, one of the

following may happen: the original pair dk is filtered out,

one new pair is generated, or an arbitrary number of new

pa i r s i s genera ted . The mapp ing func t ion fi :

K × V → P(K × V) is user-defined and may be different for

each round i. The original set of data D2i is discarded and

replaced by the set of transformed entries D2i+1.

The i-th reduce phase operates on all keys in the current data

set D2i+1, specifically, the set Ki = {k ∈ K s.t. ∃(k, v) ∈ D2i+1}.

For a key k , assume there are r > 0 key-value pairs

(k, v0), . . . , (k, vr−1), then the reduction operation computes

v� = �r−1
i=0 vi and produces an entry (k, v�) in D2(i+1). The

entry replaces all key-value pairs with key k in D2i+1 — this

repeats for each key in Ki . As with the user-defined

mapping function, the reduction operator � is user-defined

and may differ for each round.

While the mapping operations may be arbitrary, it is

helpful if the reduction operators are associative, in which

case the reduction can be automatically parallelized by

systems like ALP; otherwise, the reduce phase can only be

parallelized over each key k ∈ Ki , limiting the amount of

parallelism exposed.

The round-based nature of a MapReduce communication,

which consists of the map phase and the reduce phase,

is closely related to the bulk synchronous parallel (BSP)

paradigm of parallel computing [Val90]. The map phase

induces no communication between parallel compute units

whereas the reduce phase does require communication.

BSP models a parallel system as local compute units with

local memory, interconnected by a full-duplex network.

Each local compute unit executes a program in two rounds

— like MapReduce does. Each round includes two phases:

1) local computations using local memory elements, and

2) arbitrary data movement patterns between memory

elements. On any one compute unit, a next round may only

proceed when all incoming and outgoing messages have

been received and sent, respectively. This does not imply

that a global synchronization barrier exists between rounds.

There are two differences between direct-mode BSP and

MapReduce: 1) BSP operates at the coarse granularity of one

task per process while MapReduce operates at the

granularity of the dataset sizes |Di|; 2) BSP allows arbitrary

communication patterns while MapReduce always sorts on

keys. L. G. Valiant [Val90], however, proposed an automatic

mode of BSP that allows the simulation of PRAM algorithms

on a BSP architecture. The hashing mechanism employed in

this mode is typically mirrored in MapReduce implementations

such as Hadoop [SKRC10], in Pregel realizations such as

Giraph [Ave11], and in the Spark framework [ZCF+10].

Such simulation techniques come at a cost and preclude the

application of communication-optimal algorithms. Thus,

orders of magnitude performance differences between

humble programming frameworks and the direct-mode

BSP are not uncommon. Suijlen and Yzelman made a

performance comparison between ALP/GraphBLAS and

Spark [SY19] (when both use ten nodes) and reported

Communications of HUAWEI RESEARCH | 149

Collaborative Optimization

June 2024

2.2 Pregel

a two-orders of magnitude performance difference for

the PageRank algorithm on a moderate data size (of

approximately 298 million edges).

number of unique identifiers that remain, and the

component to which each vertex belongs is indicated by its

identifier.

This vertex-centric algorithm and its termination criterion

are intuitive to understand and therefore fit the bill of a

humble solution for solving the SCC problem. However, if

the input to this algorithm is an undirected line graph, the

number of rounds required will be |V |, which means that |V |
vertex programs will be active per round, and that the work

for this SCC algorithm amounts to Ω(|V |2). By contrast, the

Awerbuch-Shiloach [SV80, AS87] algorithm for SCC can

achieve O(|E| log |V |) work complexity. Algorithms with such

improved bounds can be implemented on top of a vertex-

centric framework but will be far less humble in nature

[SW14]. The same holds for ALP and GraphBLAS; consider,

for example, the linear-algebraic variant of Awerbuch-

Shiloach by Zhang et al. [ZAB20].

Since adversarial graph structures such as line graphs do not

naturally occur in the real world, the quadratic algorithm

may be acceptable in practice — in which case the humble

choice suffices. This paper, in line with its motivation, thus

considers only easy-to-understand humble algorithms,

leaving the important task of finding and realizing

asymptotically optimal algorithms to the hero programmers.

2.3 Common Factors

The concepts shared by the successful MapReduce and

Pregel programming models are as follows: First, they both

operate on sets of data and express parallelism mainly

by operating concurrently on data elements within those

sets, which is known as a data-centric approach. Second,

both their ways of expressing parallelism are implicit.

Programmers express operations by mutating one set of

data into another without considering their parallelization.

Third, operations proceed round-by-round, thus exposing

a sequential view of the final programs. This is similar

to the direct-mode of BSP and traditional imperative

programming. Fourth, efficient implementations of these

two models exploit the imposed program structure to

enable both scalable execution and a high degree of

overlap between executing rounds and phases — this is

achieved by overlapping communication with computation

and exploiting parallel slackness [Val90, MAB+10]. These

four concepts are furthermore also shared with another

successful humble programming model: Spark [ZCF+10].

Pregel is a programming model for graph computations

[MAB+10]. Assume the data graph G = (V,E), then Pregel

allows defining a round-based computation for each vertex

v ∈ V to execute. Each round consists of two steps: 1)

execution of the user-defined program on each vertex; and

2) exchange of messages via the edges E. Messages are

broadcast from vertices v ∈ V , that is, a message m ∈ M is

sent to all neighbors N(v) = {w ∈ V | (v, w) ∈ E} of v.

Such vertex-centric programming models have achieved

great success and inspired a significant number of vertex-

and edge-centric programming frameworks [MWM15]. The

round-based nature of vertex-centric programming, like that

of MapReduce, is also a variation of the BSP model — like

MapReduce, vertex-centric programming applies parallelism

in a fine-grained fashion by mapping the programs on the

input data itself. Most variants of Pregel follow the principle

that while the algorithm is strictly round-based, the

execution of such a program need not be. As such, latency

may be hidden by overlapping the message communication

phase of one set of vertices with the computational phase

of other sets of vertices. This resonates with Valiant's

automatic-mode BSP, which performs similar latency hiding

through overlapping communication and computation

phases [Val90].

Consider, as an example of a vertex-centric program, the

problem of determining the strongly connected components

(SCCs) of an undirected graph G = (V,E), that is, identifying

the minimum number of subsets Vk ∈ V where (Vi, E), are

strongly connected1. A simple vertex-centric program

determines these subsets in two stages: 1) Each v ∈ V is

assigned a unique identifier; 2) During each round, each

vertex sends its current identifier to its neighboring vertices,

and overwrites the current identifier to the largest value

contained in all incoming messages if that value is strictly

larger than the current identifier. If the current identifier is

not overwritten in the second stage, the vertex votes to halt

the program. When all vertex programs vote to halt the

program, the execution terminates. Once the execution

terminates, the number of SCCs k corresponds to the

1 A graph or subgraph is strongly connected only if there is a path
between any two of its vertices.

150 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

3.1 Algebraic Containers

3.2 Algebraic Structures and
Algebraic Type Traits

The ALP paradigm provides a data-centric, sequential, and

imperative programming approach based on algebraic

concepts and annotations. Designed to be humble, this

paradigm presents three algebraic concepts to programmers:

containers, structures, and primitives. ALP/GraphBLAS,

introduced by Yzelman et al. as a C++ realization of the

GraphBLAS [YDNNS20, BMM+17, BBM+19], focuses on

sparse linear algebra. In ALP/GraphBLAS, containers take

the form of vectors and matrices; structures can be binary

operators, monoids, or semirings; and operations can be

element-level applications of a binary operator, a matrix–

matrix multiplication, and so on.

grb::Vector< double > x(n);

grb::Vector< bool > s(n, 1);

grb::Matrix< void > A(m, n, parser.nz());

Note that the element type of an ALP container appears as

a template argument, as with the STL.

The extraction of data from ALP containers proceeds using

iterators that can be retrieved through the begin, cbegin,

end, and cend functions. These output iterators also

conform to the STL, but support only the const−variants,

that is, values in containers cannot be adapted through

iterators. In addition to data ingestion through iterators,

programmers may also set a vector to be a dense one with

all its values set to a specific given value:

grb::set(x, 1.0);

Likewise, one may set a single element of a container:

grb::setElement(s, true, n / 2);

In the preceding examples, x corresponds to a dense vector

(1, 1, ..., 1), while s corresponds to a sparse vector where

only one nonzero exists at position n/2 with the value (true).

Containers in ALP, when declared, are initially empty —

meaning that they contain no values. By default, the

minimum capacity of a container equals its maximum

dimension. That is, a newly created vector of size n holds no

values but has the capacity for n values. Similarly, a novel

m× n matrix holds no values, and its default capacity is at

least max{m,n}. Larger or smaller capacities may be set

when new containers are created, while existing containers

can be resized to hold more or fewer values through

grb::resize . An ALP implementation may assign

capacities that are larger than requested, but not smaller. If

a requested minimum capacity cannot be guaranteed, an

error will be returned.

Using standard template library (STL) compatible iterators to

C++ STL containers, data can be ingested into ALP containers

via the two primitives: grb::buildVectorUnique and

grb::buildMatrixUnique. The 'Unique' suffix in these

primitives indicates that a source container shall not contain

duplicate entries, i.e., multiple values shall not map the

same container coordinate. The current size of a vector is

returned via grb::size, the row size and column size of

a matrix are returned via grb::nrows and grb::ncols,

respectively, and the current number of values in a container

can be referenced via grb::nnz. All values can be erased

via grb::clear.

The following three statements are examples of creating a

vector with the default capacity, a vector with potentially

smaller capacity, and a matrix with the exact initial capacity

as returned by a matrix file parser, respectively:

An example of a binary operator is addition of double-

precision floating point numbers, which ALP exposes as a

C++ class template:

grb::operators::add< double >

An operator � may have algebraic properties such as

associat iv i t y (a� (b� c) = (a� b)� c), commutat iv i t y

(a� b = b� a), and idempotency (a� a = a). ALP/GraphBLAS

exposes such properties through algebraic type traits , for

example,

• grb::is_associative< grb::operators::add< double >
>::value, which reads true;

• grb::is_commutative< grb::operators::divide< float
> >::value, which reads false; or

• grb::is_idempotent< grb:operators::min< unsigned int
> >::value, which reads true.

Algebraic type traits can be inspected at compile-time, thus

enabling semantic checks and compile-time optimizations

guided by algebraic properties.

Richer algebraic structures include monoids and semirings,

which may be composed of operators and identities. For

example,

3 Algebraic Programming

Communications of HUAWEI RESEARCH | 151

Collaborative Optimization

June 2024

3.3 Algebraic Primitives

grb::Semiring<

 grb::operators::add< double >,

 grb::operators::mul< double >

 grb::identities::zero, grb::identities::one

>

describes the standard numerical addition and multiplication

over doubles, also called the plus-times semiring. Operators

each have a domain name attached as a template argument.

Identities must have an element in those domains and

otherwise the code will not compile.

For any binary operator � : D1 ×D2 → D3 , the three

domains potentially differ. Take a look at the following

example:

typedef grb::operators::argmax<

 std::pair< size_t, float >,

 std::pair< size_t, float >,

 size_t

> ArgmaxUINT_FP32;

This example describes the argmax operator over tuples of

integers and floating point numbers, resulting in an integer

as per

argmax((i0,α0), (i1,α0)) =




i0, if α1 ≤ α0

i1, otherwise.

Such binary operators may still form monoids or semirings,

for example,

grb::Monoid< ArgmaxUINT_FP32,
 grb::identities::infinity >

depicts a valid monoid where "infinity" over unsigned

integers will be interpreted as the maximum representable

value maxint , while "infinity" over a tuple is composed by

recursion over the tuple types — which, in this case, resolves

to (maxint ,∞).

Consider element-wise application in the sparse case:

grb::Vector< double > d(n, 1);

grb::operators::assign_left_if< double, bool, double >
myOp;

grb::eWiseApply(d, x, s, myOp);

While x is dense, s contains only a single nonzero. Because

the algebraic structure of a simple binary operator does not

allow for the interpretation of missing values from a

container, ALP will only apply the requested binary

operation on nonzeroes xi and si that appear on the same

coordinate i, ignoring any values in x that do not have a

matching value in s and vice versa. Consequently, the above

results in a single entry, namely, dn/2 = xn/2.

An associative operator, joined with an identity, forms a

monoid, which allows algebraic primitives to interpret missing

values in sparse containers. The following example shows the

behaviors of numerical multiplication as an operator rather

than a monoid, under element-wise application:

grb::Vector< double > oneTwo(n, 1);

grb::setElement(oneTwo, 2.0, n/2);

grb::operations::mul< double > mulOp;

grb::Monoid<

 grb::operations::mul< double >,

 grb::identities::one

> mulMon;

grb::eWiseApply(y, x, oneTwo, mulOp);

// y = oneTwo

grb::eWiseApply(y, x, oneTwo, mulMon);

// y = (1,..., 1,2,1,...1)

The grb::eWiseApply is an out-of-place primitive. The

grb::foldl and grb::foldr provide in-place variants

instead:

grb::foldl(y, oneTwo, mulMon);

// y = (1,..., 1,4,1,...,1)

Some operations require richer algebraic structures.

Consider, for example, the sparse matrix–vector (SpMV)

multiplication y = Ax:

grb::Semiring<

 grb::operators::add< double >,

 grb::operators::mul< double >,

 grb::identities::zero, grb::identities::one

> mySemiring;

grb::clear(y);

grb::mxv(y, A, x, mySemiring);

ALP defines that only grb::set and grb::eWiseApply

can operate in out-of-place fashion, whereas all other

primitives have in-place semantics. For example, the above

grb::mxv sets y to y ⊕Ax — with ⊕ being the additive

operator of the given semiring — and does not set y to Ax.

If the latter is intended, the output container must be

cleared first, as in the above example.

An algebraic primitive combines containers and structures,

modifying the former in a way that depends on the latter.

Perhaps the most simplistic operation takes two input

vectors and generates one output vector by applying a given

binary operator in an element-wise fashion. For example,

grb::Vector< double > y(n);

grb::eWiseApply(y, x, x,

 grb::operators::add< double >());

computes y = x� x, where � is given by the algebraic

structure provided (simple numerical addition, in this

example). Using the earlier examples that defined and

populated x and after executing the above, y reads (2, 2, … 2).

152 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

All primitives with container output support masking. Since

the vector s evaluates true only at position n/2,

grb::mxv(y, s, A, x, mySemiring);

requests only the computation of yn/2, leaving any other

elements as-is. We may also invert the effective mask

through descriptors , which provide mechanisms that

modify the interpretation of input containers such as

masks, and will prove useful later in this paper. The

following example updates all entries of y except the one

at position yn/2
:

grb::mxv< grb::descriptors::invert_mask >(y, s, A, x,
mySemiring);

Yzelman et al. recognized that in the blocking mode

of execution where every primitive call must complete

before returning [BMM+17], performance may suffer

due to unnecessary data movement in memory-bound

computations. Take the following code for example.

grb::operators::min< double > minOp;

grb::eWiseApply(y, x, x, minOp);

grb::eWiseApply(x, y, y, addOp);

If the two primitives are executed one by one, elements

from x and y are brought from the main memory to the

CPU core(s) twice2. However, this could be reduced to

once if the two calls were fused. Hence, Yzelman et al.

introduced the grb::eWiseLambda primitive that allows

the execution of arbitrary lambda functions on one or more

vector containers. The above snippet, for example, could be

replaced with a semantical equivalent as below:

grb::operators::min< double > minOp;

grb::eWiseLambda([&x, &y] (const size_t i) {

 grb::apply(y[i], x[i], x[i], minOp);

 grb::apply(x[i], y[i], y[i], addOp);

 }, x, y

);

This fuses the calls to y and x and may complete up to 2×

faster than the preceding code.

The square bracket vector operator (e.g., x[i]) in ALP is only

valid when 1) it is used inside a lambda function passed to

grb::eWiseLambda, and 2) index i refers to a nonzero value

that was already present in the related container when the

eWiseLambda was invoked. Any other use invites undefined

2 This assumes a large enough n compared to the last-level cache of the
target architecture.

behavior. The first vector argument to grb::eWiseLambda

(x on the second-to-last line) defines which indices the

eWiseLambda shall iterate over. The other vector arguments

(such as y on that same line) must correspond to any vectors

that are captured in the lambda. For example, the following

snippet will only set xn/2 equal to 3.14, while leaving any other

non-zero value of x unmodified:

grb::eWiseLambda([&x] (const size_t i) {
 x[i] = 3.14;

 }, s, x

);

This element-wise lambda, apart from its intended use

case of manually fusing ALP operations, provides critical

functionality for translating vertex-centric programs into

ALP (demonstrated in Section 5.4). Moreover, in the context

of humble programming, recent work by Mastoras et

al. provides mechanisms by which ALP/GraphBLAS may

automatically fuse operations [MAY23, MAY22] — Section

7.2 discusses the implications of this recent development for

vertex-centric programs.

3.4 Element-wise Lambdas

3.5 Final Remarks

4 Motivation

The ALP paradigm expresses programs as sequential, data-

centric, and standard C++ programs. It also automatically

manages performance and takes care of the corresponding

code optimizations and parallelization. For example, ALP

enables distributed-memory parallel computations that

All ALP primitives return error codes, which this paper does

not discuss for the sake of brevity. A special note, however,

is that the program must guarantee sufficient capacities in

output containers, as otherwise the related operation may

fail. For example,

grb::set(s, false);

may fail because the requested capacity of s during

construction was 1, which is smaller than its total size

n. This work assumes, and in implementation ensures,

sufficient vector capacities.

While this section has not introduced the ALP/GraphBLAS

API or other ALP extensions in full, it lays the foundation

for the remainder of this paper. For full details of the ALP/

GraphBLAS API and other ALP extensions, read the papers

[BMM+17, YDNNS20, MAY23, MAY22].

Communications of HUAWEI RESEARCH | 153

Collaborative Optimization

June 2024

No programming model or language has been successful

without educating programmers on its use. In the case

of ALP/GraphBLAS, education may be relatively simple

because most programmers already make implicit use

of algebraic concepts, for example, linear algebra and its

implicit use of the real semiring, or set algebraic concepts

like orders implicitly used when sorting. Moreover, the idea

that programming should closely follow mathematical

concepts is not new; it forms the basis behind the design of

the STL and generic programming [DS00, SM09, SR14] —

standard tools and languages used by a significant portion

of programmers. Algebraic concepts also appear in standard

computer science texts, with the earliest references to the

explicit use of semirings in programming included in the

seminal works by Aho, Hopcroft, and Ullman [AHU74] and

Cormen, Leiserson, and Rivest [CLR92].

4.1 Educate

4.2 Extend

4.3 Expand

process graphs of up to 42.5 billion edges over multiple

multi-socket nodes using simple humble algorithms. This is

made possible by the basic algebraic concepts with which

ALP programmers annotate their programs. ALP makes use

of those high-level annotations to select the appropriate

optimizations automatically, allowing programmers to focus

entirely on the mathematics [YDNNS20].

However, while most programmers have studied linear

algebra at some point during their studies, most programmers

do not consciously use linear algebraic concepts — such as

monoids and semirings — on a daily basis. This limits the

humble appeal of ALP. Separately, a key question is how many

practical workloads naturally map to the ALP paradigm.

In motivating the broader use of ALP and other humble

programming paradigms, this section identifies three broad

approaches:

• educate programmers on the use of algebraic concepts

in programming;

• extend ALP functionalities to support broader ranges of

workloads; and

• expand other humble programming models into ALP.

This paper primarily focuses on the third approach.

However well programmers may prove to be in handling

algebraic concepts explicitly, and however broad the

scope of applicability of the ALP paradigm may prove to

become, the humble mindset dictates that programmers

should always be allowed to use the tools that they

consider most intuitively suitable for different programming

tasks. Nevertheless, unchecked growth in software stacks

supporting different programming paradigms, many

architectures, and many heterogeneous configurations, does

not scale. This implies that the number of programming

tools with distinct software stacks should be minimized.

Breaking the paradox of these seemingly conflicting demands,

this paper proposes that humble programming models can

be automatically expanded into other, more fundamental

humble programming models. With such a mindset, many

humble programming models could exist, though only very

few should be fundamental. The many humble models

should automatically translate to a fundamental one, and

only fundamental programming models should be backed

by an automatically optimizing, parallelizing, and ideally

architecture-portable software stack.

This paper prototypes this vision by automatically

translating the successful, scalable, and humble vertex-

centric programming model Pregel [MAB+10] into the ALP

paradigm. It shows how automatic translation enables

multiple humble programming paradigms that share the

same software stack, demonstrates both the performance

and scalability of this approach, and consequently proposes

ALP as a fundamental humble programming model. With

this solution, humble programmers can rely on multiple

programming interfaces and select the most suitable ones

for each job, while hero programmers can focus their efforts

on a limited number of fundamental programming models

and software stacks.

data [KG11, KJ18]. This paper already makes use of extensions

over the C GraphBLAS standard [BMM+17, BBM+19]

introduced by Yzelman et al. [YDNNS20], while Section 7.3

proposes two other extensions that would enable automatic

translation of MapReduce programs into ALP. Similar

extensions are set to enlarge the scope of ALP applicability

and are the subject of ongoing research. It is important that

such extensions remain minimal as well as faithful, that is, the

core set of ALP primitives should remain as few as possible,

while ALP containers, structures, and primitives must have

clear corresponding concepts in mathematics.

Ongoing research should push the boundaries of ALP

applicability beyond linear algebra, graph computing, and big

154 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

5 ALP/Pregel

This section first describes the programming interface

for a vertex-centric programming model on top of ALP/

GraphBLAS. It is a pure vertex-centric interface that does

not expose ALP concepts, except for a commutative monoid

over which incoming messages are to be reduced. Using

this interface, the SCC algorithm is revisited and precisely

formulated, and an ALP/Pregel program is introduced

for web page ranking based on the canonical PageRank

algorithm [PBMW99].

5.1 Interface

5.2 SCC AlgorithmThe C++ interface supports two termination mechanisms:

vote-to-halt and inactivation of vertex programs. For the

former, all vertex programs vote on whether to halt the

program, which is terminated only if all active vertices vote

to halt it. For the latter, vertex programs can set themselves

inactive, after which point they shall no longer participate in

subsequent rounds. If all vertex programs are inactive, then

the overall program terminates.

Algorithm 1 shows the SCC algorithm in our vertex-centric API,

and Algorithm 2 shows a simplified PageRank algorithm. Both

algorithms are located in the grb::algorithms::pregel

namespace and provide a concise way of introducing the

ALP/Pregel interface.

For both examples, the vertex-centric program corresponds

to the program static member function defined. Each

program 1) operates on given vertex data of a program-

defined type, 2) expects an incoming message of a

potentially different type, 3) generates an outgoing message

of a potentially third different type, 4) has read access to

program-specific data and other parameters, and 5) has

access to a predefined PregelState type instance providing

read access to Pregel metadata and write access to Pregel

termination controls.

Briefly summarizing the earlier SCC example for undirected

graphs, every vertex is initially assigned a unique identifier

(ID) integer. Each vertex then broadcasts its ID, overwriting

its local ID by the maximum ID received. If the current ID

is already the maximum and no update is performed, the

program votes to halt the execution. One may intuitively

find that, in line with being a humble programming model,

this algorithm indeed converges to a correct solution where

Algorithm 1 Vertex-centric SCC algorithm

template< typename VertexIDType >

struct ConnectedComponents {

 struct Data {};

 static void program(

 VertexIDType ¤t_max_ID,
 const VertexIDType &incoming_message,
 VertexIDType &outgoing_message,
 const Data ¶meters,

 grb::interfaces::PregelState &pregel

) {

 if(pregel.round > 0) {

 if(pregel.indegree == 0) {

 pregel.voteToHalt = true;

 } else if(current_max_ID < incoming_message) {
 current_max_ID = incoming_message;
 } else {

 pregel.voteToHalt = true;

 }

 }

 if(pregel.outdegree > 0) {

 outgoing_message = current_max_ID;
 } else {

 pregel.voteToHalt = true;

 }

 }

};

Communications of HUAWEI RESEARCH | 155

Collaborative Optimization

June 2024

every component is assigned a unique ID that corresponds

to the maximum of values initially assigned to all vertices in

the component.

The ID type may be any integer, such as unsigned int or

size_t, and incoming and outgoing messages are of the

same type. The algorithm does not require any algorithm-

specific parameters (hence the empty Data class on line

4 of Algorithm 1). It exemplifies the use of the in-degree

(line 2 of the program body) and out-degree (line 10 of the

program body) metadata that our Pregel API provides, and

makes use of the vote-to-halt mechanism. The program

terminates within d steps, where d is the maximum diameter

of all components in G.

Execution of the strongly connected algorithm requires

the Pregel interface to be initialized over a specific

graph. Conversely, in ALP/GraphBLAS, a graph file is

typically opened using a parser and then ingested into a

grb::Matrix instance, for example, by

grb::Matrix< void > A(parser.m(), parser.n(), parser.

nz());

grb::buildMatrixUnique(A, parser.begin(), parser.end()

);

The same graph file should now be ingested into a Pregel

instance:

grb::interfaces::Pregel< void > pregel(

 parser.n(), parser.m(),

 parser.begin(), parser.end()

);

The void template parameter to the Pregel interface

indicates that edge weights must be ignored. This is because

Pregel algorithms determine the message patterns based on

the edge structures. Nevertheless, the template argument

remains for future extensions that may be considered edge-

centric, or vertex- and edge-centric, programming paradigms.

Once the Pregel instance is instantiated, it may execute any

Pregel algorithm on the underlying graph. The execution

employs the execute member function of the Pregel

Algorithm 2 Vertex-centric PageRank algorithm

template< typename IOType >

struct PageRank {

 struct Data {

 IOType alpha = 0.15;

 IOType tolerance = 0.00001;

 };

 static void program(

 IOType ¤t_score,
 const IOType &incoming_message,
 IOType &outgoing_message,
 const Data ¶meters,

 grb::interfaces::PregelState &pregel

) {

 // initialise

 if(pregel.round == 0) {

 current_score = static_cast< IOType >(1) /
 static_cast< IOType >(pregel.num_vertices);
 }

 // compute

 if(pregel.round > 0) {

 const IOType old_score = current_score;
 current_score = parameters.alpha +
 (static_cast< IOType >(1) - parameters.alpha) * incoming_message;
 if(fabs(current_score-old_score) < parameters.tolerance) {
 pregel.active = false;

 }

 }

 // broadcast

 if(pregel.outdegree > 0) {

 outgoing_message = current_score / static_cast< IOType >(pregel.outdegree);
 }

 }

};

156 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

the underlying graph, and grb::ILLEGAL will be returned

if any of the passed vectors do not have full capacity.

5.3 Vertex-centric PageRank Algorithm

In the second example, the vertex-centric PageRank in

Algorithm 2 is simplified to the point where it no longer

corresponds to the canonical algorithm [PBMW99]. Despite

this, it is a common approximation that appears in vertex-

centric and Spark-based literature, for example, Gonzalez

et al. [GXD+14]. The algorithm has two canonical algorithm

parameters: α and tol. The former, α, can be viewed as the

regularization parameter, or more intuitively, the probability

that someone viewing a web page visits another web page

at random rather than via a link on the current page. The

latter, tol, signifies a desired local tolerance. Once it is met,

the current vertex will be set to inactive.

The local state of every vertex is its PageRank score,

represented here by the value of IOType (e.g., double). In

each round, the vertex-centric program distributes the local

score equally to all neighbors of the current node.

Specifically, the local score s is divided across all neighboring

vertices as an outgoing message with value s/d, where d is

the out-degree. Incoming messages are aggregated via the

standard additive monoid, resulting in an incoming score of

s'. Finally, the vertex-centric program determines the new

local score as α+ (1− α)s�. If the difference with the

previous local score is less than tol, the program considers

the local vertex converged and removes it from further

rounds of computation. In this case, the local vertex's active

neighboring nodes assume that the now-inactive vertex

keeps sending the aggregator monoid identity as its

outgoing message.

In this example, the out-degree of each vertex is used

in computing an outgoing message. This example

demonstrates the use of the PregelState::round

field — used to keep track of the current round of

computation — to initialize the vertex weights during the

first round (lines 1–5 of the program body). Furthermore,

this example demonstrates that in initialization, global

information on the total number of vertices in the program

(PregelState::num_vertices) can be employed within

vertex-centric programs by normalizing the initial PageRank

score3. The inner if-statement of the compute block shows

how a vertex removes itself from computation. And, in

this example, no novel concepts are introduced as to the

3 This normalization is didactic – it is not necessary for this PageRank-like
algorithm to converge.

instance. For example, in the case of starting Algorithm 1,

const size_t n = pregel.num_vertices();
const size_t max_steps = n;
size_t steps_taken;
grb::Vector< size_t > component_IDs(n), in_msgs(n),
out_msgs(n);
grb::RC error_code = pregel.template execute<
 grb::operators::max< VertexIDType >,

 grb::identities::negative_infinity
> (

 &(grb::algorithms::pregel::ConnectedComponents::

program),

 component_IDs,
 grb::algorithms::pregel::ConnectedComponents::

Data(),

 in_msgs, out_msgs,
 steps_taken, max_steps
);

the execute function is a templated member function whose

template arguments define the commutative monoid under

which incoming messages are aggregated. Its domains must

match that of the outgoing and incoming messages. For SCC,

all domains should be of the same integer type. For a specific

vertex, using a monoid structure rather than an arbitrary

message combiner operator helps ensure the following:

• In cases when no incoming messages are received (e.g.,

because a vertex in-degree is zero or all vertices with

edges incident to this vertex have become inactive),

the monoid identity can be substituted as a received

message, thus ensuring consistent behavior while

monoid associativity ensures scalable reduction.

• In cases when multiple messages are received in

an order that potentially differs across rounds and

executions, the commutativity of the combiner monoid

ensures consistent behavior.

In the SCC example, we selected the maximum component

ID. As such, Algorithm 1 demonstrates how the max-monoid

for message aggregation is passed to the executor. The

non-template arguments include, in order: 1) the vertex-

centric program, 2) the vertex states as a dense vector, 3)

the program parameters, 4) buffers for the incoming and

outgoing messages, and 5) an output field that records the

number of rounds the program took before termination. An

optional argument, max_steps, limits this number of rounds.

If max_steps is not provided, the program will run until a

termination condition arises.

The error_code grb::SUCCESS will be returned if the

algorithm terminates correctly, and grb::FAILED will

be returned if the algorithm did not reach a termination

condition after the maximum number of rounds was

completed. grb::MISMATCH will be returned if the message

buffers do not match the size of the number of vertices in

Communications of HUAWEI RESEARCH | 157

Collaborative Optimization

June 2024

mechanisms used to broadcast outgoing messages (lines

17–20 of the program body).

As shown in the preceding example, the PageRank program

is executed on a Pregel instance. However, the vertex weights

and messages are of type double instead of size_t, and a

regular additive monoid is used instead of a max monoid. As

per convention, ALP/Pregel algorithms also provide a static

member function::execute that constructs the necessary

communication buffers and monoid definition. With a Pregel

instance constructed over some input graph as before, the

following executes the ALP/Pregel PageRank algorithm using

the default algorithm parameters and an unlimited number

of rounds:

grb::Vector< double > pr_scores(n);
grb::set(pr_scores, 0);
grb::algorithms::pregel::PageRank< double >::execute(

 pregel, pr_scores, rounds_taken
);

Theoretically, termination of this program is not guaranteed,

especially when rounds are limited to a small number

or when a low α is chosen [LM11]. Section 6 takes care

to report only experiments where program executions

terminate successfully.

As noted earlier, this PageRank algorithm does not

correspond to the canonical version by Page et al. in that

it lacks contributions from the dangling nodes4. A common

extension to the original Pregel framework [MAB+10] adds

global aggregation mechanisms, which would allow for

correct implementation of the PageRank algorithm. The

addition of these mechanisms corrects the PageRank updates

with contributions from the dangling nodes and enables

global convergence detection. Such mechanisms are provided,

for example, by the Giraph [Ave11] vertex-centric framework.

ALP/Pregel, however, does not provide such mechanisms, as

the author believes they will limit the potential of automatic

overlap of message exchanges with the execution of rounds.

This is discussed in more detail in Section 7.2.

ALP/Pregel supports permanently removing vertices from

execution by setting them inactive. Although this is a

known optimization for improving convergence for the

PageRank algorithm [LM11], it is not supported by all

vertex-centric frameworks. While this mechanism may

accelerate convergence for the PageRank algorithm, ALP/

Pregel also exploits inactive vertices to accelerate per-

round computations, as described in Section 5.4. The

examples thus far have introduced all fields available in

grb::interfaces::PregelState, except for num_edges.

4 Nodes with out-degree zero.

Field name read or write Description

active write
Set to false to become inactive
in subsequent rounds

voteToHalt write
Set to true to vote for halting
the program

round read
The current computation
round

num_vertices read
The total number of vertices
in the current graph

num_edges read
The total number of edges in
the current graph

indegree read
The in-degree of the current
vertex

outdegree read
The out-degree of the current
vertex

vertexID read
The unique ID of the current
vertex

Table 1 All fields available to a vertex-centric program during computation rounds.
The fields are sorted from writable ones that control program termination, to read-

only global constants and variables, and finally to read-only constant numbers
regarding local vertex properties.

The implementation of the vertex-centric ALP/Pregel

interface translates the program to a while-loop around

standard ALP/GraphBLAS primitives at compilation time.

Each execution of the body of the while loop corresponds to

the execution of one round of computation as well as the

subsequent termination detection and message exchange.

Prior to the first round, all vertices are added to the active

list , and the outgoing message buffer is reset to the monoid

identity. During each round, the following operations take

place for vertices that are in the active list:

1 reset the outgoing message buffers using the aggregation

monoid identity;

2 call the user-defined vertex-centric program, passing

in the current vertex state the program operates on,

the buffers for incoming and outgoing messages, the

algorithm-specific global data (e.g., α and tol for the

vertex-centric PageRank), and the PregelState instance;

3 determine whether all active vertices have voted to halt;

4 remove the vertices that have set themselves inactive

from the active list;

5 determine whether all vertices have become inactive;

6 increment the round counter;

5.4 Implementation

Table 1 summarizes all available fields.

158 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

user must be allowed to set an active node to false, which

does require that actual Boolean values be present in the

active list. Therefore, the update of active vertices takes place

directly after calling the user program, and is implemented

using grb::set (buffer, activeList, true) without

passing in a structural descriptor. This operation is the only

step primitive in the ALP/Pregel implementation without a

structural descriptor. The use of the masked set operation

ensures that there are fewer non-zeroes in the buffer. Finally,

the buffer is swapped with the active list to be used as the

new mask for subsequent steps of the algorithm.

An extra buffer is maintained to support this update step.

According to the performance semantics defined by ALP/

GraphBLAS, the grb::set on a non-empty container

implies a cost proportional to the number of non-zeroes

before the update, plus a cost proportional to the number

of non-zeroes after the update [YDNNS20]. As such, while

the buffer takes up Θ(n) memory, the overhead of this

update step is bounded as Θ(k), with k being the number of

active vertices before the update.

Termination detection. Termination detection using the

vote-to-halt mechanism takes place via a reduction of the

voteToHalt vector into a Boolean scalar using the logical

AND monoid, whereas termination detection using the

inactive mechanism takes place by counting the number of

non-zeroes in the updated active list.

Message exchange. Describing how to perform message

exchange and aggregation using vector–matrix multiplication

may be unclear if the semiring under which this proceeds is

not described. The given aggregation monoid functions as

the additive monoid of such a semiring, from whence the

requirement that the aggregation monoid needs to be a

commutative monoid. The semiring multiplicative operator is

grb::operators::left_assign_if<
 IncomingMessageType, bool, IncomingMessageType

>

with the Boolean true as its identity element. Denoting the

application of this multiplicative monoid operation as

x⊗ y = left assign if (x, y), with x from a user-defined

domain D and y ∈ {false, true}, then left assign if :

D × {false, true} → D is defined as follows:

x⊗ y = left assign if (x, y) =




x, if y equals true

0, otherwise.

In the latter case, 0 corresponds to the additive monoid

identity.

7 reset the incoming message buffers using the aggregation

monoid identity; and

8 exchange messages and aggregate incoming messages

via grb::vxm.

Steps 5–8 use the updated active list from step 4.

Data structures. The active list, incoming messages,

outgoing message, vertex states, in-degrees, out-degrees,

and vertex IDs are all maintained as grb::Vectors with

non-zeroes of the following types: bool for the active list,

user-defined for the message and state vectors, and size_

t for the degree and ID vectors. All vector sizes equal the

number of vertices in the graph, n. On initialization of a

grb::interfaces::Pregel instance, the active list is

initialized to true for all vertices, and the in-degrees and

out-degrees are computed using SpMV multiplication of the

graph adjacency matrix with a vector of ones. The vertex

IDs are computed via

grb::set< grb::descriptors::use_index >(
 vertexIDs, 0);

The use_index descriptor writes the index i to each element

of vertexIDs, instead of the given scalar value 0.

The values of the outgoing (and incoming) message vector

are reset each round via

grb::set< grb::descriptors::structural >(

 outgoingMessages, activeList, id

);

Here, id is the identity of the aggregation monoid, which is

of the same type as that of outgoing messages. Note that

the preceding code resets only the outgoingMessages of

active vertices and throws away entries corresponding to

inactive vertices.

Calling the user program. The user program executes

through a call to grb::eWiseLambda. The lambda function

passed into the eWiseLambda captures a reference to the

active list, incoming and outgoing messages, state, in-degrees

and out-degrees, and vertex IDs. It then calls the user-defined

program. The eWiseLambda only executes for the vertices

that remain active in every round by passing activeList as the

leading mask of the element-wise lambda primitive.

Updating the active list. For efficiency, the active list

should be maintained as a sparse vector where the number

of non-zeroes equals the number of active vertices at the

start of each round. All masked operations can then take

the structural descriptor, which prevents touching the actual

Boolean values of each entry in the active list. However, the

Communications of HUAWEI RESEARCH | 159

Collaborative Optimization

June 2024

overhead, again translating to O(k) costs per round. The

cost of executing a vector program is determined by the

user, and is linear with k. Specifically, for a vertex-centric

program that locally takes Θ(1) time, executing all active

programs costs Θ(k) work.

Again in the worst-case scenario, data movement complexities

in a shared-memory setting correspond to Θ(k) with regard

to accessing internal vector states. The persistent state of a

single vertex and how much of it is touched during each

round is user-defined. However, if we assume Θ(1) memory

movement by a vertex-centric program during any round,

the total memory movement is also Θ(k) per round. Assume

that the sizes of incoming and outgoing messages are Θ(1),

the message exchange costs

O
�
k +

�
i∈activeList

di

�
 (1)

data movement per round, where di is the in-degree of the

i-th vertex. Although perhaps counterintuitive, exchanging

messages also implies work. For ALP/GraphBLAS, the work

bound equals that of Eqn. (1), except that the bound is big-

Theta instead of big-Oh.

For shared-memory parallelization, the above work bounds

may be divided by T , where T is the number of threads.

Parallelization also adds a factor O(T) to all storage, work,

and data movement bounds. Consequently, the work bound

corresponds to the per-thread work, while data movement

bound considers the data volume moved across the whole

system.

Likewise, for distributed-memory parallelization, work can

be divided by P, which is the number of distributed-memory

processes, while adding a factor O(P) to all storage, work,

and data movement bounds. Additionally, the active list

update and the vote-to-halt termination check each amount

to a collective reduction across all nodes. This induces O(P)

inter-process data movement and work, and as many as

O(logP) synchronization steps, where P is the number of

distributed processes. The message exchange adds O(k)

inter-process data movement, assuming an Θ(1) storage for

the outgoing messages. Tables 2 and 3 summarize all costs.

These per-round costings are a direct application of the

ALP/GraphBLAS performance semantics [YDNNS20]. They

confirm that, for an increasing number of inactive vertices,

bounds for work and both intra- and inter-process data

movement improve.

5.5 Summary and Costing

The resulting semiring is, in fact, an improper one —

because the aggregator identity may be user-defined,

it may not annihilate under the multiplicative operator.

However, if the additive monoid is the logical OR with false

as the additive identity, the resulting semiring with left_

assign_if is, in fact, proper since it reduces to the standard

Boolean semiring.

The way we use semiring guarantees that the multiplicative

operator is only ever called using the multiplicative identity

as the right-hand side input argument, thereby ensuring

that improper cases for non-logical-OR aggregators are not

triggered. This must be proceeded carefully as follows: The

grb::vxm operation in = outG matches non-zeroes gij ∈ G

to corresponding elements outi from the outgoing message

buffer, and first applies the multiplicative operator to form a

temporary tmp = outi ⊗Gij. Because G is a void matrix, gij

resolves to the semiring identity, true, so that

tmp = outi ⊗ true = assign left if (outi, true) = outi.

This temporary value is then aggregated into inj using the

user-def ined aggregator monoid. The ALP/Pregel

implementation thus ensures that explicit multiplication

with zero (which may not annihilate) never occurs.

The implementation of vertex-centric programming in ALP/

GraphBLAS makes ample use of its main features:

• composability of monoids and semirings provides the

flexibility to integrate user-defined aggregation into the

richer algebraic semiring structure;

• grb::eWiseLambda allows the execution of any user-

defined operation on the vertex data;

• sparsity, masks, and algebraic structures are exploited to

achieve high performance automatically.

The implementation requires one ALP/GraphBLAS vector

container for each of the entries in Table 1, as well as one

buffer vector for the active list. Through these containers,

ALP/Pregel uses Θ(n) memory for executing any Pregel

program. Execution neither allocates nor frees any memory.

Computing termination conditions costs Θ(k) work, with k

being the number of active vertices in a given round. In the

worst-case scenario, capturing vector elements as

arguments to user-defined vertex-centric programs has O(1)

160 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

Storage Work Data movement

Round computation Θ(n+ T − 1) Θ(k/T + T − 1) Θ(k + T − 1)

Active list update Θ(n+ T − 1) Θ(k/T + T − 1) Θ(k + T − 1)

Termination check Θ(T) O(k/T + T − 1) O(k + T − 1)

Message exchange Θ(n+m+ T − 1) Θ((k +
�

i
di)/T + T − 1) O(k + [

�
i
di] + T − 1)

Total Θ(n+m+ T − 1) Θ((k +
�

i
di)/T + T − 1) O(k + [

�
i
di] + T − 1)

Work Data movement Synchronizations

Round computation 0 0 0

Active list update O(P) O(P) O(logP)

Termination check O(P) O(P) O(logP)

Message exchange Θ(k) Θ(k) 1

Total Θ(k) +O(P) Θ(k) +O(P) O(logP)

Table 2 Costs of executing a single round of an ALP/Pregel program on a shared-memory machine. This assumes there are n vertices, of which k are active, m edges,
Θ(1) execution time of a vertex-centric program, and Θ(1) storage for each of a single vertex state, incoming message, and outgoing message. The work corresponds

to that of a single thread, and the data movement corresponds to that across the entire machine. The sum
�

i di is as in Eqn. (1), while T indicates the number of
threads within a shared-memory machine. Sequential costs correspond to T = 1.

Table 3 Additional costs of executing a single round of an ALP/Pregel program on a distributed-memory architecture. The costs are in addition to those listed in Table 2,
only that T should be replaced with the number of threads available at each process multiplied by the number of distributed-memory processes P. Additionally, all its

data movement costings should be divided by P, and each of storage, work, and data movement adds a factor O(P).

Experiments are conducted for two purposes: 1) to show

that humble ALP/Pregel programs can achieve the scalability

predicted in the previous section, and 2) to show that ALP/

Pregel is competitive against state-of-the-art frameworks.

For the first purpose, the SCC algorithm is investigated,

comparing the sequential and parallel results. Then, using

two variants of the PageRank algorithm, the behavior of

ALP/Pregel under an increasing number of inactive vertices

is investigated. Finally, a scalability experiment using

PageRank algorithms demonstrates that shared-memory

auto-parallelization of ALP/Pregel behaves as expected also

when the number of inactive vertices increases.

For the second purpose of comparing ALP/Pregel with state-

of-the-art frameworks, this section first summarizes the ALP/

GraphBLAS performance from the recent work by Mastoras

et al. [MAY23], who provide an in-depth comparison of ALP/

GraphBLAS against the GNU Scientific Library (GSL), Eigen

[GJ+10], and SuiteSparse:GraphBLAS [Dav19]. They show

that the ALP/GraphBLAS PageRank implementation sketched

in Algorithm 3 is 0.96–9.82 times faster than a PageRank

6 Experiments implemented in SuiteSparse:GraphBLAS, and 0.64–14 times

faster than one written using Eigen on shared-memory

parallel architectures. Both SuiteSparse and Eigen auto-

parallelize over shared-memory architectures, while GSL does

not. Eigen additionally performs loop fusion, which leads

to speedups over the blocking ALP/GraphBLAS for small

matrices. The nonblocking ALP/GraphBLAS implementation

that Mastoras et al. contribute also achieves loop fusion

and achieves speedups beyond Eigen for both smaller and

larger matrices, but will not be considered as part of the

experiments in this section. Mastoras et al. obtain similar

results for two other sparse matrix and graph algorithms.

This paper focuses on comparing the ALP/Pregel PageRank-

like algorithm with the canonical ALP/GraphBLAS variant,

which is taken as the state-of-the-art baseline. This

paper does not compare ALP/Pregel against the existing

vertex-centric frameworks such as Giraph [Ave11], since

such frameworks typically exhibit orders-of-magnitude

performance losses versus the optimized code [SY19] because

they rely on file-based fault tolerance. Such comparisons

are out of our scope because what we look for are humble

programming models that achieve hero-level performance.

Communications of HUAWEI RESEARCH | 161

Collaborative Optimization

June 2024

Experiments are run on a dual-socket Intel x86 machine,

consisting of two Intel Xeon 6238T processors, each having

22 cores, a 32 kB private L1 cache per core, a 1 MB private L2

cache per core, and a 30.25 MB shared L3 cache. The cores,

clocked at 1.9 GHz, have hyperthreading enabled and turbo

boost disabled. Each processor has six memory channels

clocked at 2,933 MT/s, producing 262.2 GB/s of theoretical

throughput across the total machine. The combined

computational throughput of all AVX-512 enabled cores is

2,675 Gflop/s. The single-core memory throughput ranges

from 9.95 (vector-to-scalar reduction) to 18.4 (triad) Gbyte/s.

These figures are relevant because ALP/Pregel computations

are typically memory-bound, achieving far lower speedup

than the total number of cores would indicate. Indeed, for

this architecture, a bandwidth-bound application is expected

to achieve 14.3–26.4 times of speedup.

Our experiments are implemented on v0.6 of ALP/GraphBLAS,

which is available on GitHub and Gitee [Alg21a, Alg21b]. Its

sequential reference and shared-memory parallel reference_

omp backends are used both to compile ALP/Pregel programs

and to provide a baseline PageRank implementation.

All software is compiled using GCC 9.3.1 with the -O3

-mtune=native-march=native -DNDEBUG -funroll-loops

compiler flags. All compilations and experiments are executed

on Linux kernel version 5.8.18. Experiments using OpenMP

define OMP_PROC_BIND=true.

Experiments on small datasets such as gyro_m are repeated

multiple times to ensure that one timing takes at least

100 milliseconds. Then, experiments are further repeated

at least 10 times in order to compute the sample standard

deviation across all timings. All reported timings have a

sample standard deviation of less than 3% of the measured

average time. Timings with sample standard deviation being

1% higher than the average time are printed in italics , and

the tables only show three significant digits of each of the

obtained averages. As such, timings printed in non-italics are

accurate to a significant degree, while for timings printed in

italics the least significant digit is likely to be inaccurate.

In this paper, the presented methodology is only not applied

to three experiments benchmarking the sequential ALP/

Pregel SCC due to a very long run time.

6.1 Methodology

Dataset Name #Vertices #Edges Edges/Vertex Structured

1 gyro_m 17 361 340 431 19.6 no

2 vanbody 47 072 2 336 898 49.6 yes

3 G2_circuit 150 102 726 674 4.84 mixed

4 bundle_adj 513 351 20 208 051 39.4 adverse

5 apache2 715 176 4 817 870 6.74 yes

6 ecology2 999 999 4 995 991 5.00 yes

7 Emilia_923 923 136 41 005 206 44.4 yes

8 Serena 1 391 349 64 531 701 46.4 yes

9 G3_circuit 1 585 478 7 660 826 4.83 mixed

10 Queen_4147 4 147 110 329 499 284 79.5 yes

11 wikipedia-20070206 3 566 907 45 030 389 12.6 no

12 uk-2002 18 520 486 298 113 762 16.1 no

13 road_usa 23 947 347 57 708 624 2.41 no

Table 4 Graphs used in the experiments. All except 11 and 12 are undirected.

6.2 Datasets

Our experiments require input graphs on which to run the

vertex-centric algorithms. Typical datasets that vertex-

centric frameworks operate on include knowledge graphs

and graph representations from the Web and other types

of networks. To also compare against structures that differ

significantly from typical graphs so that we can gauge the

effectiveness when faced with problems originating from

other domains, we include both graphs and sparse matrices

from various scientific computing domains in our dataset,

as shown in Table 4.

162 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

Dataset Sequential Shmem. parallel Speedup

1 39.3 (47) 38.6 (47) 1.03×

2 183 (53) 56.2 (53) 3.26×

3 755 (162) 255 (162) 2.96×

4 4 910 (140) 568 (140) 8.64×

5 11 100 (447) 1 970 (447) 5.63×

6 52 300 (2000) 11 400 (2000) 4.59×

7 6 930 (111) 774 (111) 8.95×

8 6 090 (59) 618 (59) 9.84×

9 27 400 (523) 4 500 (523) 6.09×

10 76 200 (178) 5 620 (178) 13.6×

11 189 000 (461) 10 800 (461) 17.5×

12 131 000 (116) 11 900 (116) 11.0×

13 6 080 000 (5681) 668 000 (5681) 9.10×

Table 5 The runtime in milliseconds for executing the ALP/Pregel SCC, Algorithm 1, compiled using the sequential and shared-memory parallel ALP/GraphBLAS backends. The
numbers of iterations are listed in the parentheses following each timing, and the last column reports the speedup of parallel execution over sequential execution.

All datasets are from the SuiteSparse MatrixMarket collection

[DH11], and are ordered by the number of vertices they

contain. In the architecture described earlier, 128k 64-bit

words (doubles or size_ts) fit into private L2 caches. As such,

we expect significant data reuse by algorithms operating on

datasets 1 and 2. Approximately 4M words fit into shared L3

caches. Given that all algorithms require multiple vectors to

operate, significant reuse of data in L3 caches should occur

for datasets 3–10. Datasets above number 10 will always

induce out-of-cache behavior because the corresponding

vectors do not fit in L3 caches. As we will describe later in this

section, performance differences between some PageRank

implementations results from the difference in the number of

edges per vertex (also reported in Table 4).

Apart from differences in the number of vertices and edges,

we augment graphs that have no discernible structure

when plotting its corresponding adjacency matrix with

structured matrices. Discernible structures in such matrices

include having a fixed number of diagonals in the adjacency

matrix, and with only non-zeroes within a fixed bandwidth

around the main diagonal. Structured matrices and graphs

with structured corresponding adjacency matrices induce

favorable data access patterns that modern hardware

prefetchers implicitly exploit, which results in very different

behavior during computations on such graphs. These

effects are well-known in high-performance computing

research that deals with sparse matrices. Some datasets,

such as G3_Circuit, have both structured and unstructured

components in the adjacency matrix, whereas bundle_

adj has an adversarial structure that has a major impact

on the performance of linear algebraic libraries and

programming frameworks [MAY23]. All graphs represented

by the adjacency matrices are undirected, except

wikipedia-20070206 and uk-2002.

6.3 SCC Algorithm

We first consider the scalability of ALP/Pregel using the SCC

for undirected graphs in Algorithm 1. For directed graphs

this algorithm still terminates, and returns connected

components where for each vertex v in a given component,

there exists at least one other vertex u in that same

component with a path to u to v. Given Algorithm 1 over

directed inputs retains a meaningful interpretation, our

experiments use the full dataset in Table 4.

Table 5 compares the wall-clock time of executing the

related ALP/Pregel SCC algorithm between two modes:

using the sequential ALP/GraphBLAS backend and using

the shared-memory parallel OpenMP-enabled backend. We

emphasize that parallelization is fully automatic and the

code presented in Algorithm 1 does not need to be changed.

Communications of HUAWEI RESEARCH | 163

Collaborative Optimization

June 2024

The number of rounds required by the algorithm is shown in

the parentheses. In addition, the table also reports speedup

obtained by shared-memory parallelization.

The SCC algorithm employs only the vote-to-halt termination

mechanism so that each round runs with all vertices being

active. Moreover, parallelization should not affect the number

of rounds computation requires. This experiment therefore

measures only the scalability of the shared-memory parallel

backend using the SCC algorithm.

Parallelization involves unavoidable overheads of at least

Ω(log T) . In ALP/GraphBLAS, it is bounded by O(T)

[YDNNS20]. Therefore, it is certain that for smaller datasets

on a full system with 88 hyperthreads and two NUMA

domains, speedups are expected to be far below 26.4x, which

is achieved by the triad benchmarks5. Since the vote-to-halt

termination mechanism depends on the vector-to-scalar

reduction, a significant portion of the vertex-centric paradigm

will be bound by the 14.3x of speedup for the reduction

benchmark5. However, as the size of datasets increases,

speedups are expected to reach the 14.3–26.4 range.

Table 5 reports the same number of rounds for both the

sequential and shared-memory parallel ALP/Pregel SCC

algorithms. The maximum speedup, 17.5x for dataset 11,

falls within the upper range, indicating that parallelization

of the non-reduction parts of the ALP/Pregel program

achieves speedups closer to the best-case triad benchmark.

This indicates that the ALP/Pregel implementation scales on

shared-memory architectures for the particular case when

all vertices remain active throughout the computation.

By contrast, the PageRank in Algorithm 2 does make use

of the inactive vertices. In this case, as the computation

proceeds, fewer and fewer vertices will partake in the

computation. Termination of this program does not

guarantee convergence in the classical 2−norm, nor in the

inf-norm, even if dangling nodes were accounted for properly.

To compare the impact of the vertex inactivation mechanism

on the speed of computation, we introduce a global variant

of the ALP/Pregel PageRank by modifying Algorithm 2.

Specifically, instead of using the inactivation mechanism,

the algorithm is modified to use vote-to-halt on local

convergence detection. As such, we subsequently refer to

the original Algorithm 2 as the local variant, because it does

5 See Section 6.1.

not consider a global inf-norm computation but a greedy

local version of it.

Both the global and local ALP/Pregel PageRank algorithms

are further compared against the standard PageRank

implementation using and bundled with ALP/GraphBLAS.

This algorithm does account for dangling nodes and

implements convergence detection in the standard 2−

norm [YDNNS20]. Algorithm 3 provides a simplified listing

of that algorithm for the sake of completeness6. Because

of the algorithmic differences relating to dangling nodes,

the standard equivalence of norms does not apply, and

we therefore cannot directly compare errors between the

ALP/Pregel implementations and the ALP/GraphBLAS

implementation (the algorithms are different and converge

to different values). As described in Section 5.3, the vertex-

centric PageRank is commonly applied, and its global

variant is most often applied. Table 6 therefore compares

the local vertex-centric variant against its global variant

in terms of performance and speed of convergence. It also

compares both Pregel variants and the canonical PageRank

approaches to web page ranking in terms of performance.

In terms of the number of iterations, among the three

different algorithms we compare, it is not the case that the

vertex-centric algorithms always incur fewer iterations than

the canonical PageRank, nor that the local variant of the

ALP/Pregel PageRank always incurs fewer iterations than

its global variant. Indeed, as Table 6 shows, any algorithm

can incur the fewest number of iterations, depending on

the input graphs. The vertex-centric variants do require

significantly more iterations for the large undirected graphs,

IDs 11 and 12, to converge, but this may well be due to the

common presence of dangling nodes in those graphs.

In terms of the execution speed, the local variant is faster

than the global variant. This is because, as the rounds

progress, increasingly more vertices become inactive. This is

confirmed by the time per iteration reported in Table 6. As

such, we may conclude that our ALP/Pregel implementation

becomes faster as the number of active nodes decreases.

One disadvantage of using the element-wise lambda noted

by Yzelman et al. is that the compiler is no longer able to

apply vectorization when possible [YDNNS20]. Thus, the

ALP/GraphBLAS PageRank may be faster than the global

ALP/Pregel variant even though the former performs more

operations7. This benefit is expected to decrease as the

number of edges per vertex increases.

6 See the ALP/GraphBLAS repository [Alg21a] for the full algorithm.
7 i.e., dangling node corrections and 2−norm computations.

6.4 Sequential PageRank

164 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

6.5 Shared-memory Parallel PageRank

The time per iteration reported in the preceding table shows

that the ALP/GraphBLAS outperforms the global variant, and

even the local vertex-centric variant in 6 out of 13 cases. For

the larger graphs, the latter is explained by the observation

that low edge count per vertex favors vectorization (datasets

6, 9, and 13). Additionally, a performance gain for the pure

ALP/GraphBLAS algorithm on small graphs is observed.

This gain increases on the shared-memory parallel ALP/

GraphBLAS variant, as presented and analyzed in more detail

in the next section.

In summary, in terms of the time per iteration, the local ALP/

Pregel PageRank is up to 16.8x faster than its global variant,

and up to 6.84x faster than a state-of-the-art canonical

PageRank algorithm. In terms of the end-to-end runtime, the

local variant is up to 7.48x faster than the global one, and

up to 8.99x faster than the state-of-the-art baseline — the

biggest slowdown is limited at 0.95x. The local ALP/Pregel

algorithm is fastest overall in 12 out of 13 cases.

when the arithmetic, including both its precision and order,

remains unchanged. Although numerical error propagation

could cause minor variations, comparison of Tables 6 and

7 reveals no difference in the required number of iterations

for our algorithms and datasets.

In terms of the execution speed, including both the end-to-

end runtime and the time per iteration, there is no instance

where the global variant outperforms the local variant.

In terms of the end-to-end runtime, the state-of-the-art

PageRank implemented directly on top of ALP/GraphBLAS is

fastest in eight cases, which are exactly the ones where the

canonical PageRank achieves the fastest time per iteration.

However, there is one exception where the local variant does

achieve the fastest end-to-end runtime, even though in terms

of the time per iteration the baseline outperforms the local

variant. Indeed, differences in the time per iteration are more

pronounced between the state-of-the-art baseline and the

local variant, with speedups ranging 0.403–10 times.

Table 8 collects the speedups for all variants, similar to

the SCC study in Section 6.3. The speedups ALP/Pregel

achieves on bundle_adj (9.24-11.0x) are significantly higher

than the speedups achieved by the baseline (1.81x). This

is due to the adversarial structure of the graphs, which

ALP/Pregel ms. per iteration

Dataset Global Local Baseline Global Local Baseline

1 34.8 (40) 24.7 (39) 31.4 (52) 0.870 0.633 0.604

2 192 (43) 118 (41) 197 (52) 4.47 2.88 3.79

3 175 (38) 78.8 (36) 90.0 (48) 4.61 2.19 1.88

4 3 070 (66) 2 070 (51) 2 330 (60) 46.5 40.6 38.8

5 707 (31) 456 (33) 434 (43) 22.8 13.8 10.1

6 976 (31) 63.5 (34) 375 (30) 31.5 1.87 12.5

7 2 840 (36) 1 180 (36) 2 960 (45) 78.9 32.8 65.8

8 5 090 (40) 2 500 (33) 4 750 (44) 127 75.8 108

9 1 960 (38) 987 (36) 1 100 (48) 51.6 27.4 22.9

10 20 800 (35) 2 780 (35) 25 000 (46) 594 79.4 543

11 40 500 (103) 11 400 (96) 18 100 (55) 393 119 329

12 153 000 (115) 46 100 (104) 72 100 (73) 1330 443 988

13 87 600 (78) 58 800 (72) 62 200 (78) 1120 817 797

Table 6 Results, in milliseconds, of executing sequential PageRank algorithms, comparing the ALP/Pregel variants using global and local convergence against the baseline
ALP/GraphBLAS PageRank implementation. The numbers of iterations implemented before convergence are listed in the parentheses. The last three columns report the time

per iteration, with the fastest marked in bold.

Similar to the SCC algorithm, in the case of parallelization

of PageRank, the number of iterations will not change

Communications of HUAWEI RESEARCH | 165

Collaborative Optimization

June 2024

groups high-degree vertices in one cluster. Since the ALP/

GraphBLAS baseline employs dense unmasked vectors only,

the shared-memory parallel ALP backend reverts to static

scheduling during SpMV multiplication. The ALP/Pregel

variants, however, use a sparse structural mask for which

the backend reverts to dynamic scheduling during SpMV

multiplication. This, in turn, avoids the imbalance induced

by the adversarial graph structure.

The ALP/GraphBLAS PageRank algorithm generally achieves

better speedups than the ALP/Pregel variants, and the

global variant tends to achieve better speedups than the

local variants. While all implementations rely on the same

OpenMP-enabled ALP/GraphBLAS backend, they rely on

different OpenMP scheduling: as discussed earlier, the

ALP/GraphBLAS variant employs static scheduling during

sparse matrix–vector multiplication, whereas the ALP/

Pregel variants employ dynamic scheduling. Additionally,

ALP/Pregel employs dynamic scheduling while executing

the vertex-centric program through the element-wise

lambda. This is because the user-defined lambda may

Algorithm 3 A simplified representation of the ALP/GraphBLAS PageRank

using namespace grb;

void pagerank(

 Vector< double > &pr, const Matrix< NonzeroT > &L,

 Vector< double > &temp, Vector< double > &pr_buffer,
 Vector< double > &row_sum,
 const double alpha,

 const double conv

) {

 Monoid< operators::add< double >, identities::zero > addM;

 Semiring< operators::add< double >, operators::mul< double >,

 identities::zero, identities::one > realRing;

 const size_t n = nrows(L);
 set(temp, 1);

 set(row_sum, 0);
 vxm< descriptors::dense | descriptors::transpose_matrix >(row_sum, temp, L, realRing);
 eWiseLambda([&row_sum, &alpha, &zero](const size_t i) {
 if(row_sum[i] > 0) { row_sum[i] = alpha / row_sum[i]; }
 }, row_sum);

 double dangling, residual;

 do {

 residual = dangling = 0;

 foldl< descriptors::invert_mask >(dangling, pr, row_sum, addM);
 set(temp, 0);

 eWiseApply(temp, pr, row_sum, operators::mul< double >());
 dangling = (alpha * dangling + 1 - alpha) / static_cast< double >(n);
 set(pr_buffer, 0);
 vxm(pr_buffer, temp, L, realRing);
 foldl< descriptors::dense >(pr_buffer, dangling, addM);
 dot< descriptors::dense >(residual, pr, pr_buffer, addM, operators::abs_diff< double >());
 if(residual <= conv) { break; }

 std::swap(pr, pr_buffer);
 } while(true);

}

induce varying workload, depending on the index on which

it operates. Moreover, some dense vector–vector operations

in the baseline revert to static scheduling, while the same

operations in the ALP/Pregel variants are part of the

dynamically scheduled element-wise lambda. Some ALP/

Pregel metadata updates performed via level-1 operations

in the global variant also employ static scheduling, whereas

in the local variants they revert to dynamic scheduling.

Another major effect is regarding the workspace of the

ALP/Pregel programs. Recall that executing any Pregel

program requires eight vectors, whereas the ALP/GraphBLAS

PageRank implementation in Algorithm 3 requires only

four. This translates to a benefit for smaller graphs, as the

baseline implementation induces higher data reuse for

the same problems within the same limited caches. This is

compounded by an explicit materialization of the messages

between vertices in the form of incoming and outgoing

messages, meaning that computed values are copied twice

as many times as in the baseline implementation, which

holds zero such copies.

166 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

Speedup vs. Itself Speedup vs. Baseline

Dataset Global Local Baseline Global Local

1 1.12 0.846 0.835 1.21 1.29

2 4.43 3.19 3.66 1.24 1.45

3 2.98 2.03 3.10 0.493 0.746

4 11.0 9.24 1.81 4.61 5.76

5 4.50 3.59 12.4 0.224 0.276

6 4.81 1.02 11.7 0.158 0.515

7 10.8 7.24 31.8 0.354 0.571

8 12.4 9.19 32.5 0.354 0.537

9 5.34 4.06 12.5 0.239 0.361

10 17.8 8.35 35.7 0.599 2.11

11 16.6 13.0 3.60 2.06 5.73

12 13.3 10.4 26.2 0.239 0.622

13 8.94 7.78 23.2 0.273 0.354

Table 8 Speedups of the parallel PageRank variants from Table 7 versus the sequential variants from Table 6.

ALP/Pregel ms. per Iteration

Dataset Global Local Baseline Global Local Baseline

1 31.1 (40) 29.2 (39) 37 .6 (52) 0.778 0.749 0.723

2 43.3 (43) 37.0 (41) 53 .8 (52) 1.01 0.902 1.03

3 58.8 (38) 38.9 (36) 29.0 (48) 1.55 1.08 0.604

4 280 (66) 224 (51) 1290 (60) 4.24 4.39 21.5

5 157 (31) 127 (33) 35.1 (43) 5.06 3.85 0.816

6 203 (31) 62 .3 (34) 32.1 (30) 6.55 1.83 1.07

7 263 (36) 163 (36) 93 .0 (45) 7.31 4.53 2.07

8 412 (40) 272 (33) 146 (44) 10.3 8.24 3.32

9 367 (38) 243 (36) 87.7 (48) 9.66 6.75 1.83

10 1170 (35) 333 (35) 701 (46) 33.4 9.51 15.2

11 2440 (103) 878 (96) 5030 (55) 23.7 9.15 91.5

12 11500 (115) 4420 (104) 2750 (73) 100 42.5 37.7

13 9800 (78) 7560 (72) 2680 (78) 126 105 34.4

Table 7 Results, in milliseconds, of executing shared-memory parallel PageRank algorithms. Like in Table 6, this table compares the ALP/Pregel variants
against the baseline shared-memory parallel ALP/GraphBLAS variant.

Communications of HUAWEI RESEARCH | 167

Collaborative Optimization

June 2024

7 Conclusions

The paramount challenge in contemporary research on

programming models and compilers lies in striking a balance

between providing easy-to-use programming interfaces that

make future highly parallel and heterogeneous compute

systems accessible to humble programmers, and the

necessity to:

• support an ever-increasing number of architectures,

• deploy over increasingly large-scale systems that involve

multiple architectures, and

• deal with a mixture of shared- and distributed-memory

connectivity across compute units.

In the interest of exposing humble programming models

that are usable by the vast majority of programmers, a hit

in performance and scalability may be acceptable. Ideally,

however, humble code — once compiled — should perform

on par with expert code, thus turning humble programmers

into heroes. A recent study shows that the humble ALP/

GraphBLAS outperforms the state-of-the-art frameworks for

three graph and sparse matrix algorithms [MAY23]. ALP/

Pregel exposes a vertex-centric programming model and

translates vertex-centric programs into ALP/GraphBLAS at

compile time, while offering benefits in terms of its shared-

and distributed-memory auto-parallelization and other

optimizations. This work demonstrates that a vertex-centric

SCC algorithm implemented using ALP/Pregel obtains up

to 17.5× speedup on a dual-socket Intel Xeon machine.

7.1 Outlook

Similarly, an auto-parallelized vertex-centric PageRank-

like algorithm obtains speedups up to 17.8×, confirming

that ALP/Pregel programs are able to scale. Furthermore,

comparing the vertex-centric program against a highly

optimized canonical PageRank algorithm results in faster

sequential execution in 12 out of 13 cases, and speedups

of up to 8.99×. In shared-memory parallel execution,

the ALP/Pregel algorithm is fastest in 5 out of 13 cases,

with speedups of up to 5.76×. These results confirm that

humble programs may achieve hero-level performance, and

demonstrate that novel approaches based on such humble

programming interfaces may even outperform highly

optimized canonical solutions.

Different groups of humble programmers may prefer

different humble programming interfaces. As such, the

compute industry and researchers should strive to identify a

set of humble programming models that together appeal to

the vast majority of programmers. Furthermore, in an ideal

scenario, only a few humble programming interfaces with

corresponding optimized software stacks would be required.

This paradox can be resolved by translating many useful

humble programming interfaces into just a few optimized

humble software stacks.

The reported speedups from the ALP/Pregel programs are

achieved even though those programs are expanded into an

ALP program, making use of its standard implementation. This

not only validates the notion of supporting multiple humble

programming models on top of a single software stack, but

also demonstrates that this is possible without significant

performance overheads. It also solves the software bottleneck

as it frees hero programmers of addressing optimization and

portability concerns for the few fundamental software stacks

only — in this case, the ALP stack.

Even so, this paper does not argue that ALP should be

the only fundamental programming model. It remains an

open question as to how much of the general-purpose

programming demands can be covered by ALP, as well as

how many popular humble programming interfaces can be

implemented on top of ALP without incurring significant

performance overheads. Instead, this paper humbly argues

that the future of software would be vastly improved if the

industry and research communities explore more scalable

humble programming interfaces, as well as identify the

smallest possible subsets of foundational software stacks

into which these humble programming models translate.

The switch from static to dynamic scheduling, the loss of

data locality, and the explicit materialization of messages

result in a worst-case slowdown of 0.340×, comparing the

baseline with global variants. Additional uses of dynamic

instead of static scheduling in vector–vector and vector–scalar

operations compound the worst-case slowdown to 0.212×,

comparing the baseline with local variants. The effects of

losing data locality should be reduced for larger problems.

Although these slowdowns indicate that ALP/Pregel

programs scale worse than pure ALP/GraphBLAS ones,

this may be resolved partially by investigating alternative

dynamic scheduling techniques within ALP. However, the

overheads incurred from copying messages and the loss

of data reuse opportunities for small problems remain

unavoidable. Nevertheless, the local variant leads to the

fastest end-to-end shared-memory parallel execution in 5

out of 13 cases, with speedups of up to 5.76× compared to

the baseline.

168 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

7.3 Beyond ALP/Pregel

7.2 Improving ALP/Pregel

Pregel programs are naturally loosely coupled. At any point in

time during execution, not all vertices are required to be

executing the same round. Specifically, vertices whose round-i

messages have been received can immediately continue with

round i+ 1, regardless of whether other vertices have yet to

execute the ith computation phase or whether they are

waiting on incoming round-i messages. This insight can be

applied recursively to realize pipelines of arbitrary length,

bounded only by the underlying graph structure and the

available memory for caching in-flight messages.

For example, a Pregel program running on the source vertex

of a line graph can progress arbitrary round numbers ahead

of other vertices. This leads to a pipeline depth bounded by

the length of the graph. However, a Pregel program running

on any vertex of a fully connected graph must execute in

lock-step with all other programs due to being connected

in an all-to-all fashion. While ALP/Pregel transforms the

program into a series of level-1 operations separated by a

message exchange driven by an SpMV multiplication, the

use of a nonblocking implementation of ALP/GraphBLAS

such as by Mastoras et al. [MAY23, MAY22] realizes overlap

between the communication and computation phases of a

single round. Introducing buffers for incoming messages in

ALP/GraphBLAS may likewise enable overlapping rounds of

vertex-centric computations. This will be the next step to take

to enhance the ALP/Pregel performance. Such overlapping

should be particularly effective on distributed-memory

architectures, which, although supported by the current ALP/

Pregel implementation, has not been evaluated in this work.

Such comparison will be included in our future work, in which

we will also compare the effects of loosely coupled execution.

However, this requires bringing the nonblocking ALP/

GraphBLAS capabilities to the distributed-memory parallel

case. From the single-node perspective, a nonblocking variant

that exploits the underlying graph structure in order to

eliminate the need for caching incoming messages — thereby

While this paper shows that realizing the Pregel humble

programming model on top of ALP is possible and thus

may benefit from the high performance and scalability

guaranteed by ALP, not all algorithms and workloads are

amenable to either pure ALP or vertex-centric programming.

We need to expand the range of humble models that we

can automatically translate into ALP. For MapReduce, for

example, the following insights may automatically translate

MapReduce programs into ALP:

• a one-to-one map phase corresponds to the element-

wise lambda function;

• one-to-none or one-to-many maps may be realized by

the parallel I/O mode introduced by ALP/GraphBLAS

[YDNNS20]; and

• a reduce phase may be realized by a four-step process:

(1) unzipping a key-value ALP/GraphBLAS vector of

length n into two vectors of n keys and n values,

(2) zipping the two vectors into an ALP/GraphBLAS

matrix of size k × n,

(3) performing the reduction via an SpMV multiplication,

and

(4) transforming the resulting vector of values back

into a vector of key-value pairs.

This ALP/MapReduce approach is currently under

implementation and will be evaluated and released as the

next additional humble programming interface to ALP.

Inspirations to further humble interfaces on top of ALP

include NumPy [ADH+01] and Spark [ZCF+10] as other

examples of high-impact humble programming models, as

well as programming models based on set algebra [BVSS+21,

BKK+21] and commutative sets [KPW+07, PGZ+11].

saving memory resources and increasing data reuse — seems

a most promising direction.

Communications of HUAWEI RESEARCH | 169

Collaborative Optimization

June 2024

workshops (IPDPSW), pp. 643–652. IEEE, 2017.

[BVSS+21] Maciej Besta, Zur Vonarburg-Shmaria, Yannick

Schaffner, Leonardo Schwarz , Grzegorz

Kwasniewski, Lukas Gianinazzi, Jakub Beranek,

Kacper Janda, Tobias Holenstein, Sebastian

Leisinger, Peter Tatkowski, Esref Ozdemir, Adrian

Balla, Marcin Copik, Philipp Lindenberger,

Marek Konieczny, Onur Mutlu, and Torsten

Hoefler, "GraphMineSuite: Enabling high-

performance and programmable graph mining

algorithms with set algebra," Proc. VLDB Endow.,

14(11):1922–1935, Jul. 2021.

[CLR92] Thomas H Cormen, Charles E Leiserson, and

Ronald L Rivest, "Introduction to Algorithms,"

MIT Press, first edition, 1992.

[Dav19] T i m o t h y A D a v i s , " A l g o r i t h m 1 0 0 0 :

SuiteSparse:GraphBLAS: Graph algorithms

in the language of sparse linear algebra,"

ACM Transactions on Mathematical Software

(TOMS), 45(4):1–25, 2019.

[DG08] J e f f re y Dean and San jay Ghemawat ,

"MapReduce: simplified data processing on

large clusters," Communications of the ACM,

51(1):107–113, 2008.

[DH11] Timothy A Davis and Yifan Hu, "The University

of Florida sparse matrix collection," ACM

Transactions on Mathematical Software (TOMS),

38(1):1–25, 2011.

[Dij72] Edsger W Dijkstra, "The humble programmer,"

Communications of the ACM, 15(10):859–866,

1972.

[DS00] James C Dehnert and Alexander Stepanov,

"Fundamentals of generic programming,"

International Seminar on Generic Programming,

pp. 1–11, Springer, 2000.

[GJ+10] Gaël Guennebaud, Benoit Jacob, et al. , "Eigen

Technical report," TuxFamily, 2010.

[GXD+14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave,

Daniel Crankshaw, Michael J Franklin, and

Ion Stoica, "GraphX: Graph processing in a

distributed dataflow framework," in 11th USENIX

symposium on operating systems design and

implementation (OSDI 14), pp. 599–613, 2014.

References

[ADH+01] David Ascher, Paul F Dubois, Konrad Hinsen,

Jim Hugunin, Travis Oliphant, et al. , "Numerical

Python," 2001.

[AHU74] Alfred V Aho, John E Hopcroft, and Jeffrey D

Ullman, "The design and analysis of computer

algorithms," Reading, MA, 19(4), 1974.

[Alg21a] Algebraic Programming. ALP/GraphBLAS release

v0.6. https://github.com/Algebraic-Programming/

ALP, 2021. Last retrieved on April 6th, 2023.

[Alg21b] Algebraic Programming. ALP/GraphBLAS release

v0.6. https://gitee.com/CSL-ALP/graphblas,

2021. Last retrieved on April 6th, 2023.

[AS87] Baruch Awerbuch and Yossi Shiloach, "New

connectivity and MSF algorithms for shuffle-

exchange network and PRAM," IEEE Transactions

on Computers, 36(10):1258–1263, 1987.

[Ave11] Ching Avery, "Giraph: Large-scale graph processing

infrastructure on Hadoop," Proceedings of the

Hadoop Summit. Santa Clara, 11(3):5–9, 2011.

[BBM+19] Benjamin Brock, Aydin Buluç, Timothy Mattson,

Scott McMillan, and José Moreira, "The

GraphBLAS C API specification," GraphBLAS.

org, Tech. Rep, 2019.

[BKK+21] Maciej Besta, Raghavendra Kanakagir i ,

G r z e g o r z K w a s n i e w s k i , R a c h a t a

Ausavarungnirun, Jakub Beránek, Konstantinos

Kanellopoulos, Kacper Janda, Zur Vonarburg-

Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan

Gómez Luna, Jakub Golinowski, Marcin Copik,

Lukas Kapp-Schwoerer, Salvatore Di Girolamo,

Nils Blach, Marek Konieczny, Onur Mutlu, and

Torsten Hoefler, "Sisa: Set-centric instruction

se t a rch i tec ture for g raph min ing on

processing-in-memory systems," in MICRO-54:

54 th Annua l I EEE /ACM In te rna t iona l

Symposium on Microarchitecture, MICRO '21,

pp. 282–297, New York, NY, USA, 2021.

[BMM+17] Aydin Buluç, Tim Mattson, Scott McMillan,

José Moreira, and Carl Yang, "Design of the

GraphBLAS API for C," in 2017 IEEE International

Parallel and Distributed Processing Symposium

170 | Communications of HUAWEI RESEARCH

Collaborative Optimization

June 2024

[KG11] Jeremy Kepner and John Gilbert, "Graph

algorithms in the language of linear algebra,"

SIAM, 2011.

[KJ18] Jeremy Kepner and Hayden Jananthan,

"Mathematics of big data: Spreadsheets,

databases, matrices, and graphs", MIT Press, 2018.

[KPW+07] Milind Kulkarni, Keshav Pingali, Bruce Walter,

Ganesh Ramanarayanan, Kavita Bala, and L

Paul Chew, "Optimistic parallelism requires

abstractions," in Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language

Design and Implementation, pp. 211–222, 2007.

[LM11] Amy N Langville and Carl D Meyer, "Google's

PageRank and beyond," Princeton university

press, 2011.

[MAB+10] Grzegorz Malewicz, Matthew H Austern, Aart JC

Bik, James C Dehnert, Ilan Horn, Naty Leiser, and

Grzegorz Czajkowski, "Pregel: a system for large-

scale graph processing," in Proceedings of the

2010 ACM SIGMOD International Conference on

Management of Data, pp. 135–146, 2010.

[MAY23] Aristeidis Mastoras, Sotiris Anagnostidis, and A.

N. Yzelman, "Design and implementation for

non-blocking execution in GraphBLAS: tradeoffs

and performance," in ACM Transactions on

Architectures and Code Optimization 20(1),

Article 6:1-23, 2023.

[MAY22] Aristeidis Mastoras, Sotiris Anagnostidis,

and A. N. Yzelman, "Nonblocking execution

in GraphBLAS," in 2022 IEEE International

Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pp. 230–233, IEEE, 2022.

[MWM15] Robert Ryan McCune, Tim Weninger, and

Greg Madey, "Thinking like a vertex: a survey

of vertex-centric frameworks for large-scale

distributed graph processing," ACM Computing

Surveys (CSUR), 48(2):1–39, 2015.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani,

and Terry Winograd, "The PageRank citation

ranking: Bringing order to the web," Technical

report, Stanford InfoLab, 1999.

[PGZ+11] Prakash Prabhu, Soumyadeep Ghosh, Yun

Zhang, Nick P Johnson, and David I August,

"Commutative set: A language extension for

implicit parallel programming," in Proceedings

of the 32nd ACM SIGPLAN conference

on Programming language design and

implementation, pp. 1–11, 2011.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay

Radia, and Robert Chansler, "The Hadoop

distributed file system," in 2010 IEEE 26th

symposium on mass storage systems and

technologies (MSST), pp. 1–10, IEEE, 2010.

[SM09] Alexander A Stepanov and Paul McJones,

"Elements of programming," Addison-Wesley

Professional, 2009.

[SR14] Alexander A Stepanov and Daniel E Rose,

"From mathematics to generic programming,"

Pearson Education, 2014.

[SV80] Yossi Shiloach and Uzi Vishkin, "An O(log n)

parallel connectivity algorithm," Technical report,

Computer Science Department, Technion, 1980.

[SW14] Semih Salihoglu and Jennifer Widom, "Optimizing

graph algorithms on Pregel-like systems,"

Proceedings of the VLDB Endowment, 7(7), 2014.

[SY19] Wijnand Suijlen and A. N. Yzelman, "Lightweight

Parallel Foundations: a model-compliant

communication layer," arXiv:1906.03196v1, 2019.

[Val90] Leslie G Valiant, "A bridging model for parallel

computation," Communications of the ACM,

33(8):103–111, 1990.

[YDNNS20] A. N. Yzelman, D. Di Nardo, J. M. Nash, and

W. J. Suijlen, "A C++ GraphBLAS: specification,

imp lementa t ion , pa ra l l e l i sa t ion , and

evaluation," 2020.

[ZAB20] Yongzhe Zhang, Ariful Azad, and Aydin Buluç,

"Parallel algorithms for finding connected

components using linear algebra," Journal of

Parallel and Distributed Computing, 144:14–27,

2020.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J

Franklin, Scott Shenker, and Ion Stoica, "Spark:

Cluster computing with working sets," in 2nd

USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 10), 2010.

