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Abstract—This work generalises the various ways in which a sparse
matrix–vector (SpMV) multiplication can be vectorised. It arrives at
a novel data structure that generalises three earlier well-known data
structures for sparse computations: the Blocked CRS format, the (sliced)
ELLPACK format, and segmented scan based formats.

The new data structure is relevant for sparse computations on modern
architectures, since efficient use of new hardware requires the use of
increasingly wide vector registers. Normally, the use of vectorisation
for sparse computations is limited due to bandwidth constraints. In
cases where computations are limited by memory latencies instead of
memory bandwidth, however, vectorisation can still help performance.
The Intel Xeon Phi, appearing as a component in several top-500
supercomputers, displays exactly this behaviour for SpMV multiplication.
On this architecture, the use of the new generalised vectorisation scheme
increases performance up to 178 percent.

Index Terms—sparse matrix–vector multiplication, cache-oblivious
algorithms, shared-memory parallelism, vectorisation, Intel Xeon Phi,
Compressed Row Storage, ELLPACK, segmented reduce

I. INTRODUCTION

Sparse matrix–vector (SpMV) multiplication often arises as a key
computational component. Its performance is critical for the iterative
solution of linear systems and eigensystems, for example, which
makes the SpMV a critical kernel for structural engineering, fluid
dynamics, graph analysis, chip design, chemistry, geomechanics, op-
timisation, language processing, visualisation, and other applications.
Outside of iterative solvers, another example of a major application
area of SpMV multiplications are graph computations.

Modern architectures have increasingly many threads per core and
increasingly many cores per processor, while the effectively available
bandwidth per core has been declining. This forms a bottleneck
for computations where few operations per data word are executed.
For computations like those, CPUs cannot reach peak performance
because they have to wait for data to operate on, making the
algorithm execution time bounded by CPU-to-RAM bandwidth. The
SpMV multiplication is a prime example of such a bandwidth-bound
computation.

While vectorisation increases the maximum computational
throughput of CPUs, it does nothing to alleviate bandwidth prob-
lems. However, early observations regarding SpMV multiplication
on the Xeon Phi, such as by Saule et al. [1], show that the SpMV
multiplication is latency bound instead of bandwidth bound. This
was also observed for one of the best performing methods for
SpMV multiplication by Yzelman and Roose [2], the row-wise 1D
distributed coarse-grained method. If the cause lies with threads not
issuing enough memory requests to saturate the memory architecture,
vectorisation actually can help to increase performance, even for
applications that are commonly considered bandwidth bound. For
the SpMV multiplication, the efficient use of vectorisation is made

possible by a pair of vector instructions included with the Intel Xeon
Phi instruction set: the gather and the scatter instructions.

The efficiency of SpMV multiplication depends strongly on the
nonzero structure and dimensions of the input matrix, but also
strongly depends on the target architecture specifics. This work
investigates the performance of the SpMV multiplication by bench-
marking a wide set of matrices across three fundamentally different
architectures: the Intel Xeon Phi, a dual-socket Ivy Bridge machine,
and the Nvidia Tesla K20X GPU.

The remainder of this section introduces standard methods and
notation for SpMV multiplication and present an efficient parallelisa-
tion scheme. Section II explains the preferred data structure for sparse
matrix multiplication in more detail, and Section III proceeds on how
to incorporate vectorisation into that scheme. The resulting vectorised
BICRS data structure is compared to earlier work in Section IV,
and discusses in which way the scheme generalises existing data
structures. Section V tests the method in practice and compares
it to other state-of-the-art methods and architectures, and clearly
demonstrates the performance tradeoffs due to vectorisation on the
Intel Xeon Phi. Section VI concludes and suggests future work.

A. Standard methods for SpMV multiplication

Given an m×n input sparse matrix A that contains nz nonzeroes,
an n× 1 input vector x, and an m× 1 output vector y. The matrix–
vector multiplication y = Ax computes yi =

∑n−1
j=0 aijxj for all 0 ≤

i < m. While dense multiplication has a computational complexity of
Θ(mn), sparse matrix–vector multiplication is instead characterised
by a running time of O(nz ). The coordinate (COO) data structure
stores each nonzero separately, thus attaining the (2 ·bindex +bvalue)nz
memory bound, with bindex and bvalue the number of bytes required to
store a single (row or column) coordinate and a single nonzero value,
respectively .

Let the nonzeroes in A be numbered arbitrarily, so that the kth
nonzero value vk = aikjk ∈ A can be stored in the kth entry of three
arrays i, j,v, 0 ≤ k < nz . A single COO SpMV multiplication then
proceeds in Θ(nz ) time as follows:

for k = 0 to nz − 1 do
yik := yik + vk · xjk

The Compressed Row Storage (CRS) data structure1 [5], the de-
facto standard for sparse computations, requires (nz +m+1)bindex +
bvaluenz storage capacity and attains a run time of Θ(nz + m). In
parallel shared-memory computation, the performance increase of
CRS over COO is much higher than the reduced run time complexity

1CRS was earlier known as the Yale format [3], and currently is also known
as the Compressed Sparse Rows (CSR) [4].



Figure 1. Regular sparse blocking in Hilbert order. Each coloured square
corresponds to a submatrix of size β × β, with β � m,n.

would indicate. This is due to saving bindex(nz −m) bytes in storage;
any reduction of the required data movement immediately translates
to an increase of the bandwidth-bound SpMV multiplication kernel.

B. Advanced methods for SpMV multiplication

The sparse matrix A can be blocked into submatrices of size
β × β. Unlike with dense computations, blocking alone will not
increase cache efficiency [6]. Using the Hilbert curve to order the
blocks, however, does increase efficiency through cache-oblivious
means [7]; this is illustrated in Figure 1. The nonzeroes within each
block have a row-major order, which helps reduce the memory storage
requirement [2].

Using CRS to store the nonzeroes in each β×β block will require
a total of Θ(nz +nm/β) memory and thus does not scale. COO is a
better choice as the total storage requirements remains at 2bindexnz +
bvaluenz and does not increase when storing a matrix block-by-block.

The data in the arrays i, j may be further compressed to use
2dlog2 βenz bytes instead of 2bindexnz . Applying this compression
requires an auxiliary data structure to record the row- and column-
wise starting position of each of the β × β submatrices of A. The
Compressed Sparse Blocks (CSB) scheme uses CRS as this auxiliary
data structure, and proves that under reasonable conditions the total
data structure storage requirements equal that of non-blocked CRS
of A [8].

The non-scalability of CRS has earlier been observed in
distributed-memory SpMV multiplication, and eventually led to
the Bi-directional Incremental Compressed Row Storage (BICRS)
data structure [9]. BICRS has a storage requirement of (nz +
jumps)bindex + bvaluenz ), with jumps the number of row-wise jumps
in the imposed ordering of the nonzeroes of A; this value is tightly
bounded by nz , and if nonzeroes are in a row-major order, this value
is tightly bounded by m; BICRS thus is a strict improvement on both
COO and CRS, while multiplication still proceeds in Θ(nz ) time.

Yzelman and Roose [2] combine the insight of CSB with BICRS
to improve on both, and obtain a data structure that has an (unlikely)
worst case to equal that of blocked CSB and non-blocked CRS. It
arises in a similar way as CSB is constructed; the sparse matrix is
blocked, BICRS is used instead of COO to store nonzeroes within
each block, resulting in a Θ(log2 β) memory requirement per BICRS
array element. BICRS also substitutes CRS as the auxiliary data
structure to store the blocks themselves, thus enabling arbitrary block
traversals necessary for Hilbert ordering. In the worst case, the total
memory requirement of this compressed BICRS (CBICRS) scheme
equals (nz +m)bindex + bvaluenz , while usually it is lower. The time
complexity of SpMV multiplication remains Θ(nz ).

C. Parallelisation

The parallelisation scheme of choice is a 1D row-wise distributed
scheme executed in a coarse-grained fashion to maximise data local-
ity. The advantage of performing a 1D parallel SpMV multiply is that
no barrier synchronisations are required; this makes a huge difference
on architectures like the Intel Xeon Phi, where synchronisation is
costly.

The rows of A are split in P contiguous parts, with splitting points
s1 ≤ s2 ≤ . . . ≤ sp−1, and P the number of available hardware
threads. The starting point s0 and ending point sP are set to 0 and m,
respectively. A greedy load-balancing scheme chooses the smallest
possible integer sk+1 for which

∑sk+1

i=sk
nnz (Ai) >

nz
P

, starting with
k = 1 up to k = P−1. Thread k processes all nonzeroes on the rows
sk to sk+1− 1, and stores these nonzeroes locally; the output vector
elements ysk through ysk+1−1 can thus be kept in local memory and
benefit from fast local access, while the input vector must instead be
accessed globally and thus is stored in a single contiguous memory
chunk in shared memory.

In summary, this scheme first pre-processes the input matrix A
into thread-local matrices Ai and thread-local output vectors y(i).
A parallel SpMV multiplication then simply consists of P threads
locally executing the sequential SpMV multiplication y(i) = Aix,
where each thread-local Ai contains less rows than m but retain
the full number of columns n. Other approaches are feasible too, for
instance a fine-grained scheme or a fully distributed scheme, although
the first would lose data locality while the latter suffers from high
synchronisation costs on this architecture.

For a recent overview of general high-level approaches to shared-
memory parallel SpMV multiplication, see Yzelman and Roose [2].
This paper will assume this row-wise 1D scheme to demonstrate the
performance of the vectorised data structure; when using a different
parallelisation strategy, the vectorised data structure presented here
can still be applied.

II. COMPRESSED BICRS

Considering the high-level requirements of an efficient shared-
memory parallelisation of sparse computations [2], any efficient data
structure for SpMV multiplication requires support for

• arbitrary-order nonzero traversal,
• sparse blocking, and
• index compression.

The CBICRS data structure achieves precisely this, and top-down
optimisation thus suggests to modify this data structure to allow for
vectorised SpMV multiplication. To be able to do so, this section
shall first describe CBICRS in full detail.

Define the delta encoding of the array i as:

delta(i)k =

{
i0 for k = 0,

ik − ik−1 for 0 < k ≤ nz ;

that is, delta(i) is an array in which the first element equals that of
i, while subsequent element encode the difference between current
and subsequent positions. The delta encoding delta(j) is defined
similarly. Note that for this delta encoding, successive nonzeroes
will appear whenever a string of nonzeroes share the same row
or column. In such cases, zero-length encoding will further reduce
memory requirements:

zle(delta(i), delta(j)) = (ibicrs, jbicrs), with



ibicrs = (delta(i)0, delta(i)1:nz\{0})

jbicrs
k =

{
delta(j)k + n if delta(ik) 6= 0

delta(j)k otherwise.

For example, considering the first nine nonzeroes of Figure 1 while
assuming for brevity that β = 1 and m = n = 8:

zle((6, 0, 1, 0, -1, -1, -5, 0, 0) , (0, 1, 1, 1, -1, -1, -1, 1, 1))

= ((6, 1, -1, -1, -5) , (0, 1, 9, 1, 7, 7, 7, 1, 1)).

SpMV multiplication with BICRS uses pointers to x and y for
efficiency, for which the code is given in Algorithm 1. To demonstrate
the elegance of using pointer arithmetic in this code, short C code
annotations as used in the implementation are included as well.

When A is blocked into submatrices of size β × β, then elements
of {i, j}bicrs need at most 3dlog2 βe bytes each, or 2dlog2 βe if
nonzeroes in each block are in row-major order. Using smaller raw
data types such as char or short int to achieve this lower storage
requirement in implementation leads to the Compressed BICRS data
structure. In implementation, β = 16384 which enables using 16-
byte integers to store the arrays {i, j}bicrs.

The SpMV multiplication kernel per submatrix is given by Algo-
rithm 1. How to achieve the per-block Hilbert traversal is described
and analysed in detail in the article by Yzelman and Roose [2] and
its supplement2.

Algorithm 1 SpMV multiplication using BICRS

1: Let x, y, ibicrs, jbicrs, and v be pointers to their arrays
2: Set xe to x shifted by n {x_e=x+n;}
3: Set ve to v shifted by nnz {v_e=v+nnz;}
4: Shift x by jbicrs, and increment the latter {x+=∗j++;}
5: while v < ve do
6: Shift y by ibicrs

j and increment ibicrs
j {y+=∗i++;}

7: while x < xe do
8: y := y + v · x and increment v {*y+=*v++**x;}
9: Shift x by jbicrs and increment jbicrs {x+=*j++;}

10: Shift x by −n {x-=n;}

III. INCORPORATING VECTORISATION

Many modern architectures have hardware support for vectori-
sation; this enables using one operation (e.g., addition) to operate
on two vectors instead of on two scalars only, thus increasing the
peak computational performance: if a vector contains 4 (64-bit)
floating point numbers, the maximum floating point operations per
second (flop/s) effectively quadruples. The vector size of machines
supporting the advanced vector extensions (AVX) indeed already is
256 bit, while AVX-512 will double this size to 512 bits.

To use vector instructions, l elements must be loaded from main
memory into vector registers first. Loading l contiguous values into
such a register from a cache-aligned memory location results in high-
throughput data streams for which a latency cost ideally appears
only once per stream. With sparse computations, however, indirect
accessing is the norm. The gather and scatter operations, included
with the Intel Xeon Phi instruction set, provides a solution: given an
in-memory array v and an integer vector register rj = (i0, . . . , il−1),
‘Gather(ri,v,rj)’ loads (vi0 , . . . ,vil−1) into vector register ri. There
is no guarantee on the maximum latency of a gather instruction.
‘Scatter(v,ri,rj)’ does the inverse and writes (ri)k to v(rj)k for

2The supplement is freely available from IEEE, via http://ieeexplore.ieee.
org/ielx7/71/6674937/6463397/ttd2014010116.zip.

all 0 ≤ k < l. The gather will also be available in the AVX2
instruction set, while the scatter will be available from AVX-512 on.
The vectorisation length l is related to the data type and the vector
register size; this paper assumes 64-bit floating point numbers, hence
l = 8 on the Intel Xeon Phi.

To allow for vectorisation within the CBICRS data structure, the
inner kernel of the SpMV multiplication, yi := aijxj , must be
modified to operate on vectors of length l instead. This means l
elements from v and x must be read into vector registers r2 and r3,
respectively, so that the innermost SpMV multiplication kernel can
be rewritten to

r1 := r1 + r2 � r3, (1)

with r1 an additional output vector register, and ‘�′ (the Hadamard
product) an element-wise multiplication. Many modern architectures
support such a fused multiply-add (FMA, Eq. 1) in hardware, result-
ing in one (pipelined) vectorised FMA per CPU clock cycle, i.e., 2l
floating point operations (flops) per cycle.

The register r2 will contain l unique nonzero values, but elements
of r1 do not have to correspond to a contiguous range of elements
from y, nor even to unique elements from y. If all elements in r1
correspond to a single yi, then by nature of the SpMV multiplication
the elements of r3 will have to correspond to l different elements from
x. Likewise, if r1 corresponds to 2 unique elements from y, then r3
will have to correspond to at least l/2 different elements from x, and
so on: if p is the number of unique elements from y corresponding to
elements stored in r1, then q = l/p is the minimum number of unique
elements from x that correspond to elements in r3. This observation
leads to the notion of p× q blocking for vectorisation.

A. Vectorised BICRS

Let (i, j,v) correspond to the COO data structure of the nonzeroes
of A ordered such that their bl+kth entries (i.e., ibl+k and so on), for
a given integer 0 ≤ b < nblks and all integers 0 ≤ k < l, contains
the l nonzeroes assigned to the bth vectorisation block of A. The
ordering of nonzeroes must not break the condition p × q blocking
for vectorisation as described above.

Let the arrays ivblk and jvblk of length nblks store the coordinates
of the first nonzero of each of the nblks vectorisation blocks, i.e.,
those nonzeroes with index bl, for all 0 ≤ b < nblks . Let ibicrs

vblk and
jbicrs

vblk be the BICRS encoding of those two arrays. To have the gather
and scatter operations work together with BICRS pointer arithmetic
on all nonzeroes of A, the positions of remaining nonzeroes in each
vectorisation block are stored relative to the coordinate of the first
nonzero in each block. Let ivecbicrs and jvecbicrs be the index arrays of
the modified BICRS data structure. Then

ivecbicrs
bl+k =

{
(ibicrs

vblk )b if k = 0

ibl+k − ibl if 1 ≤ k < l,
(2)

jvecbicrs
bl+k =

{
(jbicrs

vblk )b if k = 0

jbl+k − jbl if 1 ≤ k < l,
(3)

for all 0 ≤ b < nblks . Note that these relative indices allow for the
same compression techniques as used with regular BICRS, and allow
for an arbitrary order of the p× q blocks, and allow for an arbitrary
order of nonzeroes within each block; all as long as the constraint
of having a minimum of q different column indices when handling
a vector block with p unique rows holds true.



B. Multiplication using vectorised BICRS

The BICRS SpMV multiplication algorithm from 1 is adapted to
incorporate vectorisation, resulting in Algorithm 2. First, the inner
kernel is vectorised as per Eq. 1, as shown on line 9. This requires
the vector registers r{1,2,3} be filled with possibly overlapping output
vector elements, unique nonzero values, and possibly overlapping
input vector elements, respectively.

Algorithm 2 Pseudocode for vectorised SpMV multiplication.

1: Let x, y, ivecbicrs, jvecbicrs, and v be pointers to their arrays
2: Load (r6, ivecbicrs), load (r4, jvecbicrs), set xe = x+n, set bi = 0
3: Shift x with (r4)0, shift y with (r6)0
4: Gather (r5, y, r6), set (r4)0 = 0, set (r6)0 = 0
5: while there are blocks left do
6: Set r1 to all zeroes
7: while x < xe do
8: Gather (r3, x, r4), load (r2, v)
9: Set r1 := r1 + r2 � r3 (vectorised FMA)

10: Load (r4, jvecbicrs)
11: Shift x with (r4)0
12: Set (r4)0 = 0
13: Add

∑p−1
j=0 (r1)bip+bj to (r5)bj+biq , ∀ 0 ≤ bj < q (reduce)

14: Shift x with −n, increment bi
15: if bi equals p then
16: Scatter (y, r5, r6)
17: Load (r6, ivecbicrs)
18: Shift y with (r6)0
19: Set (r6)0 = 0
20: Gather (r5, y, r6), set bi = 0

Elementary vector operations on vector registers r0, . . . , r6 of size l:
‘Load (ri, x)’: load the next l elements from x into ri (streaming load).
‘Gather (ri, x, rj)’: gathers l elements from x with offsets rj into ri.
‘Scatter (y, ri, rj)’: scatters l elements from ri into y with offsets rj .

The data required for r2 can be streamed directly from the
vectorised BICRS data structure, as on line 8. The elements of r{1,3}
must be derived from {i, j}vecbicrs, however, which first requires
reading in those two arrays on two auxiliary vector registers r{4,5}
as on lines 2, 10, and 17. Since now the first elements of r{4,5}
correspond to the regular BICRS format, the pointer shifts to the
input and output vector should be handled accordingly. Afterwards,
the first entries of r{4,5} are set to zero to enable a subsequent gather.
These two-line operations are shown starting on lines 3, 11, 18. Row
jumps are handled as with BICRS via the lines 7 and 14.

Setting the first elements of r{4,5} to zero enables the use of the
gather instruction to retrieve r{1,3} using r{4,5}; see lines 4, 8 and
20. Vectorised BICRS does not issue gathers (and scatters) on output
vector elements at every p× q vectorisation block if the current set
of a maximum of p unique rows are also used by the next vectorised
block. Instead, when a new set of rows are gathered they are put in
another auxiliary array r6, while r1 is set to a zero-vector. Once a
change in the set of rows is detected, r1 is reduced into r6 on line 13,
and r6 is scattered back into main memory on line 16.

The reduction of r1 into r6 is necessary because the number of
unique row elements corresponding to its elements may be less than
l; and by construction of the vectorised BICRS data structure, the
number of unique row elements is exactly p. If the map π from
elements in r1 to elements in y indeed is not injective (i.e., if p < l),
then the elements in r1 that map to the same element of y must first
be reduced before a scatter operation can proceed, or data races will

occur.
This (partial) reduction (r6)k =

∑
i∈π−1(π(k))(r1)i is handled on

line 13, which, in implementation, performs log2 q steps of vectorised
permutations and additions. On the Intel Xeon Phi, efficient imple-
mentation of this strategy also required a per-block permutation of the
{i, j}vecbicrs vectors as there is no hardware support to permute vector
register elements past the middle 256-bit boundary. As discussed, the
scatter of r6 is delayed until the register stores precisely l unique
and correctly reduced elements that will not be used to process a
subsequent vectorisation block.

If p = 1 then all elements in r1 correspond to the same vector
element, thus making gather/scatter instructions on y unnecessary;
instead, when a row jump is detected, the allreduce α =

∑l−1
i=0(r1)i

is executed and α is directly added to the correct element of y.
If p = l then all elements in r1 correspond to different output

vector elements. The gather on y can then proceed directly on r1,
while on row changes the scatter can directly operate using r1 without
the need of an intermediate (partial) reduction. Hence choosing p = l
is preferable computationally, but recall that computation is not the
bottleneck in SpMV multiplication: choosing different p may lead
to more efficient use of the memory hierarchy, and thus may be
preferable over p = l regardless of its increased computational cost.

C. Constructing suitable nonzero traversals

For each vectorisation block the row and column indices are fixed,
but need not be contiguous. This allows for arbitrary traversals to a
wide extent: successive nonzeroes can be added in-turn to the blocks
until (1) a nonzero is to be added that has a row index that does not
appear in the block while the block already has the full number of
p distinct rows, or (2) the nonzero corresponds to a row that already
has q nonzeroes in the current block. In case of such an overflow,
the block will be completed by filling any remaining capacity with
explicit zeroes, thus resulting in fill-in. The overflowing nonzero will
then be added as the first nonzero in a next p× q block.

The above sketches a greedy construction which suits the higher-
level scheme used in the experiments: the matrix A is blocked in β×β
submatrices that are ordered according to the Hilbert curve, while
nonzeroes within each submatrix are ordered in a row-major fashion.
Following the above procedure, p rows of each subblock are handled
one after the other. Write nz i as the number of nonzeroes contained
on the ith row within such a row group, then there shall be k =
(maxi∈{0,1,...,p−1} nz i)/q vectorisation blocks corresponding to this
row group. If the number of nonzeroes differ within rows in a single
row group, then the fill-in is nonzero and equal to kq −

∑p−1
i=0 nz i.

A good nonzero traversal for vectorisation is one that minimises
fill-in; minimised fill-in results in minimised memory footprints and
thus results in minimal taxing of the memory hierarchy. Assuming the
greedy ordering method described here, then there remains a single
parameter that may be used to tune fill-in, namely, p.

IV. IN RELATION TO EARLIER WORK

The vectorised BICRS data structure has close ties to three well-
known families of approaches for the vectorisation of sparse matrix
computations: (1) segmented scans, (2) ELLPACK, and (3) Blocked
CRS. All three formats were well-known but have been attracting
renewed attention due to their applicability to general purpose GPU
computing.

A. Segmented scan

Blelloch et al. first used segmented operations for sparse compu-
tations on vector computers [10]. A segmented SpMV multiplication



proceeds in three stages: (1) for all nonzeroes, multiply aijxj ; (2)
reduce the resulting nz -length vector to an m-length vector by
summing elements on the same row i, and (3) add the reduced values
to the appropriate elements of y.

Step 2 is a segmented reduce, and requires that the vector is sorted
by row, i.e., the nonzeroes should appear in row-major order. Seg-
mented operations use bitmask arrays to indicate the row boundaries
of the reduction. In the vectorised BICRS regular p×q blocking with
fill-in is used instead, though other than that, taking p = 1 follows
the same procedure as that of Blelloch et al.

B. ELLPACK

As with multiplication based on segmented operations, ELLPACK
was likewise designed for sparse computations on vector comput-
ers [11]3. If A has k elements on each row, then ELLPACK performs
an SpMV in k steps, where each step performs (1) retrieval of the
tth nonzero aij on each row i, and (2) addition of aijxj to yi. This
approach is parallel in the row direction, but the restriction of having
a constant number of elements t on each row means fill-in will be
abundant on general sparse matrices.

The sliced ELLPACK (SELLPACK) data structure limits the range
of the rows to a pre-determined slice length s; A then only a requires
a constant number of nonzeroes per row, every s rows. Sorting
strategies, such as simply ordering the rows of A according to the
number of nonzeroes each row contains, will naturally lead to limited
fill-in. Note that such reordering techniques will benefit vectorised
BICRS when p > 1, and note that for p = l, vectorised BICRS
exactly coincides with SELLPACK with s = l.

C. Blocked CRS

Blocked CRS (BCRS) modifies CRS to store fixed-size blocks (p×
q) instead of individual nonzeroes [12]. The motivation for BCRS
was not vectorisation, but rather additional compression; when blocks
instead of nonzeroes are stored, the number of index array elements
per nonzero is reduced beyond that of the CRS data structure. Like
with BICRS, the reduced bandwidth pressure directly translates to an
increased SpMV multiplication speed.

The p× q blocks in BCRS correspond to rectangular blocks in A;
the p rows in a single block must be contiguous in A, as must be the
q columns assigned to a single block. In contrast, the p× q blocks in
vectorised BICRS do not correspond to rectangular blocks in A; the
nonzeroes in a single block must reside on any row as long as there
are p distinct rows, while the column indices are completely freely
chosen.

D. Other formats

All three formats have seen extensions since their introductions.
Segmented scans in sparse computations have appeared in shared-
memory parallel contexts [13] and on GPU-tailored structures [14],
[15]. Segmented-scan like operations also are required to implement
COO-based SpMV multiplication on GPUs, which may simultane-
ously be augmented with the use of ELLPACK, as, e.g., done in the
popular hybrid COO/ELLPACK format (HYB) [16]. Applying the
same data structure several times for different parts of the matrix
may also be helpful and led to SELLPACK and auto-tuners such
as OSKI [17]. Modern approaches to sorting for SELLPACK have
appeared and attempt to move beyond GPU computing [18]. SpMV
multiplication based on segmented operations or on SELLPACK can
both be implemented using standard CRS [10], [19].

3There may be earlier references than Rice & Boisvert (1985) describing
ELLPACK, but none seem accessible at present.

Virtually all formats can additionally benefit from sparse matrix
reordering, for various reasons: such as creation of small dense blocks
for BCRS to exploit [20], fill-in reduction in SELLPACK, or provable
minimisation of cache-misses during SpMV multiplication [7], [21].
Reordering has many other advantages in sparse computations as
well [22], [23], [24].

None of the existing methods described a vectorisation scheme
that mixes segmented reductions (p = 1), ELLPACK (p = l),
and BCRS (rectangular blocks). Additionally, none of the exist-
ing schemes allows for vectorisation simultaneously with advanced
compression, sparse blocking, and arbitrary nonzero traversals. The
vectorised BICRS lays bare the new dimension 0 < p < l in which
sparse computations may be vectorised, orthogonal to the many other
possible optimisation techniques that are appearing in literature.

V. EXPERIMENTAL EVALUATION

The vectorised compressed BICRS data structure and its corre-
sponding SpMV multiplication kernel have been implemented on the
Intel Xeon Phi model 7120A, using the various intrinsics delivered
with the Intel C++ Compiler (ICC) 14.0.1. The code is written in
ANSI C++ and is freely available4. The parallelisation scheme is as
described in Section I-C, with thread-local multiplication augmented
using sparse blocking and Hilbert ordering as described in Section I-B
and by Yzelman and Roose [2], implemented using POSIX Threads.

The performance is compared to the baseline implementation
that uses regular non-vectorised compressed BICRS on both the
Intel Xeon Phi as well as a dual-socket Intel Xeon ‘Ivy Bridge’
machine. An additional baseline comparison is provided by the hybrid
ELLPACK/COO format [16] which is provided with the CuSparse
CUDA package, as run on an NVIDIA Tesla K20X. The input
matrices tested on come from different classes of input matrices that
come from a wide range of applications.

A. Dataset selection

Previous studies have shown sparse matrices that already possess
a cache-friendly layout of nonzeroes behave very differently from
matrices that have no beneficial structure [7], [9]. Therefore, an
initial classification of datasets uses the notion of structured versus
unstructured matrices; an example of the former is a matrix consisting
solely of several dense diagonals (such as s3dkt3m2), while an
example of the latter may arise from the investigation of parasitic
influences during chip design (memplus) or from investigating hy-
perlink structures (the wikipedia matrices).

A second division in category is made on basis of the dimensions of
the sparse matrix: if m,n are small, then the corresponding input and
output vectors can be cached completely, thus resulting in much faster
memory accesses and high performance during SpMV multiplication.
The size in terms of nonzeroes is of much less import; nonzero
elements are read only once, so caching them will not increase
performance.

Table I shows the matrices selected for this benchmarking effort.
All matrices are freely available from the University of Florida Sparse
Matrix Collection [25]5. A balance is struck between structured and
unstructured matrices, and each category contains both small matrices
(in-cache vectors) as well as large matrices (out-of-cache vectors).
Other considerations were to choose matrices also used in earlier
studies [1], [2], [7], [8], [9].

4See http://albert-jan.yzelman.net/software#SL.
5except for the tbdlinux matrix which can be obtained from http://www.

math.uu.nl/people/bisseling/Mondriaan/.



# Structured matrices Size (m+ n) Nonzeroes (nz )

01 fidap037 7 130 67 591
02 s3rmt3m3 10 714 207 123
03 bcsstk17 21 948 428 650
04 memplus 35 516 99 147
05 lhr34 70 304 746 972
06 bcsstk32 89 218 1 029 655
07 s3dkt3m2 180 898 1 921 955
08 RM07R 763 378 37 464 962
09 Emilia 923 1 846 272 40 373 538
10 cage14 3 011 570 27 130 349
11 cage15 10 309 718 99 199 551
12 adaptive 13 631 488 13 624 320

# Unstructured matrices

13 lp qap15† 28 605 94 950
14 rhpentium new 50 374 258 265
15 andrews 120 000 760 154

16 tbdlinux† 132 924 2 157 675
17 nd24k 144 000 28 715 634

18 nug30† 431 610 1 567 800
19 stanford berkeley 1 366 892 7 583 376
20 ldoor 1 904 406 23 737 339
21 wikipedia-2005 3 269 978 19 753 078
22 wikipedia-2006 6 296 880 39 383 235
23 wikipedia-2007 7 133 814 45 030 389
24 hugetric-00020 14 245 584 21 361 554

Table I
MATRICES USED IN EXPERIMENTS, SORTED ACCORDING TO DIMENSION

SIZE. DAGGERS INDICATE NON-SQUARE MATRICES.

B. Vectorisation results

The Xeon Phi used has P = 240, l = 8, 16 GB of memory with
352 GB/s peak bandwidth, and 512 kB L2 caches shared among
four hardware threads per each of the 60 cores. Table II shows the
attained effective performance (Gflop/s) per matrix and per block
size, where the 1x1 category corresponds to using non-vectorised
CBICRS. The speeds are obtained by performing 10 benchmarks,
where a single benchmark consists of one SpMV multiplication to
warm up the caches, followed by a timed run of at least 10 000
multiplications. From the computation speed, an upper bound on the
attained effective bandwidth can be calculated by assuming all vector
elements, once cached, remain cached; likewise, a lower bound may
be deduced by assuming no caching at all. Both bounds are included
in the table.

For the structured matrices, vectorisation convincingly helps to
reduce the latency of indirect vector addressing for all matrices, in
the best case attaining a 2.78x speedup over non-vectorised code
(the s3rmt3m3 matrix using 4 × 2 blocking). The highest gain on
unstructured matrices is 2.32x (nd24k, 1×8 blocking). Vectorisation
is visibly less effective for unstructured matrices, where only half of
those matrices benefited from vectorisation, with virtually none of
the larger matrices being sped up.

The latter is not surprising when looking at the fill-in incurred for
matrices 21–23: vectorisation there increases the memory footprint
by at least 112 percent, and reaches up to a 448 percent increase for
wikipedia-2007 using 1× 8 blocking. The worst fill-in was incurred
for again p = 1 on the cage15 matrix, which caused the Xeon Phi

# 1× 1 1× 8 2× 4 4× 2 8× 1 BW

01 12.1 19.9 19.9 14.6 9.86 171 312
02 13.1 29.1 36.0 36.5 31.5 201 467
03 14.2 30.7 30.3 28.8 24.9 169 390
04 8.4 7.8 12.7 9.5 5.3 120 203
05 12.7 19.3 20.0 21.1 18.4 196 347
06 14.1 28.0 31.6 30.8 26.2 165 396
07 13.4 26.6 30.0 31.9 30.4 156 389
08 12.1 30.1 32.1 24.1 15.7 136 323
09 11.2 19.2 20.8 20.8 20.0 114 267
10 7.4 5.7 8.4 10.8 12.3 86 156
11 7.0 - 7.7 9.8 11.1 75 140
12 4.4 2.9 3.9 4.5 4.7 67 84

# 1× 1 1× 8 2× 4 4× 2 8× 1 BW

13 10.9 16.6 17.4 18.4 15.6 128 245
14 1.2 2.4 1.4 0.7 0.3 28 45
15 5.8 3.56 4.3 4.5 4.3 43 72
16 8.0 10.9 8.9 5.8 3.3 85 155
17 12.3 28.5 28.4 27.2 25.1 141 353
18 6.5 3.2 4.6 6.1 6.7 49 91
19 4.8 7.5 5.8 3.8 2.1 58 110
20 11.0 19.4 19.6 19.3 18.0 108 251
21 2.5 1.6 1.9 2.0 2.1 37 48
22 1.9 1.2 1.5 1.5 1.6 32 42
23 1.7 1.2 1.4 1.4 1.5 31 40
24 1.3 0.9 1.1 1.1 1.2 29 35

Table II
SPEED IN GFLOP/S OF SPMV MULTIPLICATION USING VECTORISED

CBICRS ON AN INTEL XEON PHI. THE 1× 1 BLOCK SIZE CORRESPONDS
TO NON-VECTORISED CBICRS. THE BEST SPEEDS ARE PRINTED IN BOLD
FACE. THE RIGHT-MOST COLUMN SHOWS THE LOWER BOUND (LEFT) AND

UPPER BOUND (RIGHT) ON EFFECTIVE BANDWIDTH IN GBYTE/S.

to run out of memory. The largest matrix, hugetric-00020, attained
a maximum fill-in of 26 percent increase only, also for p = 1. The
lowest measured increased is 1.2 percent, attained on the s3dkt3m2
for p = 4; as one might expect, this also leads to the best performing
blocking scheme for that matrix in terms of speed.

The heuristic that a minimised fill-in leads to best performance
holds in 10 of the 20 cases in which vectorisation was effective.
The maximum relative performance loss due to using the heuristics
anyway is 43 percent (rhpentium, choosing p = 4 instead of
p = 1), while the maximum absolute performance loss is 3.2 Gflop/s
(memplus, choosing p = 4 instead of p = 2). Due to space
considerations, the exact fill-in measures are omitted from this paper,
but may freely be requested from the author.

C. In comparison to other architectures

The shared-memory machine compared against contains two Intel
Xeon E5-2690 v2 (Ivy Bridge) processors, each consisting of 10 cores
each with a private 256 kB L2 cache, and all cores sharing a 25 MB
L3 cache [26]. Each socket connects four 16 GB DDR3 modules
operating at a total memory capacity of 128 GB and a theoretical
maximum bandwidth of 51.2 GB/s. Note that Ivy Bridge does not
have support for the gather and scatter instructions needed for the
vectorisation approach presented here. The software, thus using non-



vectorised CBICRS, was compiled and optimised by GCC 4.6.46.
The NVIDIA Tesla K20X GPU has 14 streaming multi-processors

(SMXs) that each contain 192 CUDA cores, for a total 2688 cores.
Each SMX processor has a 64 kB L1 cache available, and all
processors share a 1.5 MB L2 cache. It has 6 GB on-board GDDR5
memory with a maximum bandwidth of 250 GB/s. The official HYB
implementation of the cuSPARSE library that comes with CUDA 5.5
was used, and the driver program was compiled using GCC 4.8.2.

Table III compares the Ivy Bridge and K20X results to those
of the Phi. The benchmarking methodology remains the same as
described previously, with the additional remark that, like for the
Xeon Phi, offload times are not included for the GPU timings as
well. Both the Ivy Bridge and the Xeon Phi architectures perform very
well on smaller dimension sizes, benefiting from the high-bandwidth
and low-latency caches. While all architectures perform better on
structured problems, the Xeon Phi has noticeable difficulty with
unstructured matrices, incurring large performance penalties thanks
to unpredictable memory accesses.

The benefit of the high K20X bandwidth capacity is clearly visible
when processing larger matrices: multiplying using hugetric-00020
performs 5.2x faster on the K20X compared to the Ivy Bridge, which
is indeed close to the relative difference between the theoretical
maximum bandwidths of both architectures ( 250 GB/s

51.2 GB/s = 4.9). On
most larger unstructured datasets, however, the relative performance
difference is much less: the gain is in between 1–1.6x when consid-
ering matrices numbers 20–23.

D. In comparison to other vectorised methods

As suggested in Section IV, many of the known formats that are
used for vectorisation are based on ELLPACK and/or segmented
scans both of which this work generalises. A difference between the
performance of vectorised BICRS compared to other work can be
explained by either (1) an implementation error: the multiplication
kernel in the other method can be rewritten to achieve comparable
speed, or (2) a higher-level cause: schemes such as Hilbert-ordered
blocking or row-wise reordering affect performance.

Thanks to the choice of overlapping datasets, a comparison of
several approaches on the Xeon Phi can be given through literature.
Saule et al. [1] implement a CRS-based approach that vectorises in
the row direction (p = 1), and their experiments have three matrices
in common: nd24k, ldoor, and cage14, with reported performances
less than 23, 15, and 7 Gflop/s, respectively; the performance gain
of vectorised BICRS over this method is 24 to 71 percent.

Liu et al. [27] provide a SELLPACK implementation (p = l)
and have two datasets in common: ldoor and cage15. For ldoor
they report 23 and 10 Gflop/s, respectively, when using various
optimisation such as bitmasking, blocking, and/or reordering; for
pure SELLPACK, they report 22.5 and 14 Gflop/s, respectively. The
maximum gain on vectorised BICRS is 16 percent, and indicates that
our implementation for p = l can be improved and, at least for ldoor,
can be augmented with the various techniques proposed by Liu et al7.

Kreutzer et al. [18] have a ELLPACK-based format that includes
row sorting, and included the RM07R matrix in their experiments.
They attain 24 Gflop/s, for which vectorised BICRS performs 33
percent (for p = 2).

6The performance-related compilation flags were ‘-O3 -fprefetch-loop-
arrays -funroll-loops -ffast-math -fno-exceptions’.

7the paper also introduces results using the K20X, but with an older version
of CuSparse (5.0); using the version bundled with CUDA 5.5 significantly
improves results: 25 and 35 percent for ldoor and cage15, respectively.

Xeon Phi
# best fill CPU GPU

01 20.0 19.9 27.1 2.5
02 36.5 36.0 29.9 6.5
03 30.7 30.7 33.0 8.6
04 12.7 9.5 28.1 3.7
05 21.1 19.3 34.8 10.3
06 31.6 31.6 33.7 21.3
07 31.9 31.9 33.0 27.5
08 25.8 25.8 17.7 25.6
09 20.8 20.8 16.6 29.3
10 12.3 12.3 13.0 24.1
11 11.1 11.1 10.9 23.0
12 4.7 4.7 3.9 17.4

# Xeon Phi CPU GPU

13 18.4 16.6 31.9 12.5
14 2.4 1.4 15.1 5.9
15 5.8 4.5 12.4 10.4
16 11.0 11.0 24.5 12.6
17 28.5 28.5 18.5 33.0
18 6.7 6.7 22.2 13.4
19 7.5 7.5 15.7 12.4
20 19.6 19.4 15.9 25.8
21 2.5 2.0 7.4 7.5
22 1.9 1.5 4.7 6.5
23 1.7 1.4 4.4 6.4
24 1.3 1.2 2.6 13.6

Table III
SPEED OF SPMV MULTIPLICATION COMPARED ACROSS ARCHITECTURES.
ALL NUMBERS ARE IN GFLOP/S. THE TWO FIGURES FOR THE XEON PHI

REPORT THE BEST PERFORMANCE AS WELL AS THE PERFORMANCE WHEN
CHOOSING p ACCORDING TO THE LEAST FILL-IN HEURISTIC.

VI. CONCLUSION

A new data structure for sparse matrices specifically designed for
exploiting vectorisation capabilities was introduced: the vectorised
(compressed) BICRS data structure. It uses the notion of p× q vec-
torisation blocks with pq = l equal to the architecture vector length.
The approach generalises various established formats, including those
based on segmented scans (p = 1), Sliced ELLPACK (p = l),
and Blocked CRS (non-rectangular blocks). It furthermore retains
high compressibility, can perform sparse blocking, and can store
nonzeroes in arbitrary orders. The concepts of irregular addressing,
as is common in sparse computations, are merged with vectorised
through the use of the gather and scatter operations.

Vectorised BICRS was tested for SpMV multiplication on the
Intel Xeon Phi. Performance increased with 178 percent in one case
and with 62 percent when averaging over all 24 matrices tested,
when choosing the best performing p for each matrix. When instead
choosing p according to the minimised fill-in heuristic, the average
gain remains worthwhile at 54 percent. This clearly demonstrates
that vectorisation can help improve performance applications with
low arithmetic intensity such as the SpMV multiplication.

To compare the baseline performance, the vectorised multiplication
as run on the Xeon Phi was compared to the performance of
non-vectorised multiplication on an Ivy Bridge machine, and the
vectorised ELLPACK/COO-based HYB scheme on the Nvidia K20X.



This comparison shows that the Xeon Phi performance is close to
that of the Ivy Bridge for structured matrices, but falls behind on
unstructured matrices, especially those of large dimensions. For larger
matrices, the CPU and Xeon Phi benefit less from caching resulting
in better performance for the GPU, especially on the larger structured
matrices.

A. Future work

The presented strategy works with arbitrary nonzero orders,
demonstrated here by making use of the Hilbert curve induced
orderings. As earlier work indicated, however, reordering of matrix
rows and columns also benefits cache use and can limit fill-in. Ex-
isting techniques can directly be used in conjunction with vectorised
BICRS, potentially increasing performance significantly; similarly,
other parallelisation techniques for sparse computations as well as
graph computations could benefit from using vectorised BICRS.

If hardware with many cache-coherent cores continue to incur large
latencies on out-of-cache accesses, adopting vectorised data structures
likely lead to lasting benefits.

To incorporate this vectorised SpMV multiplication in a complete
HPC setting, the explicit 2D method from Yzelman and Roose [2]
can be used as a top-level method for distributed-memory SpMV
multiplication; a BSP version of that algorithm already demonstrated
state-of-the-art scalability on highly-NUMA hardware [28].

Acknowledgements

This work was funded by Intel, Janssen Pharmaceutica, and
the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT). The author thanks the VSC Flemish
Supercomputer Center, funded by the Hercules foundation and the
Flemish Government department EWI, for facilitating access to its
GPU cluster.

REFERENCES
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