
Fast sparse matrix–vector
multiplication by partitioning and

reordering

Thesis committee:
Prof. dr. Patrick R. Amestoy, Université de Toulouse
Prof. dr. Fredrik Manne, University of Bergen
Prof. dr. Wil H. A. Schilders, Eindhoven University of Technology
Prof. dr. Sivan Toledo, Tel-Aviv University
Prof. dr. ir. Kees Vuik, Delft University of Technology

ISBN: 978-90-393-5590-9

Copyright c© 2011 by A. N. Yzelman

Fast sparse matrix–vector
multiplication by partitioning and

reordering

Snelle ijle matrix–vectorvermenigvuldiging door
partitionering en herordering

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof. dr. G. J. van der Zwaan, ingevolge
het besluit van het college van promoties in het openbaar te verdedigen
op maandag 3 oktober 2011 des middags te 4.15 uur

door

Albert-Jan Nicholas Yzelman

geboren op 17 Juli 1984 te Zevenaar

Promotor: Prof. dr. R. H. Bisseling

v

Preface

This thesis is the end result of four years of work, but may never have been written
without the support, direct or indirect, from a lot of people. Since this is the case, I
feel it is most fitting to acknowledge them first, in this preface.

Foremost I would like to thank my supervisor and my parents. Rob has given me
ample opportunity, freedom and inspiration to do research, and I am very grateful for
this. I consider myself very lucky to have been under his tutelage.

Wanneer het om de meer dagelijkse dingen des levens ging, hebben mijn ouders
mij altijd ondersteund, en geholpen wanneer nodig. Het is in grote mate aan hen
te danken dat ik nu kan doen wat ik het liefst doe. Pa, ma, en ook An: hiervoor
mijn hartelijke dank. Natuurlijk mogen ook mijn broers en zusje hier niet ontbreken:
Orry, Christian en Jennifer, ook jullie zijn onmisbaar. Ik dank ook mijn grootouders,
ooms en tantes, en alle verdere familie voor hun steun, maar voornamelijk ook hun
gezelligheid.

Apart from my extended family (many of which are from the Netherlands – I hope
the reader will forgive me for having momentarily reverted to Dutch), other (often
overlapping) groups of people I would like to thank are all my friends, my former
colleagues at Utrecht University, my former teachers, as well as fellow researchers
and PhD candidates whom I have had the pleasure to meet with. Finally I specifically
want to thank Job, who managed to share an office with me for close to four years;
our often non-mathematical conversations were particularly useful in keeping stress
levels down (for me at least). I also owe a lot to Stijn, who together with Orry agreed
to help me through my defence.

Voor de Nederlandstalige niet-wiskundigen die dit boekje in bezit hebben gekre-
gen, heb ik na de Engelstalige wetenschappelijke verhandeling ook een Nederlandse
uiteenzetting toegevoegd. Mijn hoop is dat ik ook voor jullie een mooie tekst heb
samengesteld.

I hope you will have a pleasant read,

Albert-Jan Yzelman,
August 2011.

vi

vii

Table of Contents

Preface v

Table of Contents vii

Introduction ix
1 Cache-based architectures . x
2 Hypergraph representations of sparse matrices xx
3 Sparse matrix partitioning . xxii

I Sequential methods 1

1 One-dimensional cache-oblivious multiplication 3
1.1 Sparse matrix storage formats . 5
1.2 An adapted partitioning algorithm 7
1.3 Permuting to Separated Block Diagonal form 9
1.4 Cache simulation . 11
1.5 Experiments . 12
1.6 Conclusions . 19

2 An extension to two dimensions 29
2.1 The generalised two-dimensional case 30
2.2 Cache performance in recursion . 35
2.3 Using Mondriaan partitioning . 39
2.4 Experimental results . 39
2.5 Conclusions and future work . 47

3 Hilbert-ordered sparse matrix storage 51
3.1 An adapted nonzero ordering . 51
3.2 Experiments and conclusions . 53

viii TABLE OF CONTENTS

II Parallel methods 57

4 Bulk Synchronous Parallel SpMV multiplication 59
4.1 Shared-memory Bulk Synchronous Parallel 59
4.2 BSP model . 61
4.3 Object-oriented bulk synchronous parallel library 62
4.4 Inner-product calculation . 67
4.5 Sparse matrix–vector multiplication 69
4.6 Experiments . 71
4.7 Conclusions . 84

5 Integration with the cache-oblivious method 89
5.1 Exploiting matrix reordering for parallelism 89
5.2 Experiments . 91
5.3 Conclusions . 92
5.4 Future work . 94

A Sparse matrix data structures 97
A.1 Deriving memory usage and complexity 97

Bibliography 105

List of Figures 113

List of Tables 115

List of Algorithms 117

List of Notes 119

Samenvatting 121

Curriculum Vitae 135

ix

Introduction

The sparse matrix–vector (SpMV) multiplication is an important kernel in many
scientific computing applications. These include iterative solvers for sparse linear
systems, such as CG, GMRES, BiCGstab, and IDR(s) [HS52, SS86, vdV92, SF93,
SvG08], and iterative eigensystem solvers, such as the Lanczos [PTL85] or the Jacobi-
Davidson [SvdV00] method. The power method also falls in this category, and has
seen wide use within the PageRank method [LM06, BP98] and other web-indexing
methods [Kle99]. Further examples include the least-squares solver LSQR [PS82],
as well as interior point methods for solving optimisation problems; both also make
heavy use of SpMV multiplication. Often, however, this important kernel only at-
tains a fraction of peak performance [Tol97, DJ07, VDY05, Im00, WOV+09] on
most computer architectures, due to inefficient use of the available system caches.
Improving the efficiency of this kernel, which is the main goal of the research pre-
sented in this thesis, thus may have a big part in increasing the efficiency of many
other applications.

This thesis is divided into two parts, where the first part is on optimising the
sequential SpMV multiplication. In a world where parallel machines are increas-
ingly commonplace, however, a fast method should also be parallelisable. Thus the
second part combines the insights of fast sequential SpMV multiplication and tradi-
tional distributed SpMV multiplication, to describe parallel implementations both for
distributed-memory and shared-memory architectures. These two parts will solely
focus on the concise description of the developed methods and investigations of
their efficiency; this introduction will provide the necessary background on which
the methods are built. Chapter 1 has also been published as a journal paper:

[YB09]: A. N. Yzelman and Rob H. Bisseling, Cache-oblivious sparse
matrix–vector multiplication by using sparse matrix partition-
ing methods, SIAM Journal on Scientific Computing 31 (2009),
no. 4, 3128–3154.

The other chapters are accepted for publication in various journals:

x Introduction

[YB11c]: A. N. Yzelman and Rob H. Bisseling, Two-dimensional cache-
oblivious sparse matrix–vector multiplication, Parallel Comput-
ing (2011), to appear.

[YB11b]: A. N. Yzelman and Rob H. Bisseling, An object-oriented BSP
library for multicore programming, Concurrency and Computa-
tion: Practice and Experience (2011), to appear.

Content from Chapter 3 is also to appear in the proceedings of the European
Conference on Mathematics and Industry (ECMI) 2010 as:

[YB11a]: A. N. Yzelman and Rob H. Bisseling, A cache-oblivious sparse
matrix–vector multiplication scheme based on the Hilbert
curve, Progress in Industrial Mathematics at ECMI, Springer,
Berlin, 2011, to appear.

This introduction contains elements from all of these papers. Section 1 describes
the problems encountered in sparse matrix–vector multiplication on cache-based ar-
chitectures. After this follows an introduction to the basic tools used in our solutions:
Section 2 recalls how sparse matrices are modelled using hypergraphs, and Section 3
shows how these formulations are used to achieve sparse matrix partitioning. When-
ever possible, objects defined in the thesis will be used consistently throughout the
thesis. The most important ones are collected in Table 2, at the end of this introduc-
tion.

1 Cache-based architectures

Many important linear algebra kernels typically take a performance hit on modern
cache-based computer architectures due to inefficient cache use [DJ07, IY01, Tol97].
This use is optimal when data from main memory is stored contiguously and is ac-
cessed in a single straight pass. Each data item is preferably used many times, and
is not needed in further computation afterwards. But many non-trivial applications
require to jump through data in main memory, even if data is stored contiguously.
The sparse matrix–vector (SpMV) multiplication is a notorious example. In this ap-
plication, the number of jumps in memory can be reduced in two ways:

1. by adapting the sparse matrix storage scheme, or

2. by adapting the sparse matrix structure.

Most earlier work in this area deals with the first aspect, as does Chapter 3. Chapters 1
and 2 deal with the second aspect. Fortunately, optimising one does not exclude op-
timising the other: for instance, the matrix reordering method described in Chapter 1
has successfully been combined with the OSKI software [VDY05, YB09].

Cache-based architectures xi

Main
memory

(RAM)����
����
����

����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Cache Cache
(L1) (L2)CPU

Figure 1: Illustration of a multi-level cache

1.1 A bridge between CPU and main memory

In comparison to CPU speeds, the main random access memory (RAM) lags behind
in terms of data throughput. Caches form a solution: for smaller amounts of mem-
ory, throughput speeds can be increased, in essence trading storage space for access
speed. Assuming many applications require operations on the same data, caches were
introduced in between the CPU and main memory, so that data which is needed often
is accessible in a much shorter time frame. Since it depends on the application which
data is reused, caches determine on-the-fly what is worth keeping stored in cache, and
what is not. When the CPU requires data, the system checks whether the requested
data already is present in the cache. If it is, it is immediately sent to the CPU; this is a
cache hit. Otherwise, in case of a cache miss, the data is fetched from main memory,
stored in cache, and sent to the CPU.

Instead of using a single cache memory, it is also possible to place multiple caches
in between the main memory and the CPU. The cache closest to the CPU is commonly
called the level-1 (L1) cache; the second-closest the L2 cache, and so on. Generally,
caches closer to main memory have greater capacity than the caches closer to the
CPU, and caches closer to main memory are slower than the caches closer to the
CPU; see Figure 1 for an illustration of such a multi-level cache.

The unit of data transfer between main memory and cache, or between two caches,
is called a cache line. The size of a cache line varies per architecture, and is typically
in between 8 to 512 bytes. When the CPU requests data already in the cache, there
is a delay before the data is actually sent back. This delay is called the latency. The
latency between CPU and cache is small; but if a cache miss occurs, the CPU-cache
latency is increased by the cache to main memory latency, which is much larger. The
throughput of a cache, or the speed in which large chunks of data can be read from or
written to cache, is called its bandwidth.

xii Introduction

In case of a cache miss, the question remains which data already in the cache
is overwritten with newly requested data. Differences in handling this give rise to
fundamentally different cache types. A perfect cache enforces some predefined policy
when deciding which cache line to evict to bring in the new data. A first-in, first-out
(FIFO) policy, so that the oldest data is the first to be evicted from the cache, is one
option; however, when data is continuously re-used, the FIFO policy performs poorly.

An adaptation so that the least frequently used data is evicted instead, seems an
improvement; this is called the LFU policy. However, when old data were very fre-
quently requested but now no longer, this data will remain in cache much longer than
what is optimal. With this observation a clue for a better suited cache policy becomes
apparent: evicting the data from the least recently used cache line. This is called
the LRU policy, and usually is the policy of choice. Worst-case examples can be
constructed for any policy, however, including for LRU. Karlin et al. proved LRU
is competitively optimal, that is, the number of cache misses is within the smallest
possible constant factor from the optimal policy [KMRS88].

Implementation of these policies in hardware is complex, and thus costly, espe-
cially for larger caches. A cost-reducing way is to instead approximate in some way a
more complex cache policy, or revert to a simpler policy. Such a cost-effective solu-
tion is, for example, the direct mapped policy. Here, memory addresses of requested
data are translated to a specific cache line using a simple many-to-one translation,
such as a modulo-based mapping.

1.2 Cache model
At the time of writing, caches typically use a hybrid form of direct mapping and the
LRU policy; this will also be the cache model used throughout the remainder of the
thesis. Such a cache is divided into k parts of equal size, uses the direct mapping
policy on each subcache, and the LRU policy in-between those subcaches.

This is referred to as a k-way set-associative cache. We denote such a cache by
C = (s, k, z, w), in which s is the cache size, and k is the number of subcaches. This
implies s must be perfectly divisible by k. A cache is not accessed by individual data
words, but by cache lines. These lines are the smallest data piece retrievable from
cache, and its size z is usually 64 bytes; a cache thus holds L = s/z cache lines,
implying that s should also be perfectly divisible by z. A data word, in contrast, is
the smallest data piece a given architecture can address. Its size is usually 64 bits,
and determines the number w of data words which fit in a single cache line. A byte
contains 8 bits, thus in the case of 64-bit data words and a cache with z = 512
bits, w equals 8 and requesting a single data word from cache thus brings along 7
neighbouring data words as well.

When data from main memory is brought into cache, older elements have to be
evicted from the cache to make room. The cacheC can be seen as an (L/k)×k matrix
consisting of cache lines Cij , and the main memory can be organised in consecutive
chunks of size z, with each chunk given an identifier x equal to the smallest memory
address contained within. If x is brought into cache, it will replace the cache line in

Cache-based architectures xiii

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

Figure 2: Illustration of a k-way set associative cache. Each of the k subcaches has
L/k cache lines; the cache can be viewed as an (L/k) × k matrix. Each row of this
matrix is a LRU stack and each column a subcache. Data from main memory is read
in chunks of size z, the cache line size.

Cij with i = x mod (L/k) and j a value in {0, 1, . . . , k − 1}. The row index i is
called the set ID, and is determined by modulo mapping. The column index j, the
line ID, is determined by the Least Recently Used (LRU) policy: j will be chosen so
that Cij is the least recently used cache line out of the possible choices (with the set
ID i fixed). Figure 2 illustrates this cache model.

When k → ∞, or rather, k = L, our cache model corresponds to the (Z,L)
ideal-cache model introduced by Frigo et al. [FLPR99]; when the cache is full and a
new cache line has to be brought into cache, the least recently used line in the entire
cache is evicted. In practice, most architectures have a set associativity k in the order
of 4 or 8 for caches close to the computing node, or up to k = 48 for caches closer to
main memory.

1.3 Examples of cache-based architectures

In practice, processors employ multi-level caching, but not always with caches placed
serially in between the CPU and main memory (e.g., the IBM Power6+ architecture);
especially with multicore processors changes from serial cache hierarchies have ap-
peared, so that cache hierarchies form tree-like structures. The caches themselves
follow the set-associative paradigm with the LRU policy, or remain close to it. In de-
termining when to propagate changes in cache lines back to main memory, the write-
back policy is usually employed. Three architectures will be described in the fol-
lowing text: the dual-core IBM Power6+ which has 2 cores each running at 4.7GHz

xiv Introduction

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

64kB L1 64kB L1

Core 1 Core 2

4MB L2 4MB L2

Controller

System interface

32MB
L3

Figure 3: Diagram of the IBM Power6+ cache hierarchy

(2 × 4.7GHz), the quad-core Intel Core 2 Q6600 at 4 × 2.4GHz, and the quad-core
AMD Phenom II 945e at 4×3.0 GHz. All three architectures are used in experiments
further on in this thesis.

On the IBM Power6+, each core possesses its own 8-way 64kB L1 data cache.
An 8-way 4MB L2 cache is ‘semi-shared’ between the two cores, meaning the caches
(and therefore the cores) can communicate through a cache controller, instead of
through a fully shared cache or main memory. A 16-way 32MB L3 cache is uniformly
addressable by both cores through the same controller, and thus is fully shared, but
not serially placed; Figure 3 provides an illustration. The architecture word size is 8
bytes (64 bits), and the cache line size z is 128 bytes, and hence the number of words
w which can fit in a single cache line is 16.

Each core on the quad-core Intel Core 2 (Q6600) processor has access to a 32 kB
8-way L1 cache, and two pairs of cores share a single 4 MB 16-way L2 cache. These
two L2 caches are connected to the rest of the system; thus in essence this processor
consists of two dual-core processors combined on one chip; see also Figure 4. The
cache line size z is 64 bytes, while the word size is 64 bits; hence w = 8.

The AMD Phenom II 945e processor provides the last example. Here, a single
core is connected to a 64kB L1 data cache and a 512kB L2 data cache. All cores
share a single 6MB L3 cache; see Figure 5. The parameters z and w are the same as
for the Intel Q6600. Table 1 provides a simple overview of this data.

Cache-based architectures xv

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

32kB L1 32kB L1 32kB L1 32kB L1

Core 1 Core 2 Core 3 Core 4

4MB L2

System interface

4MB L2

Figure 4: Diagram of the Intel Core 2 Q6600 cache hierarchy

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

64kB L1 64kB L1 64kB L1 64kB L1

Core 1 Core 2 Core 3 Core 4

512kB L2512kB L2512kB L2512kB L2

System interface

6MB shared L3 cache

Figure 5: Diagram of the AMD Phenom II 945e cache hierarchy

xvi Introduction

Architecture Cache size (associativity)
(cores & speed) L1 L2 L3 z w

IBM Power6+ (2 x 4.7GHz) 64kB (8) 4MB (8) 32MB (16) 128B 16
AMD 945e (4 x 3.0GHz) 64kB (2) 512kB (16) 6MB (48) 64B 8
Intel Q6600 (4 x 2.4GHz) 32kB (8) 4MB (16) – 64B 8

Table 1: Cache parameters of various architectures [vdS10, Wor]. All these architec-
tures employ a 64-bit word size.

1.4 Cache behaviour under dense SpMV multiplication
In the field of dense basic linear algebra subroutines (BLAS), Goto and van de Geijn
[GG02] showed that by tweaking algorithms to specific architectures, large speedups
can be obtained. This is achieved through minimising the number of jumps through
memory, or improving cache efficiency in some other way. In particular, they achieve
this not only for data caches, but also for the translation lookaside buffer (TLB).
These optimisations were done separately, for each different architecture available,
which is a general disadvantage of such cache-aware algorithms. Goto and van de
Geijn provide a concise summary of previous work on the area of architecture-specific
optimisation of dense BLAS [GG02, Section 2].

To avoid this, auto-tuning software libraries [KKHY06, WP05] have become a fo-
cus for much research, most notably FFTW (for fast Fourier transforms) [FJ98, FJ05],
OSKI (basic sparse BLAS) [VDY05], and ATLAS (dense BLAS) [WPD01]. These
libraries may run various benchmarks upon installation to help optimise algorithms
for the hardware specifics of the target machine, or may even attempt this during real-
time execution. Another approach is to design algorithms which are (asymptotically)
optimal in terms of cache efficiency on any cache-based architecture. These cache-
oblivious algorithms were introduced by Frigo et al., and for some applications have
been shown to obtain asymptotically optimal bounds [FLPR99, BBF+07].

Figure 6 shows a small example of cache effects in the context of dense MV
multiplication y = Ax, with A a dense m × n matrix, under the assumption of a
perfect cache (k → ∞). For simplicity, the size of one data word is set to fit exactly
in one cache line, i.e., w = 1. The cache C is given by a 1×L matrix and cache lines
are selected by use of the LRU policy. The algorithm starts off with y0 = y0 +a00x0,
pushing the elements from x,A, and y onto the top of the LRU stack. If the cache size
s is such that the cache can contain exactly two data words (L = 2), x0 is pushed out
of the cache at the end of this instruction. The next instruction is y0 = y0+a01x1, and
again the variables from x and A are brought in first, pushing y0 out of the cache just
before it was needed again. Having such a small cache would cause O(mn) cache
misses on the output vector y. If the cache could contain exactly three data words
instead of two, y0 would still have been available and these misses would not have
occurred.

For larger caches similar considerations still hold. When the multiplication reaches

Cache-based architectures xvii

Architectures not reliant on caches
This thesis mostly assumes cache-based systems, and the presented
reordering methods may not work on other existing architectures.
For instance, Graphical Processing Units (GPUs) consist of thou-
sands of simple processing units, called stream processors (SPs),
which operate on linear streams of data and do not require caching.
SPs cannot follow more complex execution paths (such as branch-
ing based on if-statements), nor do they operate on scattered data
(such as graph or unstructured sparse matrix computations). Recent
GPUs are becoming more able on the last two fields, however, but
still incur large penalties in computation speed when faced with non-
linear instructions or data. Newer GPUs also gradually employ larger
caches shared by a limited number of stream processors; and these
caches may become programmable, allowing run-time switches be-
tween shallow or deep cache hierarchies.
Another example is the Cell Broadband Engine (Cell BE). This
processor consists of one main processor (PPE) and several co-
processors (SPUs). These are connected by a ring on which data
circulates. The PPE is also connected to main memory, and the SPUs
have access to a small amount of local memory. The PPE can trans-
port data between the main memory and the data ring. SPUs can get
data from the ring, perform local computations, and return the results
back to the ring. The idea is to bring the data to the many compu-
tational units to avoid using complex cache hierarchies; this makes
software creation more complex, however.

the next row (i.e., executes y1 = y1 +a10x0), then, depending on the cache size, there
are two possibilities: either x0 is still in cache and no cache miss occurs, or x0 was
evicted and must be brought back in. This results inO(n) cache misses on x, for each
row; and hence O(mn) cache misses occur on the input vector x during the whole
algorithm.

These misses are non-compulsory: most can be avoided by limiting the number of
subsequent accesses on x by using some blocking parameter q, so that after process-
ing xq−1, the algorithm proceeds with the next row. Obviously, we choose q so that
elements from x are not prematurely evicted. When the last row has been processed,
the algorithm jumps back to the first row and goes on to process xq until it reaches
xmax {2q−1,n−1}, et cetera.

At this point, y is repeatedly accessed from index 0 until m − 1, as each column
block is processed. Thus, it is possible that elements from y are prematurely evicted

xviii Introduction

x0

=⇒

a00

x0

=⇒

y0
a00

x0 =⇒

x1

y0
a00

x0

=⇒

a01

x1

y0
a00

x0

=⇒

y0
a01

x1

a00

x0

Figure 6: LRU stack progression during the first steps of dense MV multiplication.
Whenever a new data element is pushed onto the stack, it is displayed on top. Least
recently used elements thus appear lower in this figure. Note that if all memory lines
below the bars are evicted, y0 is evicted at step 5, while it is immediately reused the
step after.

in the same way as originally for x, causing O(m) cache misses each time a column
block is processed. This already is quite an improvement since there are far fewer
column blocks than matrix rows. Although the problem is less severe, still accesses
on y may be limited using some blocking variable p (which need not be equal to q)
and applying the same trick on the row indices. This method is appropriately named
cache blocking [NVDY07] since, in effect, A is subdivided into blocks of size p × q
for which an MV algorithm does not incur unnecessary cache misses.

1.5 Difficulties under sparse SpMV multiplication

The difference between the dense case and the sparse case is caused by the way matri-
ces are stored. In the dense case, storage is done by means of an m by n dense array.
General sparse matrices, however, usually are stored in the so-called Compressed
Row Storage (CRS), as, for example, described by Bai et al. [BDD+00]. Here,
nonzeroes are stored in a row-major ordering; see also Figure 1.1(left) on page 7.
CRS utilises three arrays: one array for storing individual nonzero matrix entry val-
ues (nzs), one for storing the column index of those nonzeroes (col_ind), and one for
storing at which index individual rows start (row_start).

The arrays nzs and col_ind each require nz(A) space in memory, where nz(A)
denotes the number of nonzeroes of the m× n sparse matrix A. The array row_start
requires only m + 1 words of space, bringing the total up to 2nz(A) + m + 1. For
clarification, Algorithm 1 shows how to perform the SpMV multiplication y = Ax
on a matrix stored in CRS format. Note that vector and matrix elements are indexed
starting from zero: the matrix elements are aij , 0 ≤ i < m and 0 ≤ j < n. By
switching the roles of matrix rows and columns, the Compressed Column Storage
(CCS), which also sees much practical use, can be defined as well.

Another well-known sparse matrix storage method is the Triplet scheme, which
is also known as the Coordinate (COO) scheme. Here, the three arrays used are nzs,
row_ind and col_ind. The nonzero values array and column index array are the same
as those for the CRS scheme. The row_ind stores the row index of each nonzero,
similarly to col_ind array and the nonzero column indices. A SpMV multiplication

Cache-based architectures xix

Algorithm 1 Matrix–vector multiplication using CRS
Input: nzs, col_ind, and row_start corresponding to a sparse matrix A;

the dimensions m and n of A;
a dense input vector x.

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: for i = 0 to m− 1 do
3: for k = row_start[i] to row_start[i+ 1]−1 do
4: j = col_ind [k]
5: y[i] = y[i] + nzs[k]∗x[j]
6: return y

Algorithm 2 Matrix–vector multiplication using the Triplet scheme
Input: nzs, col_ind, and row_ind corresponding to a sparse matrix A;

the dimensions m and n of A;
the number of nonzeroes nz of A;
a dense input vector x.

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: for k = 0 to nz − 1 do
3: y[row_ind [k]] = y[row_ind [k]] + nzs[k] ∗ x[col_ind [k]]
4: return y

algorithm using the Triplet scheme is given in Algorithm 2. Note that this scheme
uses 3nz(A) words of memory, and since data movement costs time as well, the CRS
scheme usually is more efficient in terms of both memory usage and execution speed.

Observing how CRS and the Triplet schemes work, and with the dense case de-
scribed earlier in mind, the following remarks can be made:

• elements of the three matrix arrays are accessed exactly once during multipli-
cation,

• the order of matrix element access determines the access patterns of the input
and output vectors,

• the order of matrix element access is determined by its storage scheme.

The SpMV multiplication algorithm using the ordering induced by CRS can be anal-
ysed in much the same way as in the dense case: Figure 7 shows the LRU stack
during SpMV multiplication using CRS. The major difference is that the column in-

xx Introduction

dices are not guaranteed to be consecutive and that row jumps occur irregularly since
rows typically do not contain the same number of nonzeroes.

This greatly increases the difficulty of predicting when cache misses occur, as
it depends completely on the relative column-wise positions of the nonzeroes in A.
Hence any blocking parameters p and q cannot be determined solely from m,n, and
s; additional information on the structure of A is required. Cache-aware blocking
thus becomes much harder to apply, which motivates the development of run-time
cache-aware auto-tuning kernels such as OSKI [VDY05].

2 Hypergraph representations of sparse matrices
The nonzero pattern of a sparse matrix A can be represented as a hypergraph H =
(V,N), with V the set of vertices and N the set of nets. Let a vertex vj ∈ V corre-
spond to the jth column of A. The net (or hyperedge) ni ∈ N is a subset of V that
contains exactly those vertices vj for which aij 6= 0. This is called the row-net model
[ÇA99], since each matrix row is represented by a hyperedge. Figure 8 displays a
small example sparse matrix and its row-net hypergraph. Other models to represent
sparse matrices include the column-net [ÇA99] and fine-grain model [ÇA01]. In the
column-net model, the roles of the row and column indices are interchanged as com-
pared to the row-net model. The fine-grain model differs from the previous models in
that the vertices correspond to individual nonzeroes aij . A net then contains nonze-
roes sharing the same row or column: see Figure 9.

All models enable reasoning on the structure of sparse matrices. For example, the
row-net model in Figure 8 shows that columns 3 and 4 are structurally isolated from
the other columns, in the sense that they do not contain nonzeroes sharing rows with
any other columns. It also shows that column 1 and 8 are connected through four
matrix rows; there is a row connecting column 1 to column 5, one connecting 5 to 6,
one connecting 6 to 2, and finally one from 2 to 8.

The fine-grain model, as its name implies, gives information on sparse matrix
structure on a much finer scale; it enables us to learn about the interconnection of
individual nonzeroes. Like the row-net model showed that columns 3 and 4 were

xj1

=⇒

ai1,j1
xj1

=⇒

yi1
ai1,j1
xj1 =⇒

xj2
yi1
ai1,j1
xj1

=⇒

ai2,j2
xj2
yi1
ai1,j1
xj1

=⇒

yi2
ai2,j2
xj2
yi1
ai1,j1
xj1

Figure 7: LRU stack progression during the first steps of SpMV multiplication using
CRS. The indices ir and jr are the row and column index of the rth nonzero element
from A. Note that for most r, jr 6= jr+1, while ir only differs from ir+1 when the
nonzeroes at row ir are exhausted and the algorithm proceeds with the following row.

Hypergraph representations of sparse matrices xxi

8

3

4

7

1 5

6

2

��
��
��

��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

1 2 3 4 5 6 7 8

Figure 8: Translation from a sparse matrix to a hypergraph using the row-net model.
Vertices 1 through 8 represent the columns. A net is cast over those vertices that share
nonzeroes in a row; each net represents a row. Nets containing only one vertex are
omitted.

4

12 69

514138

10 11

7

2

3

1
��
��
��

��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

1 2

3 4 5 6

7

8 9

10 11

12

13 14

Figure 9: Translation from a sparse matrix to a hypergraph using the fine-grain model.
Vertices 1 through 14 represent the nonzeroes. A net is cast over those vertices that
share a row or column; nets corresponding to rows are dashed, while those corre-
sponding to columns are dash-dotted.

xxii Introduction

isolated, the fine-grain representation in Figure 9 shows that the cluster of nonzeroes
1, 2, 3 is isolated. The nonzeroes with the farthest interconnect are nonzero 7 and 9,
tracing a path through 8 hyperedges. Note that this information is indeed a refinement
from the row-net model, which already pointed to the columns 1 and 8, in which the
nonzeroes 7 and 9 reside.

A recent adaptation of the fine-grain model regards structurally symmetric ma-
trices. Formalising the fine-grain approach, the set of vertices V corresponds to the
nonzero elements, and the set of hyperedges N consists of the union of two sets
N row∪N col; one corresponding to matrix rows, and the other to matrix columns. Yet
in a symmetric matrix, the structure of the kth row is equal to the structure of the kth
column. Hence modelling these twice seems inappropriate, and the number of hyper-
edges can be halved. Doing this, the number of nonzeroes in V cannot be reduced; if
half of the nonzeroes were to disappear (i.e., only store a triangular part of the matrix
A), then both categories of hyperedges needed to be retained to model the original
matrix. Hence storing either half of the vertices or half of the hyperedges both yield
valid symmetric fine-grain models. As the number of vertices nz(A) usually is much
higher than the number of hyperedges m+n, choosing to halve the nonzeroes results
in much smaller memory requirements but also in a much more highly connected
hypergraph. On the other hand, halving the number of hyperedges results in a more
loosely coupled hypergraph, but retains the bulk of memory usage. Which formula-
tion is appropriate for handling symmetry thus seems application dependent. When
considering symmetric matrices, an additional argument appears in favour of halving
the number of hyperedges: by letting rows and columns be modelled by the same
hyperedges, symmetry is retained. See also page 49 for further considerations.

A major application of these hypergraph models specifically regarding sparse ma-
trices, is their use in partitioning. Huge linear systems often need to be solved in par-
allel on supercomputers due to time or memory limitations. This entails partitioning
the matrix, in such a way that operations on this matrix cause as little communica-
tion as possible: in the previous example, separating the nonzeroes in {1, 2, 3} and
{4, . . . , 14} yields two independent parts on which no communication is required
during parallel execution of most common sparse matrix operations, such as sparse
matrix–vector multiplication Ax, matrix-transpose multiplication ATA, complete or
incomplete LU decomposition A = LU , and others. Many of these applications will
be discussed in the following chapters, but the focus will remain on sparse matrix–
vector multiplication.

3 Sparse matrix partitioning
Assume an input matrix A is represented by a hypergraph H = (V,N) by the row-
net model. The vertex set V can be partitioned into subsets V0,V1, . . . ,Vp−1, where
the Vs ⊂ V are pairwise disjoint while ∪p−1

s=0Vs = V . Such a partitioning is one-
dimensional, as only rows are distributed over parts; similarly, a partitioning based
on the column-net model would also be one-dimensional. Given a partitioning, the

Sparse matrix partitioning xxiii

vertices in a net ni may be distributed over several subsets (or parts), resulting in a cut
net. The number of subsets λi over which the ith net is cast is called the connectivity
of the ith net. Using a factor ci to express the relative importance of each net, a cost
can be assigned to this partitioning:∑

i:ni∈N
ci(λi − 1). (1)

This cost function is commonly called the λ − 1 metric, or connectivity−1 metric,
and originates from the field of electronic circuit simulation [Len90]. It is used exten-
sively in parallel computing; see, e.g., work by C̨atalyürek et al. [ÇA99]. In matrix
partitioning, no preference is assumed as to which matrix rows are cut, and ci is set
to 1. While partitioning a hypergraph in this manner, the function (1) is minimised.
Other values for ci may be interesting in different applications, for example in clus-
tering, domain decomposition methods or preconditioning.

When considering parallel SpMV multiplication, parts correspond to processors.
A cut column-net in some partitioning indicates that the required component of the
vector x will be used by multiple processors. Since the vectors x and y involved with
the parallel computation are distributed among the processors to achieve scalability,
a cut column-net results in communication; processors that require components from
x which they do not locally store, have to request these values from other proces-
sors. This happens before any computational work, and is called the fan-out of the
parallel SpMV multiplication. The same goes for components of y: some processors
may have to add values to components of y governed by other processors, thus also
requiring communication. This happens after the computational work and is called
the fan-in. This is the rationale for the cost function (1): when minimising commu-
nication, any cut nets must be avoided: ideally, λi = 1. Even if a net is cut, it should
be cut in as few parts as is feasible, so that the number of processors which have to
initiate communication over this net remains minimised.

A good load balance must be maintained as well. The number of nonzeroes in
each part should deviate only by a small factor from the average number. To achieve
this, each vertex vj is weighted with wj = nzj , the number of nonzeroes correspond-
ing with the jth vertex (e.g., the number of nonzeroes in the jth column in case of a
row-net model). We then also minimise:

max
0≤s<p

∑
j:vj∈Vs

wj . (2)

Consider a recursive algorithm which repeatedly splits sets of vertices V into two
subsets and aims to recursively construct a partitioning of a hypergraph this way. A
quantity that is useful when reasoning about this is the load-imbalance factor

ε =
max{|V0|, |V1|}
(|V0|+ |V1|)/2

− 1. (3)

When ε = 0 load balance is perfect; when ε = 1 the computational load is fully
imbalanced (V0 or V1 is empty and the other set is equal to V).

xxiv Introduction

A A general (unless otherwise specified) sparse matrix,
m,n which is of size m× n.
H A hypergraph corresponding to A according to a specified model;
V the hypergraphH = (V,N) has its vertices v ∈ V , and
N has its nets n ∈ N with n ⊆ V .
G A graph usually modelling similarity of rows and/or columns of A;
V the graph G = (V,E) has its vertices v ∈ V , and
E has its edges e ∈ E = V × V .
C A computer cache with parameters C = (s, k, z, w), such that
s s is the total cache size in bytes,
k k is the number of subcaches,
z z is the cache line size in bytes,
w w is the number of data words which fit in a single cache line, and
L L = s/z is the number of cache lines.

Table 2: Glossary of objects used throughout the thesis

The demand for a perfect load balance and for a minimised total connectivity cost
usually conflict with each other. In an attempt to construct a partitioning which is
acceptable in terms of both criteria, the maximum load imbalance ε is taken as a pre-
defined parameter. A software package implementing this approach for sparse matrix
partitioning is Mondriaan [VB05]. Mondriaan can additionally split the matrix in
both dimensions, by switching between the row-net and the column-net model, each
time choosing the best split. This semi two-dimensional method is referred to as the
Mondriaan scheme.

An addition is to consider the fine-grain representation as well, thus choosing
the best split out of the row-net, column-net, and fine-grain models; this is the hy-
brid scheme. Using the Mondriaan or the hybrid scheme increases partitioning time
compared to one-dimensional methods, and usually results in a partitioning of better
quality. This should be worth the increase of partitioning time, however; an investiga-
tion into this can be found in the book Combinatorial Scientific Computing [NS11]:

[BFAY+11]: Rob H. Bisseling, Bas O. Fagginger Auer, A. N. Yzelman, Tris-
tan van Leeuwen, and Umit Çatalyürek, Two-dimensional ap-
proaches to sparse matrix partitioning, Combinatorial Scientific
Computing (Uwe Naumann and Olaf Schenk, eds.), CRC Press,
2011, to appear.

There, quality is investigated by comparing partitioning time, and the theoreti-
cal resulting communication costs. This is backed by actual SpMV multiplication
timings on a parallel machine using up to 32 IBM Power6+ processors.

Part I

Sequential methods

3

Chapter 1

One-dimensional
cache-oblivious multiplication

This chapter describes a cache-oblivious sparse matrix–vector multiplication scheme.
It works by adapting the sparse input matrix, permuting it into the Separated Block
Diagonal (SBD) form. Permutation is two-sided: the reordered matrix can be writ-
ten as PAQ with P,Q permutation matrices, where this permutation is found in a
pre-processing step. The only assumption made is that the matrix is stored in Zig-zag
CRS order, instead of plain CRS; see Figure 1.1. It will be shown that sparse ma-
trices in SBD form attain good efficiency as cache use is improved, that the method
minimises an upper bound on cache misses, and that this upper bound is strict when
a specific number of blocks are created. Exceeding this number of blocks theoret-
ically does not harm efficiency, thus taking this number as large as possible yields
a cache-oblivious method. The presented reordering method is implemented in the
Mondriaan sparse matrix partitioner [VB05], since version 3.

This chapter is based completely on published work [YB09]:

• A. N. Yzelman and Rob H. Bisseling, Cache-oblivious sparse matrix–vector
multiplication by using sparse matrix partitioning methods, SIAM Journal on
Scientific Computing 31 (2009), no. 4, 3128–3154.

Earlier work

Earlier work dealing explicitly with improving cache efficiency in SpMV multiplica-
tion are the following. Kowarschik et al. [KUWK00] improve the speed of an iterative
multigrid method for Poisson’s equation on a two-dimensional grid by cache-aware
combining of computations from different iterations and reordering of computations.
A speedup of a factor of 4.6 is obtained by the latter technique for certain grid sizes.

4 One-dimensional cache-oblivious multiplication

The authors note that cache effects would be even stronger in the three-dimensional
case.

Das et al. [DMS+94] use reordering techniques developed for reducing fill-in in
direct solvers, such as the Cuthill-McKee (CM) method and the reverse CM method,
to reduce the bandwidth of the matrix for the purpose of avoiding cache misses in
SpMV multiplication. Toledo [Tol97] performs an extensive study of such ordering
techniques, and found that CM ordering works well on 3D finite-element test matri-
ces when used in combination with blocking into small dense blocks. Additionally,
CM is cheap to compute, requiring computing time equivalent to a few SpMV multi-
plications. Reverse CM ordering is found to be less competitive, as it leads to fewer
dense blocks. Other techniques were studied as well, including finding small dense
1× 2 and 2× 2 blocks, and prefetching of data.

Pinar and Heath [PH99] try to create contiguous blocks of nonzeroes in the ma-
trix rows by reordering the columns, formulating the problem as an instance of the
Travelling Salesman Problem (TSP). In their formulation, cities represent the matrix
columns and distances the inner products between columns (considering the sparsity
pattern only, not the numerical values). This inner product metric is the same as the
column similarity metric used in many partitioners, including Mondriaan [VB05] and
PaToH [ÇA99]. Small dense 1× 2 blocks are then used to halve the integer overhead
of the SpMV, and also to reduce the number of loads of a cache line: for w > 1, the
two required adjacent values xj and xj+1 will often be in the same cache line. In
their experiments, Pinar and Heath achieve on average 21 percent reduction in SpMV
time by using the TSP ordering, and only 5 percent by using the reverse CM ordering.
The largest gain observed for TSP is 33 percent.

Vuduc and Moon [VM05] write the sparse matrix A as the sum of several ma-
trices, each of which is stored in a blocked variant of the CRS format, with its own
block size and alignment of the starting nonzero. Here, each block is small and dense,
e.g. 1 × 2 or 1 × 3. A matrix with block size 1 × 1 is also included to represent the
remaining nonzeroes in the standard CRS format. Blocks are created by greedily
grouping rows and columns based on a scaled inner product metric.

Nishtala et al. [NVDY07] investigate cache blocking for SpMV multiplication by
splitting the matrix into several smaller p × q sparse submatrices (blocks), using the
CRS data structure for each separate block. They present an analytic cache-aware
model to determine the optimal block size and demonstrate that this scheme works
well in practice. The authors achieve speedups for over half of their test matrices with
a maximum speedup of 2.93. They note that gains are largest form×nmatrices with
m� n. Their algorithms and software are included in the OSKI package [VDY05].

White and Sadayappan [WS97] use the Metis graph partitioner [KK98] to reorder
the matrix for better SpMV performance on machines with a single-level cache. They
report no gains by this method, which they attribute to the natural well-structured
ordering of their test matrices. Nevertheless, reordering by partitioning did show
some speedup compared to a random ordering. The authors propose to unroll loops
and change the CRS data structure, e.g. by sorting the rows by length and creating
blocks of rows of the same length.

1.1 — Sparse matrix storage formats 5

Strout and Hovland [SCFK04, SH04] use (regular) graph partitioning to achieve
a better data ordering in memory. They use hypergraph partitioning to improve inter-
iteration (temporal) locality, which can be done in some iterative algorithms where it
is not necessary to finish one iteration before partially continuing with the next.

Haase, Liebmann, and Plank [HLP07] use the Hilbert space-filling curve to order
the elements of the matrix A, storing the nonzero elements in the order they are en-
countered along the curve. Each element aij is stored as a triple (i, j, aij). They call
the resulting data structure fractal storage. Experimental results on finite-element
matrices show speedups of up to 50 percent in computing rate compared to the com-
mon CRS format, but for SpMV multiplication with eight simultaneous input vectors
instead of one. An enhancement of this method, making it efficient for regular SpMV
multiplication, can be found in Chapter 3. The Hilbert approach has the advantage
that it exploits naturally existing locality in the matrix at all cache levels, without
knowing about the characteristics of the cache. Furthermore, this approach is two-
dimensional. No attempt is made to enhance locality, however. It may be possible
to combine the Hilbert method with the method presented in this chapter, by first
running the matrix reordering presented here and then using fractal storage.

Summarising, only a few approaches are explicitly cache-aware or cache-oblivious.
The approach incorporated in OSKI [NVDY07, VDY05] is cache-aware since it
adapts to the cache sizes and other characteristics; this also holds for the approach
of Kowarschik et al. [KUWK00]. The space-filling curve approach [HLP07], like
ours, can be called cache-oblivious since by its recursive nature it exploits locality at
all levels. Most approaches, however, fall outside these two categories. They try to
enhance cache use by reordering or splitting the matrix, without knowing the cache
size, but also without tackling all levels simultaneously. For example, approaches
based on using small dense blocks [DMS+94, PH99, Tol97], are sometimes called
register blocking, and will improve use of the registers and the L1 cache, but not the
L2 and L3 cache.

1.1 Sparse matrix storage formats
A drawback of standard CRS implementation is the use of the row_start array for
keeping track which nonzeroes belong to which row. Looking at Algorithm 1, a for-
loop was started on line 3 along indices k relevant to the row i being processed.
Since there is no other way of knowing when a row ends, optimised CRS mul-
tiplication code will always have to keep track of k. Furthermore, although the
array nzs is straightforwardly accessed according to k, x is accessed according to
j =col_ind[k]; this kind of index translation also causes instruction overhead: the
address (pointer) px of the currently used element from x should be updated as
px=x+col_ind[k]. Faster would be px+=diff[k], with diff[x] equal to
col_ind[k]-col_ind[k-1] and diff[0]=col_ind[0]; this, combined
with an alternative for the row_start array, leads to the incremental CRS (ICRS)
scheme proposed by Koster in his master’s thesis [Kos02]. A sparse matrix–vector

6 One-dimensional cache-oblivious multiplication

algorithm utilising this ICRS scheme is given in Algorithm 3. Note that an increment
in row index is signalled by causing j to overflow (i.e., j ≥ n) so that j − n corre-
sponds to the actual column index of the first nonzero in the new row. The increase in
the row index i after each column overflow is stored in the array row_jump. Although
the pseudocode of Algorithm 3 is a few lines larger than that of Algorithm 1, it can
be more efficiently implemented by using suitable pointer arithmetic. This causes the
instruction overhead to drop [Kos02, Figure 2.5].

Changing CRS to handle data incrementally does not change its worst-case mem-
ory requirements; nzs and the new difference array diff both use nz(A) space while
row_jump is still of sizem in the worst case. The total memory requirement thus also
equals 2nz(A) + m. If there are some empty rows, however, memory requirements
as well as memory accesses are reduced slightly resulting in further speedup. If there
are no empty rows, the array row_jump need not be stored since all its entries equal
1, saving memory bandwidth and thus increasing cache performance.

Algorithm 3 Matrix–vector multiplication using ICRS
Input: nzs, diff, and row_jump corresponding to a sparse matrix A;

the dimensions m and n of A;
a dense input vector x;
the number of nonzeroes nz(A).

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: i = row_jump[0], j = diff [0], k = 0, r = 1
3: while k < nz(A) do
4: y[i] = y[i] + nzs[k]∗x[j]
5: k = k + 1
6: j = j + diff [k]
7: if j ≥ n then
8: j = j − n
9: i = i+ row_jump[r]

10: r = r + 1
11: return y

A further, cache-oblivious way to reduce the number of cache misses by adapting
sparse matrix storage, is to prevent jumping from the last to the first column when a
row increment occurs. Instead, the multiplication algorithm could just start at the last
column of that row, and process nonzeroes in reverse order until it arrives at the first
column. At the next row increment this recipe can be repeated. Assuming all rows are
non-empty, the resulting kernel thus processes nonzeroes in the standard increasing
order on even-numbered rows, and in decreasing order on odd-numbered rows. The
resulting data structure is called zig-zag CRS (ZZ-CRS). Figure 1.1 illustrates both
the CRS and zig-zag CRS orderings. Note that the Incremental adaptation of CRS

1.2 — An adapted partitioning algorithm 7

Figure 1.1: The CRS (left) and ZZ-CRS (right) orderings. The dash-dotted lines show
the order in which matrix nonzeroes are stored.

and this zig-zag adaptation can be applied simultaneously to form the ZZ-ICRS data
structure.

When using the zig-zag scheme, a cache that is too small will not cause the full
O(n) cache misses on the vector x (assuming w = 1) for each row in the dense
case. Instead, only O(n− L) cache misses per row are incurred, where L is the total
number of cache lines. For the general case w ≥ 1, where more than one data word
may fit into a cache line, there are O(nw − L) misses instead of O(nw). This is only
a tiny improvement, but it enables the use of the Mondriaan partitioner to find matrix
permutations for more efficient sequential SpMV multiplication.

1.2 An adapted partitioning algorithm
The partitioning strategy followed is an adaptation of the Mondriaan partitioning
scheme. From its construction follows the introduction of the SBD form, and why
this form is well suited to the sequential SpMV multiplication.

Consider the following bipartitioning of a row-net hypergraphH = (V,N) repre-
senting a sparse matrix A. V is partitioned into parts V0,V1 while taking into account
the load imbalance and the λ− 1 cost function. Note that the indices of the columns
corresponding to the vertices in each part do not have to be consecutive. A partition-
ing of the nets in N will be induced as well: the set of nets with vertices only in
V0 is denoted by N−, and the set of nets with vertices only in V1 is denoted by N+.
The remainder, the set of cut nets (nets which have vertices in both parts), is denoted
by Nc. This bipartitioning scheme can be recursively applied so that it generates p
vertex subsets, as well as 2p− 1 different hyperedge subsets.

These partitionings of V and N can be used in SpMV multiplication as follows.
The algorithm first visits the matrix elements in the rows corresponding to nets in
N−, followed by those corresponding toNc, and finally byN+; and furthermore, the
nonzeroes are processed in zig-zag order. Like with the CRS data structure, the SpMV
multiplication visits matrix rows in succession, and no unnecessary cache misses are
incurred on the output vector y. To minimise the cache misses on the input vector x,

8 One-dimensional cache-oblivious multiplication

the number of parts p should equal

p =
n

wL
. (1.1)

This can be interpreted as the number of caches that would be needed to store the
complete input vector x: wL then equals the number of data words that can be stored
by the cache. This value p defines a natural number of parts (or processors) for storing
a row of the matrix. If the matrix were dense, the number of cache misses per row
would be n/w − L = L(p − 1), provided the zig-zag ordering is used. This would
also be the number of misses for a sparse matrix that is relatively dense and has its
nonzeroes well-spread, e.g., in a random sparsity pattern.

If the matrix row i is only nonzero in an interval j ∈ [li, ri), the number of
cache misses for that row is at most (ri − li)/w − L, provided the interval is the
same as for the previous or next row (this is needed for the zig-zag ordering to be
beneficial). Here, the row length n in the right-hand side of Equation (1.1) is replaced
by the interval length ri − li, giving a number of nonempty row parts (of the size of
a complete cache) equal to λi = (ri − li)/(wL), and the corresponding number of
cache misses is then L(λi − 1). If the interval is dense, this upper bound is exact.
If the interval is sufficiently dense, with at least one out of every w matrix elements
nonzero, the bound is exact. Another important case is where the row is uncut after
partitioning the matrix into p sets of columns. For such an uncut row no cache misses
are incurred, again under the assumption that the zig-zag ordering is used, and this
corresponds exactly to the bound L(λi − 1) with λi = 1, which is zero.

As a result, the matrix is partitioned into blocks of n/p columns, and the corre-
sponding communication volume of parallel SpMV multiplication times L gives an
upper bound on the number of cache misses. Thus, minimising the communication
volume in the λ − 1 metric using hypergraph partitioning improves cache utilisation
as well.

It does not harm the cache efficiency to partition beyond the value of p given in
Equation (1.1). Hence, p can be taken as large as possible, i.e., p → ∞. If during
partitioning, the matrix is reordered accordingly (see Section 1.3), a beneficial matrix
structure at all values of p is created. This way of reordering also minimises cache
misses on multilevel cache hierarchies since for lower p the behaviour for the larger
caches is optimised, while for higher p this is done for the smaller caches, without
harming the earlier optimisations.

Putting the collection of cut rows between those of N− and N+ ensures that
data loaded in by first visiting columns corresponding to V0 are still available when
processing Nc. Since Nc also contains data from V1, cache performance deteriorates
as data corresponding to V0 is swapped out in favour of those of V1. Afterwards, the
algorithm proceeds with N+, which only deals with data corresponding to V1, thus
purging the remaining data corresponding to V0 while taking advantage of the V1

data already brought into cache; thus allowing for a gradual transition from one set
of rows to the other. Such a transition is expected to be smooth if the rows are sparse,
and if the partitioner manages to keep the number of cut rows small.

1.3 — Permuting to Separated Block Diagonal form 9

Reordering for sparse LU decomposition
Using the same vertex and hyperedge partitioning as in Section 1.2,
a different reordering of matrix rows and columns can be obtained.
Processing rows in Nc strictly after those in N− and N+, is useful
in matrix reordering for, e.g., nested dissection [Geo73] for Cholesky
factorisation [HR98] or reordering rectangular sparse matrices for
LU or QR factorisation as explored by Aykanat et al. [APÇ04]. Grig-
ori et al. [GBDD10] employ hypergraphs to reorder unsymmetric ma-
trices for sparse LU factorisation as well. After application of permu-
tations such as described in Section 1.3, but adapted for this different
row order, the resulting matrix is said to be in bordered block diago-
nal (BBD) form.
For sparse LU and QR this makes sense, since this postpones and
prevents cascading fill-in; during decomposition, fewer new nonze-
roes are created. Another example where cut rows come last, is the
work on the package Monet [HMB00], which tries to create a bor-
dered block diagonal form based on hypergraph partitioning with the
cut-net metric (i.e., Equation (1) with λi − 1 replaced by 1 if λi ≥ 2,
and 0 otherwise).

1.3 Permuting to Separated Block Diagonal form

Consider a single bipartition of A given by V0, V1, N−, Nc, and N+. This then
defines a permuted matrixA1 as illustrated in Figure 1.2. The permutation of columns
can be written as AQ, where A is the original matrix and Q a permutation matrix of
corresponding dimensions. Similarly, the permutation of rows to achieve the net-
based ordering N−,Nc,N+ can be written as a left-side multiplication with another
permutation matrix P .

Let I = (e0|e1| . . . |en−1) be the n × n identity matrix. Then the right-sided
permutation matrix is given by Q = (eq0 |eq1 | . . . |eqn−1), with (qi)i∈[0,n−1] a per-
mutation of the vector (0, 1 . . . , n − 1). Similarly, P = (ep0 |ep1 | . . . |epm−1)T with
index permutation (pi)i∈[0,m−1]. Recall that since P,Q are permutation matrices,
P−1 = PT and Q−1 = QT . Of course, the indices at the start of (qi) correspond to
the columns in V0 and the remaining indices to the columns in V1; the order of (pi) is
similarly induced by the net order. The permuted matrix A1 after one bipartitioning
step is thus given by A1 = PAQ.

Subsequent recursive bipartitioning results in similar row and column permuta-
tions on disjoint row and column ranges. Therefore, after r recursive steps, the matrix
Ar can still be written as PAQ, for certain P and Q. As such, the modified SpMV

10 One-dimensional cache-oblivious multiplication

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 2 3 5 0 4 6 7

2

4

3

7

1

5

6

0

N+

V0 V1

N−

N c

Figure 1.2: Original matrix (left) and permuted matrix (right) after one bipartitioning
step. Shaded and black squares denote nonzero elements. Black columns denote
vertices in V0 whereas shaded columns denote vertices in V1.

multiplication routine can be represented as follows:

y = Ax = PTArQ
Tx, so ỹ = Arx̃ with ỹ = Py, x̃ = QTx; (1.2)

and a preprocessing technique for improving cache-efficiency is obtained, the form
of which is quite similar to preconditioning techniques. Using this, the partitioning
mechanism works for the following related linear algebra kernels, besides the SpMV
multiplication:

• y = Ax + βz: y = PT (ArQTx + βPz), which can be written as a standard
SpMV multiplication ỹ = Arx̃+ z̃ with ỹ = Py, x̃ = QTx, z̃ = Pz.

• y = ATx: y = QATr Px, so that ỹ = ATr x̃ with ỹ = QT y, x̃ = Px.

• y = AATx: y = PTArA
T
r Px, so that ỹ = ArA

T
r x̃ with ỹ = Py, x̃ = Px.

This shows that the cache-oblivious matrix reordering scheme can be applied for
these operations, by simply running the corresponding sparse BLAS on the permuted
input. Hence, the underlying BLAS software can be a cache-aware package, such as
Sparsity [WPD01] or its successor, OSKI [VDY05], thus increasing cache efficiency
beyond what is possible with either one method alone.

Some linear algebra kernels cannot be executed directly when using reorder-
ing. Most notably this applies to the kernel used in power method solvers, namely
y = Asx, s ∈ N, s > 1. When supplying a permuted matrix, this kernel becomes
y = (PAQ)(PAQ)s−1x; between instances of the original matrix A, the matrix QP
appears. Since generally QP 6= I , a translating step between successive multipli-
cations is required, which would be quite inefficient. This problem would arise, for
instance, with the power method used in Google PageRank computations [BP98]. If

1.4 — Cache simulation 11

instead an alternative page ranking method is considered, such as the HITS method
[Kle99] (see also the book [LM06, p. 117]), the power method is applied to the ma-
tricesAAT andATAwithA a link matrix. After reordering ofA, the matrix (AAT)s

then becomes (PAQQTATPT)s = P (AAT)sPT , and similarly for ATA, and the
reordering scheme can be used without penalty. Alternatively, if reorderings are sym-
metric (i.e., Q = PT), the PageRank method can also be used without translation.
This requires an adapted two-dimensional partitioning and is further described on
page 49.

Determining the column permutation is straightforward: the recursive bipartition-
ing yields an implicit order of subsets of V . Recursively bipartitioning an arbitrary
number of times, the resulting subsets can be numbered by describing the path fol-
lowed in their construction: at each recursive step, a vertex subset either remains
intact, is distributed left (0), or distributed right (1). A subset can thus be given the
number 0110, meaning it was first distributed left, then right, right again, and finally
again on the left side. Interpreting this binary number yields a natural ordering on the
vertex sets. Upon bipartitioning infinitely (that is, continue until each subset contains
exactly one vertex), n subsets each containing a single column are created. Reorder-
ing those subsets according to their binary representation and reading out the column
indices of the corresponding vertices yields the final column reordering.

Determining the row permutation is done by looking at the set of possible final
locations Qi of each row i after permutation. At the start of the reordering, Qi =
[0,m− 1], which is the full range of matrix rows. After the first bipartitioning, three
subsets N{−,c,+} of nets are constructed. The rows corresponding to nets in N− can
then map to [0, |N−| − 1], those in Nc to [|N−|,m − |N+| − 1] and those in N+

to [m − |N+|,m − 1]; see also Figure 1.2. This procedure is repeated after each
following bipartitioning; see Figure 1.3. There, each horizontal straight line gives
new row boundaries for the rows, with Qi the interval defined by those boundaries.
After n − 1 bipartitionings, a row ordering from the Qi can be deduced. Note that
such an ordering need not be unique; for some i, |Qi| > 1 is possible, even if m < n;
consider, for instance, a dense input matrix.

Figure 1.4 shows the idealised structure that is obtained by recursively bipartition-
ing a sparse matrix and placing the cut rows in the middle. This new matrix structure
is called the separated block diagonal (SBD) form, in analogy with the bordered
block diagonal (BBD) form [DER86]. Note that this structure is created by using the
λ−1 metric, which tries to prevent further cuts inside already cut rows; cut rows may
have internal structure which is not depicted in the figure. The cut-net metric does
not have this advantage.

1.4 Cache simulation
The performance of the SpMV multiplication kernel depends on the actual structure
of the sparse matrix itself. This dependency on matrix input makes it hard to anal-
yse the effectiveness of reordering in terms of the introduced cache model. To make

12 One-dimensional cache-oblivious multiplication

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

2 3 1 5 0 4 6 7

2

4

6

0

3

7

5

1

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

2 3 1 5 0 7 4 6

2

4

6

5

0

1

7

3

Figure 1.3: The reorderings after two (left) and three (right) bipartitionings of the
original matrix in Figure 1.2. Grey squares denote nonzeroes not considered in the
current bipartitioning step.

this possible nonetheless, a cache simulator is implemented, which enables accurate
simulation of cache dynamics within the presented theoretical model: using this, the-
oretical cache performance on any sparse input matrix can be calculated and results
can be correlated to actual wall-clock timings.

The cache simulator uses run-time memory allocation and memory access wrap-
per functions to catch and process data access. Upon access, a pointer to the allocated
region is obtained. The cache simulator pushes the address x onto the stack corre-
sponding to the set ID i; this is where the simulator detects if a cache hit or miss has
occurred. If the corresponding cache line already is present, it is removed from its
current location in the stack and reinserted at the top; if it is not present, it is inserted
at the top. If this would cause the stack size to overflow (i.e., would contain more than
k items), the address at the bottom of the stack is evicted. This process is repeated in
case one cache line did not suffice for the requested data, with the appropriate larger
memory address. No trace data is stored during the simulation process.

This simulation is only applied to accesses to the matrix A and the input and out-
put vectors x and y, during the SpMV multiplication. This method enables simulation
of caches with arbitrary parameters, as long as they fit in the k-way set associative
category. It simulates only one level of cache, however.

1.5 Experiments

Input matrices are assumed to be stored in Matrix Market format. These are processed
by the Mondriaan software package [VB05], in which the one-dimensional reordering
method is implemented. Mondriaan keeps track of the permutation matrices P and
Q while partitioning, as discussed in the previous section, and writes the reordered
matrix PAQ to file. The reordering time, in terms of SpMVs (on the original matrix),

1.5 — Experiments 13

Figure 1.4: Separated block diagonal (SBD) structure of a sparse matrix obtained
by recursively partitioning in the column direction and moving the cut rows to the
middle. The recursion has been stopped after creating 16 diagonal blocks. The four
colours indicate the block structure at p = 4.

is recorded as well. Due to the large number of columns of many test matrices,
taking the number of parts to infinity (p = n) may take a very long time. Therefore,
the number of parts is limited to an initial maximum of 400, or less for the larger
matrices. These output files are then used by a SpMV multiplication benchmarking
program. Wall-clock timings of sequential SpMV multiplications for various p and ε
are measured, using various storage schemes (CRS, ICRS, ZZ-ICRS), and the average
time taken is reported.

Two computer architectures are used. The first machine is based on the quad core
Intel Core 2 Q6600 processor and has 8 GB of main memory. Each single core has
a 32 kB 8-way L1 cache, and each pair of cores shares a 4 MB 16-way L2 cache.
The cache line size is z = 64 bytes. The second machine is the Dutch national
supercomputer Huygens at SARA in Amsterdam. This machine consists of 1664
dual-core IBM Power6+ processors divided over 104 nodes. Each core has its own
64 kB 8-way L1 data cache (besides a 64 kB L1 instruction cache), as well as a 4
MB 8-way L2 cache which is semi-shared among two cores. Furthermore, there is a
32 MB 16-way L3 cache which is fully shared among the two cores. The cache line
size is z = 128 bytes. Each node of 16 processors has 128 GB main memory. See
also Table 1 and the various figures in Section I.1.3.

Several test matrices were taken from the University of Florida Sparse Matrix
Collection [Dav11]. Table 1.1 shows all matrices and their properties. Matrices from
finite element method (FEM) applications are fidap037, s3dkt3m2, and bmw7st1.
From the field of chip design come the memplus and rhpentium matrices; lhr34 comes
from chemical process modelling, and nug30 from optimisation. The rand matrices
are generated randomly so that each entry has a constant probability of becoming
a nonzero. Cage14 is a matrix arising from modelling DNA electrophoresis, and

14 One-dimensional cache-oblivious multiplication

Name rows columns nonzeroes
rand10000 10000 10000 49987 U
fidap037 3565 3565 67591 S
memplus 17758 17758 126150 S
rhpentium 25187 25187 258265 U
lhr34 35152 35152 764014 S
rand50000 50000 50000 1249641 U
nug30 52260 379350 1567800 S
s3dkt3m2 90449 90449 1921955 S
tbdlinux 112757 21067 2157675 U
bmw7st1 141347 141347 3740507 U
stanford 281903 281903 2312497 U
stanford-berkeley 683446 683446 7583376 U
wikipedia-2005 1634989 1634989 19753078 U
cage14 1505785 1505785 27130349 S

Table 1.1: Matrices used in the experiments, sorted by category first and number of
nonzeroes second. The first category contains matrices of smaller size, where input
and output vectors typically fit into the L2 caches; the second category contains larger
matrices. The final column indicates whether the matrix is considered structured (S)
or unstructured (U).

tbdlinux is a term-by-document matrix of the Linux manual pages. The stanford,
stanford-berkeley and wikipedia matrices all are link matrices; these are binary square
matrices such that a single web page corresponds to a unique row and column index,
and a nonzero entry at (i, j) records when a link from web page i to the web page j
exists.

Generally, the matrices can be divided into two classes: those that already pos-
sess a structure beneficial in terms of cache reuse, and those that do not. If a matrix is
expected to fall in the first category, it is structured; otherwise, it is deemed unstruc-
tured. Random matrices may be seen to form a separate category. Their artificial
construction makes partitioning inherently difficult. This is discussed in more detail
on page 24.

Examples of structured matrices include FEM matrices on a structured grid. The
matrix s3dkt3m2 is such a matrix, possessing relatively dense blocks along three di-
agonals. Another example is memplus, obtained from memory circuit simulation; see
Figure 1.5 (left). For this matrix, the vector x is consecutively accessed in up to four
different areas, much like a four-diagonal matrix, with the only exceptions occurring
on the first few rows and where straight lines of nonzeroes expand into triangle-like
areas of nonzeroes. Reordering such a matrix will likely destroy this natural ben-
eficial structure, and one-dimensional reordering will not yield improvements. For
unstructured matrices, such as rhpentium (see Figure 1.5, right), large performance

1.5 — Experiments 15

gains are expected; if the connectivity contains enough hidden structure, the parts
will become separated efficiently. On the other hand, if the columns are difficult to
partition, many rows will be cut, thus resulting in large separators.

For a given p and a given matrix, the gain of reordering will also depend on in
which caches, if any, the input vector fits. Hence the results with different cache sizes
for a fairly structured matrix (memplus), as well as an unstructured matrix (rhpen-
tium) are discussed first. As mentioned earlier, no gain is expected by reordering an
already favourably structured matrix. After a single bipartitioning, however, a struc-
tural improvement on the matrix memplus can be seen. In Figure 1.6 (left) the top
half of the permuted matrix shows straight lines exactly corresponding to the benefi-
cial original structure. The bottom half contains the less favourably structured parts,
compressed together. At p = 100 (right), things have become far less favourably
structured as the reordering method tries to compress the nonzeroes in smaller and
smaller areas. Examining the unstructured matrix rhpentium, shown in Figure 1.7,
a completely different behaviour appears. At p = 100, a good structure has already
surfaced, which is improved at p = 400 as the thickness of the rows corresponding to
Nc has been reduced.

1.5.1 Results of cache simulation
The simulated cache use efficiency shown in Figures 1.8 and 1.9 reflects the expecta-
tions described above. The figures show the reduction of cache misses, with respect
to the simulated cache size. For memplus, gains of about 2 percent are recorded for
p = 2, while for p = 100 losses of the order of 10 percent can be seen. The miss
ratios in Figures 1.8, 1.9 and Table 1.2 are calculated by dividing the number of cache
misses for the reordered matrix by the number of cache misses for the original ma-
trix. For rhpentium, large gains of up to 35 percent can be seen for all three data
structures considered. It is interesting to see that the gain curve for p = 400 improves
for lower cache sizes when compared to the curve for p = 100, regardless of which
data structure is used. Refining further beyond p = 100 is not worth the effort if the
actual cache used already was large enough, e.g. when using the L1 cache of an Intel
Core 2 processor. In the figure, the largest gain is about 37 percent. On the other
hand, partitioning to infinity makes the ordering truly cache-oblivious since it works
well irrespective of the actual cache size. This also hints at good performance on
multilevel cache architectures: the early partitionings optimise for the larger caches,
while subsequent refinements increase performance on the smaller (L1) caches.

Figure 1.9 also shows that the gain of reordering eventually tends to decrease
as the cache size increases; this indicates that the more data fit into cache, the less
reordering can improve upon cache misses. Expected is that as s → ∞, the ratio
shown tends to one. The reverse also holds; as the cache size tends to a minimum,
the ratio tends to one as not much can be improved when most misses are inevitable.

Table 1.2 presents the same simulations as Figures 1.8 and 1.9, but now with a
fixed cache size, a varying number of partitions, and a complete test set of matrices.
Table 1.2 shows that for large matrices and larger p, the zig-zag variant of CRS is, on

16 One-dimensional cache-oblivious multiplication

Name p = 2 p = 100 p = 400
memplus 0.99 (C) 1.05 (C) 1.08 (Z)
rhpentium 0.96 (Z) 0.66 (Z) 0.63 (I)
s3dkt3m2 1.00 (I) 1.00 (C) 1.00 (C)
rand10000 0.91 (C) 0.72 (C) 0.70 (I)
fidap037 0.98 (C) 1.00 (C) 1.01 (C)
lhr34 1.00 (C) 1.01 (Z) 1.02 (C)
rand50000 1.00 (I) 0.98 (I) 0.98 (I)
nug30 0.89 (Z) 1.05 (I) 1.06 (C)
tbdlinux 0.97 (Z) 0.90 (Z) 0.90 (Z)
bmw7st1 1.00 (I) 0.99 (I) 0.99 (I)

Name p = 2 p = 10 p = 20
stanford 0.98 (Z) 0.86 (Z) 0.75 (Z)
stanford-berkeley 1.00 (Z) 1.00 (Z) 0.98 (Z)
wikipedia-2005 0.98 (C) 0.94 (I) 0.92 (Z)
cage14 1.02 (I) 1.09 (Z) 1.10 (I)

Table 1.2: Simulated cache effect of reordering for the complete matrix test set and for
a varying number of parts p. Given is the ratio between the number of cache misses
for the reordered matrix and the number for the original matrix, for the best of three
data structures out of CRS, ICRS, and ZZ-ICRS. The best data structure is shown in
parentheses. In the partitioning, the load imbalance is chosen as ε = 0.1. The results
are obtained by simulating an Intel Core 2 L1 cache; that is, s = 215, z = 64, k = 8.

average, superior.
Comparing Table 1.1 and 1.2, the single-level cache simulation shows that ma-

trices with already favourable structure indeed do not yield improved cache use after
reordering. Losses in miss ratio are at most 8 percent, namely for the structured ma-
trix memplus. The gain is largest at 37 percent for rhpentium, followed by 30 and 25
percent gain for rand10000 and stanford, respectively. Note that although reordering
with large p is never found to be beneficial for structured matrices, reordering with
small p can still yield modest improvements; see memplus and more notably nug30
which gains 11 percent with p = 2. For the highly structured matrix s3dkt3m2, no
gains were expected, and indeed, no change in cache efficiency is observed.

1.5.2 Timed SpMV multiplication experiments

The simulated gains should correlate to the actual running time of a single multiplica-
tion, but not in a directly proportional manner. Incurring 37 percent less cache misses
will not mean running time improves with 37 percent; what can be said is that the
CPU has shorter data access times in 37 percent of the data accesses. To see what

1.5 — Experiments 17

the theoretical results obtained by simulation mean in practice, experiments on actual
machines are needed.

Figures 1.10 and 1.11 show the gain in wall-clock timings of benchmark experi-
ments for the smaller test matrices. Here, the ratio between the SpMV multiplication
time for the reordered matrix and that for the original matrix is shown. The matri-
ces used in these benchmarks are relatively small: an Intel Core 2 L2 cache has size
s = 222 bytes (4 MB), while a double requires 8 bytes of storage. Hence a vector of
size 219 = 524288 can fit entirely in L2 cache. As seen in Table 1.1, these test matri-
ces have row and column dimensions much smaller than this size, causing reordering
to alter mostly the L1 (and not L2) cache behaviour; hence cache effect enhancements
translate to relatively small amounts of gain in execution time.

Figure 1.10 shows results for a straightforward SpMV implementation. For small
matrices, reordering sometimes achieves modest gains; it almost never leads to losses.
Exceptions are two small matrices, the rhpentium matrix and the rand10000 matrix,
which showed significant gains of about 20 percent and 15 percent, respectively.
These cases indeed display larger gains with increasing p, indicating that partitioning
with even higher p is desirable. As expected from the previous analysis, reorder-
ing performs poorly on the already well-structured matrix memplus: with ε = 0.1
it breaks even, and with ε = 0.3 it shows losses of up to 10 percent. The gain in
execution time in the case of fidap037 is surprising, since cache simulation did not
show any effect at all, indicating that reordering affects behaviour not included in the
cache model.

Figures 1.12 and 1.13 show results for much larger matrices. Partitioning is
stopped at p = 20, since it is very time-consuming for these large matrices. Since the
input and output vector together do not fit in the L2 cache, and for the largest three
matrices even a single vector does not fit, the effects of reordering are expected to
become much clearer here. Indeed, for p ≥ 2, reordering already leads to substantial
gains, and increasing p gives even better results, with a gain of over 50 percent for
the stanford matrix.

The stanford-berkeley matrix breaks about even in run-time, which is very differ-
ent from other link matrices, including the stanford matrix. Apparently, partitioning
of the stanford-berkeley matrix is difficult, perhaps due to it describing two web sub-
domains, those of Stanford University and of the University of California at Berkeley,
which may contain more interconnects than either domain alone.

The matrix cage14, where losses of more than 10 percent are recorded, seems to
be a hard case for improvement. A structure can be observed in all the cage matrices,
which comes from the chosen numbering of states in the underlying Markov model
used to study DNA electrophoresis, see [vHBB02]. Note that the losses reach their
peak at p = 4, and that for p ≥ 4 the losses decrease monotonically with p, indicating
that the finer-grain structure of the matrix might eventually be exploited by reordering
to improve the cache behaviour.

Results obtained using the OSKI auto-tuning library are shown in Figure 1.11.
Note that OSKI uses its own optimised SpMV multiplication implementation, and
the ratios are given with respect to the OSKI benchmark on the original matrix. It

18 One-dimensional cache-oblivious multiplication

is surprising to see that OSKI achieves some improvement on memplus, reporting
larger gains as p increases; however, closer inspection reveals that in this case, the
OSKI SpMV routine performs worse than a standard (I)CRS implementation. These
slow SpMVs are improved by reordering, but even with p = 400, ε = 0.3 the OSKI
SpMV routine is still slower (0.42 ms) than a standard implementation (0.35 ms).
Regarding most other matrices, the OSKI routine is noticeably faster.

It is difficult for a straightforward CRS-based SpMV multiplication algorithm to
compete with the optimised implementation from OSKI, which is always faster, ex-
cept for the memplus matrix, as discussed earlier. When OSKI timings on the original
matrix are compared to timings using (I)CRS or ZZ-ICRS on reordered matrices, re-
ordering is more efficient for three out of the nine smaller matrices (excluding the
memplus timings). For the larger matrices, this is the case for two out of four: stan-
ford and wikipedia. In the case of stanford, timings decrease from 27.4 ms per SpMV
multiplication (OSKI on the original matrix) to 15.4 ms (reordering with p = 20,
ε = 0.1, CRS without OSKI), a 44 percent speedup. As shown earlier, joining both
methods by using OSKI on the reordered matrices yields further improvements with
respect to OSKI on the original matrix in twelve out of the fourteen cases. The only
exceptions are s3dkt3m2 and cage14, both cases where reordering did not gain any-
thing or even caused performance loss compared to the original ordering.

Since the method is cache-oblivious, it should perform similarly on other archi-
tectures. To check this, experiments on the Dutch national supercomputer Huygens
at SARA were also performed. Results should be similar to those on the Intel Core
2 machine, but performance could increase due to the presence of an L3 cache. Fig-
ure 1.14 shows wall-clock time results for the larger matrices processed on Huygens.
Performance is similar on the stanford and wikipedia matrices, but note that already
for p = 2 a 30 percent gain for the wikipedia matrix is obtained. This may be caused
by the L3 cache which can store 4194304 doubles and hence can contain the input
and output vectors. The losses for the cage14 matrix are now less severe, but there
no longer is monotonic speedup after p = 4; it may take a larger p before the timings
start to decrease on this architecture. ICRS on Huygens is frequently the fastest im-
plementation and is noticeably faster than CRS. The stanford-berkeley matrix shows
similar results as for the Intel architecture; and since the IBM Power6+ L2 cache is
exactly of the same size as the Intel Q6600 L2 cache, the experiments on Huygens
reveal no additional information as to the lack of speedup.

A relevant question is whether the number of SpMVs is large enough to justify
reordering the matrix first. Of course, the time required for reordering increases with
p, as well as with the matrix size. Table 1.3 presents the reordering time expressed
in the number of SpMV multiplications. The SpMV multiplication time compared to
is the time required for one SpMV without reordering. With increasing p, the num-
ber of multiplications required increases rapidly. Savings in SpMV multiplication
time often decrease as p increases, indicating that taking p → ∞ may not be prac-
tical. Still, research towards decreasing the construction time for reordering would
be useful in the sense that the required number of SpMV multiplications to justify
reordering would decrease, so that better-quality reorderings for the same number of

1.6 — Conclusions 19

Name p = 2 p = 3 p = 4 p = 100 p = 400
memplus 1531 1914 1818 12793 101744
rhpentium 5090 6752 7303 17064 60251
s3dkt3m2 603 673 740 1934 5181
rand10000 1560 1411 1820 23179 103565
fidap037 1005 1068 1131 5657 12761
lhr34 635 708 730 1599 6513
rand50000 2868 4065 5135 34710 120070
nug30 1594 1950 2204 10961 54588
tbdlinux 2258 3219 3659 26233 137332
bmw7st1 642 725 758 1946 5059

Name p = 2 p = 3 p = 4 p = 10 p = 20
stanford 5139 7603 6828 7922 8332
stanford-berkeley 11305 13208 15093 19138 21260
wikipedia2005 2152 1992 2168 2570 7418
cage14 4238 3987 3635 4583 5611

Table 1.3: Cost of reordering in terms of the number matrix multiplications on the
original matrix. Here, ε = 0.1. Construction times were measured on an Intel Core 2
(Q6600) machine.

SpMV multiplications may be obtained.

1.6 Conclusions

Introduced is the one-dimensional sparse matrix reordering method, which permutes
the matrix rows and columns to improve the cache efficiency of a sparse matrix–
vector multiplication algorithm in a cache-oblivious manner. It is based on partition-
ing methods under load balancing constraints, as originally developed in the area of
parallel matrix computations. Its central ideas are:

• using a zig-zag variant of the CRS data structure, thus avoiding unnecessary
cache misses at the end of rows;

• placing cut rows in the middle during the partitioning process, and so obtain-
ing the Separated Block Diagonal (SBD) form, leading to a gradual transition
between a cache filled with data from one column set (V0) to another set (V1)
during the SpMV multiply;

• hypergraph partitioning to reduce the number of cut rows, using the λ − 1
metric, to prevent parts of cut rows from being cut further.

20 One-dimensional cache-oblivious multiplication

For obtaining the matrix reorderings, the hypergraph-based sparse matrix partitioner
Mondriaan [VB05], in 1D (column direction) mode has been used. The reordering
method does not depend on Mondriaan, however. Instead, one can use other hy-
pergraph partitioners, such as PaToH [ÇA99], hMETIS [KK99], Zoltan [DBH+06],
Monet [HMB00], and Parkway [TK04]. Using the parallel partitioner Zoltan, or
Parkway, would enable a parallel reordering.

Experiments show that this method yields considerable savings in computation
time for certain matrices during sparse matrix–vector multiplication. For matrices
that already have a cache-friendly structure, the gains are modest or even a small loss
of efficiency is observed. The time needed to determine the reordering permutations
can be amortised if the multiplication is carried out repeatedly, as happens in iterative
linear system solvers and eigensolvers.

1.6.1 Future work

Although cache-oblivious matrix reordering may not always be as effective on small
matrices when compared to cache-aware software such as OSKI [VDY05], especially
on structured matrices, this is partly a consequence of not carrying through the par-
titioning till the end. Mondriaan is, as of yet, not designed with taking the number
of parts to infinity in mind. This translates to high reordering times. These depend
on p and the matrix structure, but not directly on the number of nonzeroes, nor the
average number of nonzeroes per row. For this method to perform well in practice,
further research is required to decrease the reordering times. Perhaps the largest dif-
ference with large p and the situation here, is that load-balance no longer is a factor;
partitioning without load-balancing thus is another possibility.

1.6.2 Additional results

Experiments were performed with different values for ε as well. These results showed
that the choice of imbalance parameter ε is less critical than in the case of parallel
computations, where it should reflect the ratio between the computation rate and the
communication rate of the hardware. The theoretical number of cache misses was
investigated as well, by using a custom cache simulator. This successfully showed
that reordering leads to a lower number of cache misses in the cache model described
in the introduction, precisely when the SpMV multiplication indeed executed faster,
thus validating the method in an additional way. These results are compared with
established methods; experiments with CRS and OSKI (Optimised Sparse Kernel In-
terface) [VDY05] were performed. Multiplications were done on the original as well
as on the reordered versions, showing that in many cases OSKI was outperformed, but
more importantly, also showing that both methods could be applied simultaneously
to achieve larger performance boosts than either method alone. OSKI was integrated
such that it always attempts a full tuning of the input matrix before multiplication.
No hints were given to OSKI as to which structural properties of the input matrix

1.6 — Conclusions 21

might be exploited; this might have resulted in optimisations of lesser quality, but
maintained the assumption of matrix-obliviousness.

Acknowledgements
The work presented in this chapter was supported by the Dutch supercomputing cen-
tre SARA in Amsterdam and the Netherlands National Computing Facilities founda-
tion (NCF), who provided access to the Huygens supercomputer. Additionally, SARA
provided technical assistance in using their system. The BSIK/BRICKS MSV1-2
program is also acknowledged for financial support of the research presented in this
chapter.

22 One-dimensional cache-oblivious multiplication

Figure 1.5: Plot of the original memplus (left) and rhpentium (right) matrices. Mem-
plus has a favourable structure, whereas rhpentium looks unstructured.

Figure 1.6: Plots of the memplus matrix; p = 2 (left) and p = 100 (right). The
maximum load imbalance parameter ε was set to 0.1.

1.6 — Conclusions 23

Figure 1.7: Plots of the rhpentium matrix for p = 100 (left) and p = 400 (right).
Here, the maximum load imbalance parameter ε was set to 0.1 as well.

9 10 11 12 13 14 15 160.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on memplus, p=2

CRS
ICRS
ZZ−ICRS

9 10 11 12 13 14 15 160.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on memplus, p=100

CRS
ICRS
ZZ−ICRS

Figure 1.8: Simulated cache effect of reordering for the memplus matrix, plotted
against different cache sizes. Given is the ratio between the number of cache misses
for the reordered matrix and the number for the original matrix, for three data struc-
tures: CRS, ICRS, and ZZ-ICRS. The reordering was done with p = 2 (left), and
p = 100 (right); both with ε = 0.1. The cache line size is z = 64 bytes, so that
w = 8. Assumed is an 8-way set-associative cache. Note that a cache size s = 215

bytes corresponds to an Intel Core 2 L1 cache.

24 One-dimensional cache-oblivious multiplication

Partitioning random sparse matrices
Random sparse matrices, although unstructured to the eye, form a
separate category. In fact, for an arbitrary partitioning V1,V2 of V ,
the probability that a net ni ∈ N intersects with none of the columns
corresponding to vertices in Vi is (1 − d)|Vi|, where d is the proba-
bility that a nonzero entry appears in the matrix. Thus the probability
that a net ends up in Nc is

(1− (1− d)|V1|)(1− (1− d)|V2|).

Assuming a perfect load
balance, the probability
that ni is in Nc is
p = (1 − (1 − d)n/2)2.
The probability that at
least k of the m hyper-
edges end up in Nc then
is given by
m∑
i=k

(
m

i

)
pi(1− p)m−i,

still under the assumption of a perfect load balance. The probability
that all nets are cut, i.e., the above with k = n, is plotted above for
various matrices sizes n, with d = 0.1. Plots for the probability that
at least 95 per cent of the nets are cut (k = b0.95nc) are similar,
and the area in which few cut matrix rows are expected increases as
the nonzero density d decreases. Varying the nonzero density d, the
smallest matrix size for which the probability that at least 95 per cent
of nets are cut, is itself larger than 0.95, is as follows:

d 0.01 0.02 0.03 0.04 0.05 0.1
n 781 398 265 201 161 81

This is not to say heuristics cannot exploit specific instantiations of a
random matrix; good partitioning software can consistently find bet-
ter solutions than is expected. As the random matrix size increases,
however, deviations in the matrix structure that make this possible
will become more rare, leaving less room for heuristics to minimise
the number of cut nets.

1.6 — Conclusions 25

9 10 11 12 13 14 15 16

0.65

0.7

0.75

0.8

0.85

0.9

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on rhpentium, p=100

CRS
ICRS
ZZ−ICRS

9 10 11 12 13 14 15 16

0.65

0.7

0.75

0.8

0.85

0.9

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on rhpentium, p=400

CRS
ICRS
ZZ−ICRS

Figure 1.9: Simulated cache effect of reordering for the rhpentium matrix, plotted
against different cache sizes. On the left, simulations with p = 100 are performed,
while on the right p = 400 was used. In both cases, reordering was done with ε = 0.1.
Again, an 8-way set-associative cache with z = 64 was simulated.

26 One-dimensional cache-oblivious multiplication

1 2 3 4 5
Matrix number

CRS
1
2/0.1
3
4
100
400
2/0.3
3
4
100
400

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Matrix number

 CRS
1
2/0.1
3
4
100
400
2/0.3
3
4
100
400

Figure 1.10: Wall-clock timings performed on an Intel Core 2 (Q6600) machine. The
CRS bar denotes the timing of a straightforward CRS-based SpMV multiplication
applied to the original matrix. The bar p = 1 corresponds to the best timing of
CRS, ICRS, and ZZ-ICRS on the original matrix. The bars p = 2/0.1, 3, 4, 100, 400
show the results after reordering using p parts, with ε set to 0.1, and similarly for
the p from 2/0.3 with ε = 0.3. The best timing of the CRS, ICRS, and ZZ-ICRS
schemes is shown. The test matrices are: 1. memplus; 2. rhpentium; 3. s3dkt3m2; 4.
rand10000; 5. fidap037; 6. lhr34; 7. rand50000; 8. nug30; 9. tbdlinux; 10. bmw7st1.

1.6 — Conclusions 27

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Matrix number

Original
2/0.1
3
4
100
400
2/0.3
3
4
100
400

6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Matrix number

Original
2/0.1
3
4
100
400
2/0.3
3
4
100
400

Figure 1.11: Wall-clock timings obtained by using the OSKI library for the SpMV
multiplication, instead of plain data structure implementation. Note that OSKI sparse
matrix storage is CRS-based. The cases where OSKI automatically applied cache-
aware tuning are marked in black.

28 One-dimensional cache-oblivious multiplication

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Matrix number

 CRS
1
2
3
4
5
10
15
20

Figure 1.12: Wall-clock timings for the large matrices, where the input and output
vector do not fit into the L2 cache. Interpretation is the same as for Figure 1.10, with
ε = 0.1 when the matrix reordering method is applied. The test matrices are: 11.
stanford; 12. stanford-berkeley; 13. wikipedia-2005; 14. cage14.

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Matrix number

 Original
2
3
4
5
10
15
20

Figure 1.13: Wall-clock timings for the large matrices, but using the OSKI library.

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Matrix number

 CRS
1
2
3
4
5
10
15
20

Figure 1.14: Experiments similar to Figure 1.12, but run on the Dutch national super-
computer Huygens.

29

Chapter 2

An extension to two dimensions

In the previous chapter a one-dimensional cache-oblivious sparse matrix–vector mul-
tiplication scheme, based on one-dimensional sparse matrix partitioning, was pre-
sented. Partitioning is often used in distributed-memory parallel computing for the
SpMV multiplication, an important kernel in many applications. A logical exten-
sion is to move towards using a two-dimensional partitioning, which is done in this
chapter. Still, only row and column permutations are allowed on the sparse input
matrix. This extension requires a generalisation of the CRS data structure, to a
block-based data structure. Experiments performed on three different architectures
show further improvements of the two-dimensional method compared to the one-
dimensional method, especially in those cases where the one-dimensional method
already provided significant gains. The largest gain obtained by our new reordering
is over a factor of 3 in SpMV speed, compared to the natural matrix ordering.

This chapter is based completely on the work [YB11c]:

• A. N. Yzelman and Rob H. Bisseling, Two-dimensional cache-oblivious sparse
matrix–vector multiplication, Parallel Computing (2011), to appear.

Related work

Since we are now making our way into 2D techniques for improving cache locality,
other recent works become relevant, beyond those referred to in Chapter 1. Previ-
ously, cache locality in the input vector was improved, and the locality of the output
vector was never in question thanks to the (ZZ-)CRS ordering imposed on the nonze-
roes, which results in linear access of the output vector. This also enabled the use of
auto-tuning methods like OSKI, introduced by Vuduc et al. [VDY05], in conjunction
with our reordering method. A 2D method, however, tries to further increase local-
ity in the input vector direction while actively attempting to preserve locality in the
output vector direction, in the hope that the obtained locality in both dimensions can

30 An extension to two dimensions

outperform locality induced in only one of the dimensions. The objective is thus to
minimise the sum of cache misses within both the input and output vectors, and this
entails breaking the linear access to the output vector.

In dense linear algebra, the 2D approach has been successfully applied by block-
ing, the process of dividing the matrix into submatrices (or a hierarchy thereof)
of appropriate sizes so that matrix operations executed in succession on these sub-
matrices are faster than if they were performed on the single larger sparse matrix
[GG02, VS02, WPD01]. By using a Morton ordering (i.e., a recursive Z-like order-
ing) [Mor66], the blocks can be reordered to gain even more efficiency; additionally,
the Morton ordering can also be used on high-level blocks, while the low-level blocks
still use row-major data structures such as standard CRS. This gives rise to so-called
hybrid-Morton data structures which, like the method presented here, enable the use
of specialised BLAS libraries on the low-level blocks; see Lorton and Wise [LW07].
Similar techniques for sparse matrices include sparse blocking into very small blocks
[NVDY07], and using the Hilbert space-filling curve on the nonzeroes of sparse ma-
trices [HLP07, YB11a]. The method presented in the next section is much in the
same locality-enhancing spirit, even though its approach is different.

2.1 The generalised two-dimensional case
The straightforward extension of the original scheme to 2D is natural when em-
ploying the fine-grain model [ÇA01] (see also Section I.2). If H = (V,N) is
the fine-grain representation of A, there are in essence two types of hyperedges:
those corresponding to matrix rows, and those corresponding to matrix columns (i.e.,
N = N row∪N col). For each net, the connectivity λi over a partitioning V0, . . . ,Vp−1

of V can still be defined as before. In particular, in the case of a single bipartitioning,
this enables us to define the set of cut row netsN row

c ⊂ N , consisting of the row nets
with connectivity larger than one, as well as the setN col

c , similar to the 1D case. Row
and column permutations for p = 2 can then be used to bring the arbitrary sparse
input matrix into the form depicted in Figure 2.1 (left), the doubly separated block
diagonal (DSBD) form.

Note that there are now five different separator blocks, namely N row
c ∩ N col

c ,
N row
c ∩ N col

± , and N row
± ∩ N col

c . These together form a separator cross, coloured
red in Figure 2.1 (left). An example of a matrix in DSBD form obtained using this
fine-grain scheme can be found in Figure 2.2 (lower-left).

This 2D scheme can be applied recursively. However, using a (ZZ-)CRS data
structure will result in more cache misses for p > 2 due to the column-wise separator
blocks, if the separator blocks are relatively dense; see Figure 2.1 (right). Nonzeroes
thus are better processed block by block in a suitable order, and the data structure
used must support this. These demands are treated separately in Section 2.1.1 and
Section 2.1.2, respectively.

A separator tree can be defined in the 2D case, similar to the 1D case, but now with
nodes containing nets corresponding to both matrix rows and columns. Internal nodes

2.1 — The generalised two-dimensional case 31

N col
− N col

c N col
+

N row
−

N row
+

N row
c

Figure 2.1: Schematic view of a 2D matrix reordering using the fine-grain model, for
p = 2 (left) and p = 4 (right). The figure on the right side also includes the ZZ-CRS
ordering curve.

in the tree contain both cut rows and columns belonging to the separator crosses. Leaf
nodes correspond to the p non-separator blocks. An example of a separator tree in the
case of p = 4 is shown in Figure 2.3.

2.1.1 SBD block order

Figure 2.4 shows various ways of ordering the DSBD blocks. The main objective
is to visit the same regions of the input and output vectors as few times as possible.
Accesses in the vertical direction represent writes on the output vector, whereas hor-
izontal accesses represent reads on the input vector. Write accesses are potentially
more expensive; the block ordering avoiding the most unnecessary irregular accesses
in the vertical direction thus theoretically performs best. From the orderings in Fig-
ure 2.4, this best performing block order is ZZ-CCS.

When considering suitable data structures for the vertical separator blocks, CRS
is the perfect ordering for the nonzeroes within a block; the width in the column di-
rection is typically small by grace of good partitioning, so that the small range from
the input vector fits into cache. Since rows are treated one after the other, access to
the output vector is regular, even linear, so cache efficiency with regards to the output
vector is good as well. This changes for the horizontal separator blocks: there, the
range in the output vector is limited and fits into cache, but the range of the input vec-
tor is large and access is in general completely irregular. Demanding instead that the
horizontal separator blocks use the CCS ordering for individual nonzeroes, increases
performance to mirror that of the vertical separator blocks: input vector accesses then
are linear, and output vector accesses are limited to a small range typically fitting into
cache. Note that this scheme can be viewed as a 2D sparse blocking method, and that
it also can be applied to the original 1D method.

32 An extension to two dimensions

Figure 2.2: Plots of the wikipedia-2006 matrix, partitioned and reordered to (D)SBD
form using the Mondriaan software [VB05]. The matrix has 2983494 rows and
columns, and 37269096 nonzeroes. The upper-left plot shows the highly unstruc-
tured original link matrix. This matrix appears to be dense because of the size of the
nonzero markers and the rather even spread of the nonzeroes: in fact every matrix
row contains 12.5 nonzeroes on average. The upper-right plot shows the result after
1D partitioning with p = 10. The lower-left picture shows the result using the 2D
fine-grain scheme with p = 8, and on the lower-right, the 2D Mondriaan scheme with
p = 9 was used. The load imbalance parameter is set to 0.1 in all cases. Empty rows
and columns correspond to web pages without outgoing or incoming links, respec-
tively.

2.1 — The generalised two-dimensional case 33

y

ỹ

ỹ

y

ỹ

y

y

x̃ x x xx̃

ca

b

3 421

4

c

3

b

2

a

1

x x̃

Figure 2.3: Illustration of a DSBD form with p = 4, and its corresponding separator
tree. The sizes x, y of the y × x non-separator blocks (1, 2, 3, 4) are also shown in
the picture, as are the small widths of the separator cross, given by ỹ and x̃.

2.1.2 Block data structures

Two data structures will be introduced here: Bi-directional Incremental CRS (BICRS)
and a simple block-based data structure (Block). With the ICRS storage scheme
[Kos02], the difference between a nonzero column index and that of its preceding
nonzero is stored, instead of the column indices themselves. While multiplying, a
row change is indicated by overflowing the column index by storing too large dif-
ferences, so that subtracting the number of columns n afterwards yields the starting
index of the input vector for the next row. This next row is determined by using
a similarly constructed row difference array. See also Section 1.1 for more details.
Note that ICRS jumps only to the nonempty rows, and therefore avoids unnecessary
overhead. This is particularly useful for the separator blocks we encounter after 2D
partitioning; there, many empty rows (columns) are found in the case of vertical (hor-
izontal) separator blocks.

The Bi-directional Incremental CRS [YB11c] data structure is a simple extension
to ICRS, which allows any (non-CRS) ordering of the nonzeroes by allowing neg-
ative increment values. Trivially, negative column increments enable jumping back
and forth within a single row. Overflows in the column direction still signal row
changes, and by allowing negative row increments, bi-directional row changes are
made possible as well. Each column overflow implies a row jump, and each such
jump has an instruction and storage overhead; note that hence the orientation (BICRS
or BICCS) of the data structure still matters. The gain is that this additional overhead
is only dependent on the number of row jumps j, and not directly on the number of
parts p. Furthermore, we have that m ≤ j ≤ nz, and the performance of BICRS is
guaranteed to be in between that of ICRS and the Triplet data structure.

Another option for storing nonzeroes in a block-based order, is to store each ma-
trix block in a separate (I)CRS or (I)CCS data structure. Upon performing an SpMV
multiplication, the multiplication routines of the separate data structures are called

34 An extension to two dimensions

6 7

543

1 2

(a) CRS block ordering

7 6

1

4 3

2

5

(b) Adapted CRS block ordering

6 2

1

7 4

5

3

(c) Separators-last block ordering

5 6

2

1 4

3

7

(d) ZZ-CCS block ordering

Figure 2.4: Various possible DSBD orderings for SpMV multiplication for p = 2.
The black curve in the upper right corners of the panels is included to highlight the
curve trajectory.

2.2 — Cache performance in recursion 35

in the order defined by the block order, on the same input and output vectors; this
straightforwardly yields the simple block-based data structure. However, calling sev-
eral multiplications in sequence this way incurs some overhead: when a switch be-
tween blocks is made, the pointers to the input and output vectors are reset to the
location of the first nonzero of the next block, and only then the actual SpMV kernel
is called. Also, the storage requirements increase with p: when using non-incremental
CRS/CCS, storage scales as O((m+ n) log2 p) (see Section A.1.6), and when using
the incremental ICRS/ICCS data structure, storage is in between 2nz +m (best case)
and 3nz (worst case). Hence the gain with respect to cache efficiency of using this
simple block-based structure must be larger than the penalty incurred by this addi-
tional overhead; and this overhead can be reduced by lowering the number of blocks
required. Instead of this simple block-based data structure, more advanced ideas may
be exploited here, such as a scheme which also compresses index (or increment) val-
ues as presented by Buluç et al. [BFF+09]; although some additional effort would be
required to make this work within our scheme.

2.2 Cache performance in recursion
In this section, the cache behaviour of the SpMV kernel for different block order-
ings will be analysed. The symbols x and y will not directly refer to the input or
output vectors in this section, instead they are used to indicate the row-wise and
column-wise sizes of the diagonal submatrices appearing in the DSBD form; see also
Figure 2.3 (left). Some simplifying assumptions are made:

1. the storage scheme within each sparse block on the diagonal is ICRS,

2. the storage scheme for horizontally oriented off-diagonal separator blocks is
ICCS,

3. the storage scheme for vertically oriented off-diagonal separator blocks is ICRS,

4. the number of parts in the partitioning is a power of two,

5. the horizontal block sizes (corresponding to a part of the input vector) are equal
and are denoted by x,

6. the maximum of the column separator widths is x̃,

7. the vertical block sizes (corresponding to a part of the output vector) are equal
and are denoted by y, and

8. the maximum of the row separator widths is ỹ.

Cache misses are calculated by analysing the binary separator tree, starting with
the root node, which contains the largest separator cross (spanning the entire sparse
matrix). The two children of the root node contain the remaining two sparse blocks

36 An extension to two dimensions

that the partitioner has been recurring on. Only non-compulsory cache misses will be
counted, since the compulsory ones are the same for all orderings. The analysis only
pertains to the input and output vector data, since the matrix data are used only once
and hence cannot benefit from the cache.

The number of non-compulsory cache misses can be expressed as a function on
the root node, which recurs on its two children, et cetera. In fact, only the height
of the nodes will be required to calculate the cache misses: for each block ordering
a function f(i) will be constructed, which gives an upper bound on the number of
non-compulsory cache misses for a node with height i + 1. The height of the leaves
is 0 by definition, hence an internal node of height 1 corresponds to a subpartitioning
with p = 2, which is taken as the base case f(0). See also Figure 2.3. Note that by
the power-of-two assumption, the separator tree is complete.

A single function f cannot be used to predict the cache misses for each node
in every situation. Cache behaviour may differ between nodes as in some cases the
elements in the input vector were already processed, thus making all accesses in the
horizontal direction non-compulsory. This happens for example in Figure 2.4a, when
block 3 is processed. In general, there are four different possibilities, each modelled
by a separate function:

1. f0: no previous accesses in the corresponding input and output subvector have
been made,

2. f1: the corresponding input subvector has been brought into cache before,

3. f2: the corresponding output subvector has been brought into cache before,

4. f3: both the corresponding input and output subvectors have been brought into
cache before.

If k + 1 is the height of the root node, f0(k) will give an upper bound on the total
theoretical number of non-compulsory cache misses.

2.2.1 CRS block ordering
First, the CRS block ordering (Figure 2.4a) is analysed. Assume that no previous
accesses have been made to the vectors. For block 1, x accesses to the input vector
are needed and y to the output vector. Since this is the first time access is needed,
both accesses are compulsory cache misses. For block 2, y data are kept in cache,
and x̃ are brought in for the first time, hence causing x̃ compulsory misses. For
block 3, x data are brought into cache again, with x non-compulsory misses, and ỹ
compulsory misses. For block 4, x̃ non-compulsory accesses are made, and ỹ data
remain in cache. For block 5, there are x compulsory misses, and ỹ data remain in
cache. For block 6, x̃ non-compulsory misses, and y compulsory ones occur. The
final block incurs x non-compulsory misses while y data elements remain in cache.
Summing the non-compulsory misses for all the blocks, the value of f0(0) becomes
2(x + x̃). Now, assume all vector data have been accessed before. This means that

2.2 — Cache performance in recursion 37

all 2x + x̃ + 2y + ỹ compulsory misses become non-compulsory, giving a total of
f3(0) = 4x+ 3x̃+ 2y + ỹ non-compulsory misses.

If the block ordering is applied recursively to obtain f0(1), blocks 1 and 7 are
further refined. Assuming no previous accesses have been made, the following num-
ber of non-compulsory misses for blocks 1 to 7 are made: f0(0), 2y + ỹ, 2x +
x̃, x̃, 0, x̃, f3(0); see also Figure 2.3. This yields a total of f0(1) = f0(0)+f3(0)+
2(x + y) + 3x̃ + ỹ. A similar analysis can be made for f3(1). Note that the expres-
sions f1 and f2 do not appear here due to the way blocks 1 and 7 are accessed. In full
recursion, the upper bounds become:

f0(i) = f0(i− 1) + f3(i− 1) + 2i(x+ y) + (2i + 1)x̃+ (2i − 1)ỹ,

f3(i) = 2 · f3(i− 1) + 2i+1(x+ y) + (2i+1 + 1)x̃+ (2i+1 − 1)ỹ.

By using f3(0)− f0(0) = 2(x+ y) + x̃+ ỹ, and

(f3 − f0)(i) = (f3 − f0)(i− 1) + 2i(x+ y + x̃+ ỹ),

direct formulae can be obtained:

f3(i) = i2i+1(x+ y) + ((i+ 1/2)2i+1 − 1)x̃+ ((i− 1/2)2i+1 + 1)ỹ + 2if3(0),

(f3 − f0)(i) = 2i+1(x+ y) + (2i+1 − 1)(x̃+ ỹ),

so the direct formula for f0 can be derived:

f0(i) = f3(i)− (f3 − f0)(i)

= (i+ 1)2i+1x+ i2i+1y + (i+ 1)2i+1x̃+ ((i− 1)2i+1 + 2)ỹ.

Hence, when using this block ordering throughout the recursion, more cache
misses occur on the input vector. This formula will enable direct comparison to other
block orderings.

2.2.2 Zig-zag CCS block ordering

This order corresponds to the ordering shown in Figure 2.4d. Analysing this form, all
four functions f0, . . . , f3 are required as follows: f0(0) = 2ỹ, f1(0) = 2(x+ ỹ) + x̃,
f2(0) = 2y + 3ỹ, f3(0) = 2(x+ y) + x̃+ 3ỹ, and

f0(i) = f1(i− 1) + f2(i− 1) + 2i(x+ y) + (2i − 1)x̃+ (2i + 1)ỹ,

f1(i) = f1(i− 1) + f3(i− 1) + 2i+1x+ 2iy + (2i+1 − 1)x̃+ (2i + 1)ỹ,

f2(i) = f2(i− 1) + f3(i− 1) + 2ix+ 2i+1y + (2i − 1)x̃+ (2i+1 + 1)ỹ,

f3(i) = 2 · f3(i− 1) + 2i+1(x+ y) + (2i+1 − 1)x̃+ (2i+1 + 1)ỹ.

38 An extension to two dimensions

Note that:

(f3 − f0)(i) = (2f3 − f2 − f1)(i− 1) + 2i(x+ y + x̃+ ỹ),

(f3 − f1)(i) = (f3 − f1)(i− 1) + 2i(y + ỹ),

(f3 − f2)(i) = (f3 − f2)(i− 1) + 2i(x+ x̃).

A direct formula for f3 can be obtained:

f3(i) = i2i+1(x+ y) + ((i− 1/2)2i+1 + 1)x̃+ ((i+ 1/2)2i+1 − 1)ỹ + 2if3(0)

= (i+ 1)2i+1(x+ y) + (i2i+1 + 1)x̃+ ((i+ 2)2i+1 − 1)ỹ,

and similarly for the above difference formulae,

(f3 − f1)(i) = (2i+1 − 2)(y + ỹ) + (f3 − f1)(0)

= 2i+1y + (2i+1 − 1)ỹ,

(f3 − f2)(i) = (2i+1 − 2)(x+ x̃) + (f3 − f2)(0)

= 2i+1x+ (2i+1 − 1)x̃,

(f3 − f0)(i) = 2i+1(x+ y) + (2i+1 − 1)(x̃+ ỹ).

This leads us to the following final form:

f0(i) = f3(i)−(f3−f0)(i) = i2i+1(x+y)+((i−1)2i+1+2)x̃+(i+1)2i+1ỹ. (2.1)

The difference in non-compulsory number of cache misses between the CRS
block order and the ZZ-CCS block order is given by 2i+1x+(2i+2−2)x̃+(2−2i+2)ỹ;
hence asymptotically, the ZZ-CCS block order is more efficient than the CRS block
order when x+ 2x̃ > 2ỹ; assuming x̃ = ỹ, we may conclude that ZZ-CCS always is
preferable to the CRS block order.

The expected cache misses for the ACRS and the Separators-last block ordering
can be obtained in similar fashion; for brevity, only the final forms are given below:

fACRS(i) = (i+ 1/2)2i+1x+ i2i+1(y + x̃) + ((i− 1)2i+1 + 2)ỹ,

fSepLast(i) =

(i+ 1/2)2i+1x+ (i+ 1)2i+1y + ((i− 1)2i+1 + 2)x̃+ ((i− 1/2)2i+1 + 1)ỹ.

If the partitioning works well, meaning that x̃ � x (and ỹ � y), then the ZZ-
CCS block order is superior to the ACRS block order, which in turn is better than
the CRS block order. The separators-last block order is expected to perform worst.
Note that for large i, the relative differences in cache misses become small; this may
become apparent especially if the matrix size is much larger than the cache size.

2.3 — Using Mondriaan partitioning 39

2.3 Using Mondriaan partitioning
Modelling a sparse matrix as a hypergraph using the 2D fine-grain model has two
drawbacks: the increased size of the hypergraph compared to the simpler 1D row-
net model, and the large number of blocks after permutation. The larger hypergraph
leads to an increased partitioning time, hopefully justified by the increased quality of
the 2D partitioning, whereas the large number of separator blocks incurs additional
overhead as was discussed in Section 2.1.2. An alternative 2D method exists, the
Mondriaan scheme, which results in less partitioning time and fewer separator blocks.
It is implemented in the Mondriaan sparse matrix partitioner software [VB05], and
combines two 1D methods as follows.

Apart from the row-net model, a column-net model can also be defined, identi-
cal to the row-net model but with the roles of rows and columns reversed: each row
corresponds to a vertex in the hypergraph, and each column to a net. A cheaper way
of obtaining a 2D partitioning for p > 2 then is to use a partitioner as described in
Section 1.2, with the following modification: during each iteration, both the hyper-
graphs corresponding to a row-net and column-net representation are partitioned, and
the solution yielding the lowest cost, as given by the λ − 1 metric, is chosen. In the
next iteration, again both models are tried and the best is chosen; hence splits in both
dimensions (row-wise and column-wise) are possible during partitioning, but never
both during the same iteration. An example of a DSBD partitioning obtained using
this scheme is shown in Figure 2.2 (lower-right).

It is easily seen that every solution arising from bipartitioning a row-net or column-
net hypergraph corresponds to a very specific solution in the fine-grain hypergraph,
namely the solution in which vertices are grouped by column or row as they are parti-
tioned. This means that the partitioning method based on the Mondriaan scheme can
be represented by a fine-grain hypergraph throughout the partitioning method; hence
the separator tree and the permutation strategy still work as presented.

It is worthwhile to exploit the form of the 2D DSBD ordering in the special case
of bipartitioning by the row-net or column-net model. The 1D row-net model yields
the picture in Figure 2.1 (left) with the centre block and the two vertical rectangular
blocks removed from the separator cross (see also Figure 1.2 and 1.4). The column-
net model is similar, having instead the centre block and the two horizontal rectangu-
lar blocks removed. As such, using the Mondriaan scheme instead of the fine-grain
scheme in full recursive bipartitioning, nearly halves the number of blocks, from
p + 5(p − 1) = 6p − 5 to p + 2(p − 1) = 3p − 2 blocks. Hence, if the quality
of partitioning by the fine-grain and Mondriaan schemes is similar, the Mondriaan
scheme is expected to perform better because there are fewer blocks.

2.4 Experimental results
Experiments for SpMV multiplication have been performed on three different archi-
tectures. The first is a supercomputer, called Huygens, which consists of 104 nodes

40 An extension to two dimensions

each containing 16 dual-core IBM Power6+ processors. The others are an Intel Core 2
Q6600 machine, and an AMD Phenom II 945e; see Table 1 and the various figures in
Section I.1.3 for extended details. On Huygens, one node was reserved to perform the
sequential SpMV multiplications (on a single core), without interference from other
processes. Since a Power6+ processor has an L1 cache of 64kB (data) per core, an
SpMV multiplication on a matrix with m + n = 8192 would fit entirely into the L1
cache, assuming the vector entries are stored in double precision. The same applies
with m + n = 524288 for the L2 cache and m + n = 4194304 for the L3 cache.
On the Q6600, a matrix with dimensions m + n exceeding 524288 has to revert to
main memory to store the required vectors, while matrices with dimensions lower
than 4096 fit into L1 cache entirely. The combined size for which the L1 cache of the
AMD processor is exceeded is 8192, that for the L2 cache is 65536, and for the L3
cache it is 786432.

For the matrix reordering by 2D methods, the Mondriaan sparse matrix partition-
ing software1 [VB05] was used. The 1D method from the previous chapter employed
an earlier version of Mondriaan; the version used here generally is faster while gen-
erating partitionings of slightly better quality. Three datasets have been constructed
using the Mondriaan partitioner beforehand; the matrices in Table 2.1 were parti-
tioned using a 1D (row-net) scheme, the 2D Mondriaan scheme, and the 2D fine-
grain scheme. These are the same matrices used in Chapter 1, with the addition
of a 2006 version of the wikipedia link matrix and the GL7d18 matrix. Most ma-
trices from the dataset used are available through the University of Florida sparse
matrix collection [Dav11]. In all cases, the load-imbalance parameter of the par-
titioner was set to ε = 0.1, and the default options were used (except those that
specify the hypergraph model and permutation type). The smaller matrices were par-
titioned for p = 2, . . . , 7, 10, 50, 100, whereas the larger matrices were partitioned
for p = 2, . . . , 10. The construction times required for the smaller matrices are of the
order of a couple of minutes; e.g., the most time-consuming partitioning, that of the
matrix s3dkt3m2 in 2D by the fine-grain model with p = 100, takes 8 minutes. This
time typically decreases by more than a factor of two when partitioning in 1D mode,
for instance taking 3 minutes for s3dkt3m2 with p = 100. The Mondriaan scheme
results in partitioning times usually between these two, although in the particular case
of s3dkt3m2, it is actually faster with 1 minute. The partitioning time for the larger
matrices using the fine-grain scheme measures itself in hours: stanford with p = 10
takes about 2 hours, while wikipedia-2005 takes about 7 hours and wikipedia-2006
23 hours. In 1D, running times decrease by more than an order of magnitude, e.g., to
4 minutes for stanford, half an hour for wikipedia-2005, and one hour for wikipedia-
2006 with p = 10. The Mondriaan scheme, again with p = 10, runs in 5 minutes for
stanford, 7 hours for wikipedia-2005, and 21 hours for wikipedia-2006.

The SpMV multiplication software2 was compiled by the IBM XL compiler on
Huygens, using auto-tuning for the Power6+ processor with full optimisation en-

1Available at: http://www.math.uu.nl/people/bisseling/Mondriaan/
2Available at: http://albert-jan.yzelman.net/software/

2.4 — Experimental results 41

Name Rows Columns Nonzeroes Symmetry, origin
fidap037 3565 3565 67591 S symm., FEM
memplus 17758 17758 126150 S symm., chip design
rhpentium 25187 25187 258265 U chip design
lhr34 35152 35152 764014 S chemical process
nug30 52260 379350 1567800 S quadratic assignment
s3dkt3m2 90449 90449 1921955 S symm., FEM
tbdlinux 112757 21067 2157675 U term-by-document
stanford 281903 281903 2312497 U link matrix
stanford-berkeley 683446 683446 7583376 U link matrix
wikipedia-2005 1634989 1634989 19753078 U link matrix
cage14 1505785 1505785 27130349 S symm., DNA
GL7d18 1955309 1548650 35590540 U combinatorial
wikipedia-2006 2983494 2983494 37269096 U link matrix

Table 2.1: The matrices used in our experiments. The matrices are grouped into two
sets by relative size, where the first set fits into the L2 cache, and the second does not.
An S (U) indicates that the matrix is considered structured (unstructured). Symmetry
is decided only on the basis of the nonzero structure; structurally symmetric matrices
are indicated as symmetric in this table.

abled3. On the Intel Q6600 and AMD 945e platforms, the GNU compiler collection
is used, with similar performance flags. The SpMV multiplication software has been
written such that it reads text files containing information on the SBD reordered ma-
trix (whether 1D or 2D), as well as information on the corresponding separator tree;
thus any partitioner capable of delivering this output can be used. In a single experi-
ment, several multiplications are performed: a minimum of N = 900 for the smaller
matrices, and a minimum of N = 100 for the larger matrices, to obtain an accurate
average running time. To ensure the results are valid,

√
N SpMV multiplications

were executed and timed as a whole so as not to disrupt the runs too often with the
timers. This was repeated

√
N times to obtain a better estimate of the mean and a

running estimate of the variance. This variance was always a few orders of magnitude
smaller than the mean.

All combinations of data structures (plain CRS, plain ICRS, Block-based) and
partitioning schemes (Row-net, Mondriaan, Fine-grain) are considered. In fact, the
block-based data structure comprises several methods, using different block orderings
(CRS, Adapted CRS, Separators-last, Zig-zag CCS, and variants) and data structures
(simple block-based with ICRS/ICCS, and Bi-directional ICRS); see Figure 2.4 and
Section 2.1.2. Note that plain CRS and plain ICRS do not make use of sparse block-
ing based on the separator blocks, and that the simple block-based data structures use
ICRS on the diagonal blocks and the vertical separator blocks, and ICCS on the hor-
izontal separator blocks. Any other combination of data structures (non-incremental,

3Compiler flags: -O3 -q64 -qarch=auto -qtune=auto -DNDEBUG

42 An extension to two dimensions

or ICRS and ICCS switched) results in uncompetitive strategies. In total, 36 different
methods per reordered matrix are tested, resulting in over 4000 individual experi-
ments per architecture.

Of the partitioning schemes, the row-net scheme corresponds to a 1D partition-
ing, and the Mondriaan and fine-grain schemes to 2D partitioning. The 1D method
combines the plain (I)CRS data structure with the row-net partitioning scheme. For
the full 2D method, various block orders have been tested with the block-based data
structure. The CRS and ICRS data structures combined with 2D partitioning have
been included since they do not incur any overhead with increasing p at all, and thus
can potentially overtake the block-ordered data structures, especially when there are
few nonzeroes in the vertical separator blocks. For the Intel Q6600 architecture, re-
sults using OSKI [VDY05] with 1D partitioning are again included to provide an
easy comparison with the earlier results; the timings obtained by applying OSKI to
the original matrices are included as well. In all cases, OSKI was forced to perform
full aggressive tuning, but no hints as to any matrix structure were provided.

For each dataset, the best timing and its corresponding number of parts p and data
structure is reported. Table 2.2 shows the results for the IBM Power6+ architecture,
Table 2.3 for the Intel Q6600 which includes the OSKI results, and Table 2.4 for
the AMD 945e. As in the 1D case, most structured matrices are hardly, or even
negatively, affected by the reordering scheme, both with 1D and 2D partitioning.
Among the two exceptions is the nug30 matrix, in which the 1D scheme gains 9
percent and the Mondriaan scheme 7 percent on the Huygens supercomputer; the fine-
grain scheme and the 1D scheme with blocking do not perform well there. For the
AMD platform, the 1D scheme performs similarly while the gains for the Mondriaan
scheme increase to 17 percent. The other partitioning schemes are more effective as
well. On the Intel Q6600, comparing to the OSKI baseline, the 1D scheme gains up to
13 percent, while for the other three partitioning schemes gains go up to 26 percent.
The second exception is the s3dkt3m2 matrix, on which gains of 6 percent appear
when using the 1D blocking scheme or the Mondriaan scheme on the IBM Power6+;
these gains increase to 8 percent for the AMD processor. The optimisations by OSKI
are superior to those of our reordering method, however, and only slowdowns are
reported for the Intel processor. Compared to a plain (I)CRS baseline, the gain would
be 17 percent for the Intel processor, versus the 22 percent for OSKI on this structured
matrix.

Reordering on unstructured matrices is much more effective. Gains are larger
than 10 percent in all but two cases: the stanford-berkeley matrix on any of the three
architectures, and the tbdlinux matrix, but only on the Intel processor. Overall, the
Mondriaan scheme works best. Blocking with 1D, OSKI with 1D, or the original 1D
method were preferred only a few times; and the fine-grain scheme was preferred on
only one of the test matrices. On the Intel and AMD platforms, the 2D methods (both
Mondriaan and fine-grain) perform best with a block-based data structure, i.e., Block
or BICRS, instead of with plain (I)CRS. As an example, for the tbdlinux matrix on
the Intel Q6600, a block-based structure with p = 100 is preferred above non-blocked
(I)CRS; thus definitely the gain in cache efficiency thanks to 2D blocking can over-

2.4 — Experimental results 43

Matrix Natural 1D 1D & Blocking
fidap037 0.12 ICRS 0 .11 ICRS (100) 0.12 Block CRS (2)
memplus 0.31 CRS 0.31 ICRS (4) 0.33 Block CRS (2)
rhpentium 0.91 ICRS 0.65 ICRS (50) 0.88 Block CRS (100)
lhr34 1.37 ICRS 1.36 ICRS (5) 1.37 Block CRS (2)
nug30 5.35 CRS 4 .85 ICRS (3) 5.36 Block CRS (6)
s3dkt3m2 7.81 CRS 7.85 CRS (3) 7.29 Block CRS (2)
tbdlinux 6.43 CRS 6.09 ICRS (5) 5 .03 Block CRS (4)
stanford 19.0 CRS 9.9 CRS (10) 9.5 Block CRS (9)
stanford_berkeley 20.9 ICRS 20.1 ICRS (4) 19.3 Block CRS (9)
cage14 69 .4 CRS 75.5 ICRS (2) 76.5 Block CRS (2)
wikipedia-2005 249 CRS 155 CRS (10) 142 Block CRS (9)
GL7d18 600 CRS 401 CRS (9) 387 Block CRS (7)
wikipedia-2006 688 CRS 378 CRS (9) 302 Block CRS (9)

Matrix 2D Mondriaan 2D Fine-grain
fidap037 0 .11 ICRS (50) 0 .11 ICRS (100)
memplus 0 .30 ICRS (2) 0.31 ICRS (3)
rhpentium 0 .63 ICRS (50) 0.64 ICRS (50)
lhr34 1 .34 Block ZZ-CRS (3) 1.36 Block ZZ-CCS (5)
nug30 4.94 CRS (3) 5.24 Block SepLast (3)
s3dkt3m2 7 .27 Block ZZ-CCS (3) 7.50 Block ACRS (3)
tbdlinux 5.43 Block ZZ-CRS (7) 5.43 Block ZZ-CCS (100)
stanford 9 .35 CRS (8) 9.73 CRS (10)
stanford_berkeley 19 .2 Block ACRS (4) 19.4 Block SepLast (9)
cage14 74.4 ICRS (2) 75.1 ICRS (2)
wikipedia-2005 116 CRS (8) 124 Block ACRS (8)
GL7d18 392 Block ZZ-CRS (10) 435 Block SepLast (3)
wikipedia-2006 256 CRS (9) 268 Block ZZ-CCS (8)

Table 2.2: Time of an SpMV multiplication on the naturally ordered matrices, as
well as on reordered matrices, both in 1D and 2D, on an IBM Power6+ architecture.
Time is measured in milliseconds, and only the best average running time among the
different numbers of parts p and the different data structures used, is shown. The
specific data structure used is reported directly after the best running time, and the
number of parts p used is shown between parentheses. In the 1D & Blocking category,
the Block CRS is the only block order experimented with on this architecture. For
each sparse matrix, the best timing among the various schemes is printed italic. For
the smaller datasets (above the horizontal separator line), the number of parts used
was p = 2, . . . , 7, 10, 50, 100; for the larger ones (below the separator line), it was
p = 2, . . . , 10.

44 An extension to two dimensions

take the overhead from block-based data structures, even for large p. On the IBM
Power6+, this situation is reversed. For the Mondriaan scheme, larger and unstruc-
tured matrices prefer direct CRS data structures over block-based data structures.

Looking at the various block orderings, we observe a difference in tendencies for
the Power6+ on one hand, and the Q6600 and 945e on the other hand. From the
tables, we can deduce that the Zig-zag ordering is preferred on Huygens, and that the
Adapted and SepLast orderings are the least preferred. On the other two architectures,
the Adapted orderings win most often, and SepLast the least.

In principle, the results could differ when taking into account all different p (and
not only the best choices) for all partitioning schemes to find the best performing
block orders, instead of using only the tables presented in this section. Doing this,
on Huygens, we see the Adapted orderings appear most often, followed by the Zig-
zag orderings. Looking at all experiments for the other two architectures reveals an
interesting result: when using BICRS as a block-based data structure, there is a clear
preference for the Block CRS ordering. Correcting for this bias by looking only at the
simple block-based data structure, revealed no apparent preference for either Adapted
or Zig-zag orderings; hence the conclusions remain somewhat in agreement with the
theoretical results from Section 2.2, as indeed the Zig-zag and Adapted orderings are
preferred over Block CRS and the SepLast orderings.

Considering instead which block data structures are used, on the Power6+, the
BICRS data structure is completely uncompetitive compared to the simple block data
structure. This is in direct contrast to the Q6600 and 945e processors, where with ef-
fective 1D and Mondriaan partitioning on the larger matrices, the BICRS data struc-
ture consistently outperforms the simple block data structure. When the number of
separator blocks increases, however, such as happens with 2D fine-grain partitioning,
the simple block data structure becomes more competitive.

Tests on the larger matrices display a more pronounced gain for the 2D methods.
The matrices where the 1D partitioning was not effective, namely stanford_berkeley
and cage14, perform slightly better in 2D, and the gains (or losses) remain limited.
When partitioning did work in the original experiments, however, two-dimensional
partitioning works even better, for nearly all of the test instances. It is also inter-
esting to see that 1D partitioning combined with blocking outperforms the original
1D reordering method for larger p (for the Intel architecture as well, although this is
obscured from Table 2.3 by the additional gains obtained with OSKI). For the largest
matrices from the whole test set, typically the Mondriaan scheme performs best. Af-
ter that comes the fine-grain scheme, then followed by the blocked 1D method, and
finally the original 1D method; this was also the case for the smaller matrices, with
relatively few exceptions.

The most impressive gain is found on the wikipedia-2006 matrix; a 68 percent
gain, more than a factor of three speedup, is obtained with the Mondriaan scheme
and the ZZ-CCS block order on the AMD 945e. The runner-up block orderings,
ACRS and Block CRS, remain competitive with 67 percent. The worst performing
block orders gain only 40 percent, however, and these large differences in perfor-
mance become more apparent as matrices increase in size, on all architectures. Also

2.4 — Experimental results 45

Matrix Natural 1D & OSKI 1D & Blocking
fidap037 0.14 CRS 0.13 ICRS (100) 0.15 Block SepLast (3)
memplus 0.35 CRS 0 .28 CRS (50) 0.41 Block ACRS (3)
rhpentium 0.90 OSKI 0.75 OSKI (100) 1.03 Block ZZ-CCS (5)
lhr34 2.63 OSKI 2.41 OSKI (10) 3.13 Block ACRS (3)
nug30 10.6 OSKI 9.3 OSKI (10) 8 .35 BICRS ACRS (6)
s3dkt3m2 10 .1 OSKI 10.3 OSKI (2) 13.7 Block ACCS (3)
tbdlinux 8.08 OSKI 7 .65 OSKI (100) 9.16 Block SepLast (5)
stanford 27.2 OSKI 11 .5 CRS (8) 12.3 Block ACCS (8)
stanford_berkeley 31.7 OSKI 30 .6 OSKI (4) 34.6 Block SepLast (5)
cage14 112 OSKI 130 OSKI (2) 141 BICRS SepLast (10)
wikipedia-2005 347 OSKI 223 OSKI (7) 213 BICRS ACRS (9)
GL7d18 780 CRS 553 OSKI (8) 613 BICRS SepLast (10)
wikipedia-2006 745 OSKI 495 OSKI (9) 541 Block CRS (9)

Matrix 2D Mondriaan 2D Fine-grain
fidap037 0.135 ICRS (50) 0 .133 ICRS (100)
memplus 0.310 CRS (2) 0.311 CRS (3)
rhpentium 0 .855 ICRS (100) 0.870 ICRS (100)
lhr34 2 .357 Block SepLast (2) 2.938 ICRS (100)
nug30 8.360 Block ZZ-CCS (10) 8.367 Block SepLast (2)
s3dkt3m2 10.81 Block CRS (4) 12.99 ICRS (3)
tbdlinux 8.059 Block CRS (2) 8.406 BICRS ACRS (100)
stanford 12.59 BICRS ACCS (7) 12.52 BICRS CRS (7)
stanford_berkeley 32.81 BICRS ACRS (10) 34.84 BICRS CRS (8)
cage14 130.4 BICRS CRS (10) 147.4 CRS (7)
wikipedia-2005 136 .7 BICRS CRS (8) 167.3 BICRS ACRS (10)
GL7d18 549 .5 CRS (10) 567.6 BICRS ZZ-CRS (10)
wikipedia-2006 311 .8 BICRS CRS (9) 395.6 BICRS CRS (10)

Table 2.3: As Table 2.2, but with timings performed on an Intel Core 2 Q6600 ar-
chitecture. The table includes timings using OSKI, combined with 1D reordering, as
in Chapter 1. In this table, the 1D & Blocking scheme includes block orderings and
data structures other than Block CRS.

46 An extension to two dimensions

Matrix Natural 1D 1D & Blocking
fidap037 0.13 CRS 0.13 CRS (2) 0.17 Block CRS (2)
memplus 0.32 ICRS 0 .30 CRS (2) 0.35 Block SepLast (2)
rhpentium 0.98 ICRS 0.75 ICRS (50) 1.02 BICRS ZZ-CCS (5)
lhr34 1.71 ICRS 1.71 ICRS (10) 1.76 Block ACCS (3)
nug30 6.37 CRS 5.80 CRS (2) 6.48 Block ZZ-CCS (6)
s3dkt3m2 8.64 ICRS 8.62 ICRS (2) 8.66 Block ZZ-CCS (2)
tbdlinux 7.17 ICRS 6.53 ICRS (4) 6 .15 Block ACRS (2)
stanford 22.0 CRS 10.6 ICRS (9) 10.3 Block ZZ-CCS (9)
stanford_berkeley 24.6 ICRS 24.1 ICRS (3) 23.8 Block CRS (7)
cage14 111 ICRS 116 ICRS (8) 113 Block ACCS (2)
wikipedia-2005 264 CRS 179 ICRS (7) 161 Block ACRS (9)
GL7d18 730 CRS 452 ICRS (8) 412 BICRS ZZ-CRS (9)
wikipedia-2006 819 CRS 399 ICRS (9) 383 BICRS ACRS (10)

Matrix 2D Mondriaan 2D Fine-grain
fidap037 0 .127 CRS (4) 0.128 CRS (7)
memplus 0.306 CRS (2) 0.308 CRS (2)
rhpentium 0 .736 ICRS (50) 0.754 ICRS (50)
lhr34 1 .566 BICRS ZZ-CCS (2) 1.705 ICRS (10)
nug30 5 .422 CRS (3) 5.931 CRS (3)
s3dkt3m2 7 .996 BICRS CRS (3) 8.640 Block ZZ-CCS (2)
tbdlinux 6.254 Block ACRS (2) 6.243 BICRS ACRS (2)
stanford 9 .86 BICRS SepLast (10) 10.44 BICRS ACRS (9)
stanford_berkeley 23 .66 Block ACRS (2) 24.02 ICRS (2)
cage14 109 .5 ICRS (10) 110.7 CRS (2)
wikipedia-2005 119 .4 BICRS ACCS (7) 138.3 Block ZZ-CCS (9)
GL7d18 424.6 BICRS ACRS (10) 422.7 BICRS ACRS (5)
wikipedia-2006 261 .3 BICRS ZZ-CCS (9) 346.7 BICRS ACRS (9)

Table 2.4: As Table 2.3, but with timings performed on an AMD Phenom II 945e
architecture.

2.5 — Conclusions and future work 47

noteworthy is that ICRS does not always outperform CRS: ICRS is better on either
smaller matrices or when many empty rows (or columns) were encountered, such as
in separator blocks. On larger matrices, CRS consistently outperforms ICRS, even
after repeated partitioning. Within the simple block data structure, the incremental
variants (ICRS/ICCS) do remain the only option, as the alternative non-incremental
structure exhibits extremely poor scalability in p. Nevertheless, using 2D reordering
based on the Mondriaan scheme with CRS-based data structures, or with the BICRS
data structure on some architectures, consistently yields large speedups of around a
factor 2, or higher.

2.5 Conclusions and future work
The one-dimensional cache-oblivious sparse matrix–vector multiplication scheme
from the previous chapter, has been extended to fully exploit 2D partitioning, using
the fine-grain model for a hypergraph partitioning of sparse matrices. Alternatively,
the Mondriaan scheme for partitioning can be used, which combines two different
1D partitioning schemes to obtain a 2D partitioning in recursion. Generalising the
permutation scheme from 1D to 2D shows that the usual data structures for sparse
matrices can be suboptimal in terms of cache efficiency when the separator blocks
are dense enough. To alleviate this, the nonzeroes are processed block-by-block, with
each block having its own data structure storing the nonzeroes in CRS or CCS order,
thus using a sequence of data structures to store a single matrix. As an alternative,
the BICRS data structure can be used, as long as the number of blocks remains lim-
ited and the architecture agrees well with this particular data structure. Both methods
may be seen as a form of sparse blocking. The incremental implementation of CRS
and CCS should always be preferred when used within a simple block data structure;
many rows and columns in matrix sub-blocks are empty, so that using standard CRS
or CCS will cause poor scalability as one word per row or column is used, regardless
if it is empty. This type of blocking has also been introduced into our previous 1D
scheme.

Experiments were performed on an IBM Power6+, an Intel Q6600, and an AMD
945e machine. The results for the smaller matrices, where the input and output vector
fit into L2 cache, showed definitive improvement over the 1D method, especially on
the unstructured matrices. This tendency is also observed in the case of the larger
matrices; the improved 1D method, utilising sparse blocking on a 1D reordered ma-
trix, improved on the original scheme in a more pronounced manner than on the
smaller matrices. However, in both cases, all methods are dominated by the Mondri-
aan scheme.

The 2D method presented here still uses only row and column permutations, per-
muting an input matrix A to PAQ, with which the multiplications are carried out.
This is unchanged from the original method. It is also still possible to combine this
method with auto-tuning (cache-aware) software such as OSKI to increase the SpMV
multiplication speed further; this software can be applied to optimise the separate

48 An extension to two dimensions

block data structures, but this has not been investigated here. This method can also be
implemented using other partitioners than Mondriaan, such as, e.g., PaToH [ÇA99]
or Zoltan [DBH+06], although modifications may be required to extract an SBD per-
mutation and separator tree, or to perform partitioning according to the Mondriaan
scheme.

A major difference with our earlier work is the use of sparse blocking. When used,
as the number of blocks increases, the overhead of having several data structures for
storing the permuted sparse matrix increases. The instruction overhead is linear in
p and although the matrix storage overhead is bounded by the number of nonzeroes,
taking p → ∞ does eventually harm efficiency when using sparse blocking, thus
posing a theoretical limit to the cache-oblivious nature of the reordering.

Various items for future research can be readily identified:

• The simple block-based data structure presented here is very basic, and a more
advanced data structure might be introduced to lower or eliminate overhead
with increasing p, and thus gain even more efficiency; existing methods like
the one proposed by Buluç et al. [BFF+09], could be extended and integrated
to this end.

• The results indicate that the efficiency of specific block orders is dependent on
matrix input. As the analysis already revealed differences between locality (and
thus sizes) of blocks in the row and column direction, this can perhaps lead to
an efficient heuristic when to choose which block order. This block order does
not have to be constant in the recursion, and may require information on the
density of separator blocks.

• The difference in performance between standard CRS and ICRS seems de-
pendent on, amongst others, the matrix structure and size; it warrants future
research to find the precise dependencies. Again this can lead to an efficient
heuristic for adaptively choosing a data structure, also within a simple or ad-
vanced block-based data structure.

• The speed of building up the datasets, although already greatly improved when
compared to those reported in Chapter 1, can still be increased. In particu-
lar, the preparation times with the Mondriaan scheme can still be larger than
expected.

Acknowledgements
The SARA supercomputer centre in Amsterdam and the Netherlands National Com-
puter Facilities foundation (NCF) graciously donated computation time on the Huy-
gens computer and made some of the experimental results possible. The anonymous
referees of the paper [YB11c] corresponding to this chapter are also gratefully ac-
knowledged.

2.5 — Conclusions and future work 49

Symmetric fine-grain and matrix reordering
Some applications require that for a symmetric input matrix A, the
resulting DSBD reordered matrix PAQ is symmetric as well. This is
for example useful in the case of repeated multiplication: the power
method y = Asx, as used in Google PageRank [LM06], can, af-
ter symmetric reordering, be rewritten to Py = (PAPT)s(Px) =
PAsPT (Px). As such, enhanced data-locality can be exploited by
existing power method kernels.
A second example is domain decomposition; partitioning a problem
into smaller subproblems can be done using matrix reordering tech-
niques. Direct techniques which might not work on the complete
problem due to, e.g., memory constraints, may work perfectly when
applied to the smaller subproblems instead. If the direct techniques
are based on symmetry of the specific problem it is applied to, then
certainly the subproblems should remain symmetric as well.
Symmetric permutations can be achieved by using the symmetric
fine-grain representation as presented in the Introduction, Section 2.
There, the kth matrix row and kth matrix column are together mod-
elled by a hyperedge nk = {aij ∈ V with i = k or j = k}. Since
there is only one net category for both rows and columns, any split
in N{+,c,−} during the bipartitioning process immediately defines a
symmetric permutation.
Symmetric reordering based on this strategy is, in general, of lesser
quality. In a regular fine-grain scheme, it is possible that for a given
partitioning of V and a given i, nrow

i is cut, while ncol
i is not. In

the symmetric fine-grain scheme this distinction is not possible, and
both the ith row and ith column would be cut in favour of symmetry.
The Mondriaan software package implements symmetric reordering
based on the fine-grain scheme, and also supports symmetric variants
of the other 1D and 2D schemes.

50 An extension to two dimensions

51

Chapter 3

Hilbert-ordered sparse matrix
storage

This chapter details a method for sparse matrix storage based on the Hilbert curve,
so that an SpMV multiplication algorithm accesses both the input and output vector
in a data-local manner. This method can be applied in conjunction with the reorder-
ing methods described in Chapter 1 and 2. Still, when applied without reordering,
for many matrices a large speedup is attained as shown in Section 3.2, while pre-
processing times for this scheme are much faster than those for the reordering meth-
ods. This chapter is based on the paper [YB11a]:

• A. N. Yzelman and Rob H. Bisseling, A cache-oblivious sparse matrix–vector
multiplication scheme based on the Hilbert curve, Progress in Industrial Math-
ematics at ECMI, Springer, Berlin, 2011, to appear.

3.1 An adapted nonzero ordering
A standard way of storing a sparse matrix A is the Compressed Row Storage (CRS)
format [BDD+00]. As discussed earlier in Section I.1.5, this scheme stores data in a
row-by-row fashion using three arrays:

1. col_ind of size nz(A) storing the column index of each nonzero in A,

2. nzs of size nz(A) storing the numerical value of each nonzero in A,

3. row_start of size m+ 1 such that the nonzeroes at positions from row_start i
up to row_start i+1−1 of the arrays col_ind and nzs , correspond to the nonze-
roes in the ith row of A.

A standard SpMV multiply algorithm using CRS is given in Algorithm 1. It
writes to y sequentially, and thus performs optimally (regarding y) in terms of cache

52 Hilbert-ordered sparse matrix storage

Figure 3.1: The Hilbert curve drawn within two-by-two and four-by-four matrices

efficiency; this is in contrast to accesses to x which, in case of unstructured A, are
unpredictable.

A way to increase performance is to force the SpMV multiply to work only on
smaller and uninterrupted subranges of x, such that the vector components involved
fit into cache; this can be done by permuting rows and columns from A, so that
the resulting structure forces this behaviour when using standard CRS; this has been
discussed in the Chapters 1 and 2. What is considered in this chapter is a change of
data structure, instead of changing the input matrix structure. This means finding
a data structure which accesses nonzeroes in A in a more ‘local’ manner, that is,
an order such that jumps in the input and output vector remain small and thus yield
fewer cache misses. Earlier work in this direction includes the Blocked CRS format
[PH99], the auto-tuning sparse BLAS library OSKI [VDY05] and its predecessor
Sparsity [Im00], exploiting variable sized blocking [NVDY07, VM05], and several
other approaches [Tol97, BBF+07]. Of specific interest, but for the case of dense
matrices, is the use of space-filling curves to improve cache locality; in particular
the use of the Morton (Z-curve) ordering [Mor66, BFF+09], more recently combined
with regular row-major formats to form hybrid-Morton formats [LW07].

The foundation of this chapter was presented by Haase et al. in 2007 [HLP07].
They propose to store the matrix in an order defined by the Hilbert curve, making use
of the good locality-preserving attributes of this space-filling curve. Figure 3.1 shows
an example of a Hilbert curve within 2 × 2 and 4 × 4 matrices. This locality means
that, from the cache perspective, accesses to the input and output vector remain close
to each other when following the Hilbert curve. The curve is defined recursively as
can be seen in the figure: any one of the four ‘super’-squares in the two-by-two matrix
can readily be subdivided into four subsquares, onto which a rotated version of the
original curve is projected such that the starting point is on a subsquare adjacent to
where the original curve entered the super-square, and similarly for the end point.
A Hilbert curve thus can be projected on any 2dlog2me × 2dlog2 ne matrix, which in
turn can embed the sparse matrix A, imposing a 1D ordering on its nonzeroes. Haase
et al. [HLP07] stored these nonzeroes in triplet format, see Section I.1.5 and A.1.1,
with the nonzeroes stored in the order as determined by the Hilbert curve. The main

3.2 — Experiments and conclusions 53

drawback is the difference in storage space required; this is 3·nz(A), an increase of
nz(A)−m compared to the regular CRS data structure. The number of cache misses
prevented thus must overtake this amount of extra data movement before any gain in
efficiency becomes noticeable.

Instead of the triplet data structure, the BICRS structure, introduced in Sec-
tion 2.1.2, can be applied as well; in fact, BICRS was first introduced in the pa-
per [YB11a] on which this chapter is based. Using this data structure is what enables
competitive and practical use of the Hilbert curve in SpMV multiplication.

Since the Hilbert curve generally does not traverse nonzeroes in a row-by-row
manner, the BICRS row increments array becomes larger than the number of nonempty
rows, and BICRS still is less efficient than plain CRS in terms of memory usage. Ex-
periments will indicate whether the reduction in cache misses justifies the extra over-
head. As discussed in the previous chapter, the worst case memory usage of BICRS is
bounded byO(3nz), which occurs precisely when all subsequent nonzeroes reside on
different rows. This should occur rarely, however: in case of a dense matrix, the num-
ber of row jumps made when nonzeroes are ordered according to the Hilbert curve
is about nz(A)/2, although this gives no guarantee for the number of jumps in the
sparse case. There, the number of jumps is entirely dependent on the nonzero struc-
ture and a worst-case input can artificially be constructed. In general, however, this
scheme should outperform a Hilbert ordering backed by the triplet scheme. Note that
while the BICRS data structure is bi-directional, the data structure orientation still
matters. For example, when the number of jumps is lower in the column direction in
CCS order, BICCS is preferred over BICRS , and vice versa.

3.2 Experiments and conclusions
Experiments have been performed on two quad-core architectures: the Intel Core 2
Q6600 and the AMD Phenom II 945e. Only one of the four cores was used for the
sequential SpMV multiplications. See Table 1 and the various figures in Section I.1.3
for details on these architectures. The SpMV kernels1, based on CRS, ICRS and
BICRS using Hilbert ordering, have been compiled using the gcc compiler2. These
kernels are each executed 100 times on given matrices, and report an average running
time of a single SpMV multiplication. Experiments have been performed on 9 sparse
matrices, all taken to be large in the sense that the input and output vector do not fit
into the L2 cache; see Table 3.1. All matrices are available through the University of
Florida sparse matrix collection [Dav11]. Tests on smaller matrices were performed
as well, but, in contrast to when using the reordering methods, any decrease in L1-
cache misses did not result in a faster SpMV execution. Results on larger matrices
in terms of wall-clock time are reported in Table 3.2 for the Q6600 system, and in
Table 3.3 for the AMD 945e system. Also reported is the extra build time, that is, the

1The source code is freely available at http://albert-jan.yzelman.net/software
2with the following compiler flags: -O3 -m64 -fprefetch-loop-arrays -funroll-loops -ffast-math

-march=native -mtune=native -DNDEBUG

54 Hilbert-ordered sparse matrix storage

Name Rows Columns Nonzeroes Origin
stanford 281903 281903 2312497 U link matrix
cont1_l 1918399 1921596 7031999 S optimisation
stanford-berkeley 683446 683446 7583376 U link matrix
Freescale1 3428755 3428755 17052626 S circuit design
wikipedia-2005 1634989 1634989 19753078 U link matrix
cage14 1505785 1505785 27130349 S DNA
GL7d18 1955309 1548650 35590540 U combinatorial
wikipedia-2006 2983494 2983494 37269096 U link matrix
wikipedia-2007 3566907 3566907 45030389 U link matrix

Table 3.1: Matrices used in the experiments. An S (U) indicates that the matrix is
considered structured (unstructured). A matrix is said to be structured when it is
expected, by inspecting its nonzero structure, to already perform well in terms of
cache efficiency when using standard CRS.

Hilbert & Build
Matrix CRS ICRS BICRS time
stanford U 30.22 40.24 25.74 1456
cont1_l S 44.02 46.41 62.85 5085
stanford-berkeley U 35.29 34.56 45.82 5578
Freescale1 S 122.27 131.52 210.10 14458
wikipedia-2005 U 366.45 374.82 253.45 12632
cage14 S 136.19 141.07 165.21 20453
GL7d18 U 774.55 856.16 372.25 22126
wikipedia-2006 U 812.42 831.17 576.67 23839
wikipedia-2007 U 1012.73 994.35 776.48 27345

Table 3.2: Experimental results on an Intel Q6600, using the matrices in Table 3.1.
All timings are in milliseconds.

time required to build the Hilbert BICRS structure minus the time required to build a
CRS data structure.

The cache-oblivious SpMV multiplication scheme based on the Hilbert curve
works very well on large unstructured matrices. In the best case (the GL7d18 ma-
trix on the Intel Q6600), the Hilbert scheme gains 51 percent in execution speed,
compared to plain CRS. On both architectures, 5 out of the 6 unstructured matrices
show significant gains, typically around 30 to 40 percent. The only exception is the
stanford-berkeley matrix, taking a performance hit of 32 percent, on both architec-
tures. Interestingly, the 1D and 2D reordering methods also do not perform well on
this matrix; see Section 2.4. The method also shows excellent performance regard-
ing pre-processing times, taking a maximum of 28 seconds for wikipedia-2007 on
the Q6600 system. This is in contrast to 1D and 2D reordering methods, where pre-

3.2 — Experiments and conclusions 55

Hilbert & Build
Matrix CRS ICRS BICRS time
stanford U 22.15 27.52 18.48 832
cont1_l S 31.07 26.99 48.05 3084
stanford-berkeley U 26.05 24.52 34.29 3415
Freescale1 S 98.55 95.00 148.04 8913
wikipedia-2005 U 368.36 387.39 250.3 5850
cage14 S 116.44 110.69 140.20 12095
GL7d18 U 716.32 824.32 452.89 10064
wikipedia-2006 U 823.53 879.53 550.00 11814
wikipedia-2007 U 1033.95 1124.02 591.08 14753

Table 3.3: Experimental results on an AMD 945e, using the matrices in Table 3.1.
All timings are in milliseconds.

processing times can take hours for larger matrices, e.g., 21 hours for wikipedia-2006
[YB11c]. Gains in efficiency when reordering, however, are more pronounced than
for the Hilbert-curve scheme presented here. Note that the methods do not exclude
each other: 1D or 2D reordering techniques can be applied before loading the matrix
into BICRS using the Hilbert ordering to gain additional efficiency. The results also
show that, as expected, the method cannot outperform standard CRS ordering when
the matrix already is favourably structured, where it results in slowdowns.

For future improvement of the Hilbert-curve method, applying the Hilbert order-
ing to small (e.g., 8 by 8) sparse submatrices of A instead of its individual nonzeroes,
while imposing a regular CRS ordering on the nonzeroes contained within each such
submatrix, promises further speedups. Such a hybrid scheme has also been suggested
for dense matrices [LW07], although the motivation differs; in our case, instead of
achieving better register reuse, this blocking can reduce the number of row jumps
required by BICRS, assuming the rows of the submatrices contain several nonzeroes.

Part II

Parallel methods

59

Chapter 4

Bulk Synchronous Parallel
SpMV multiplication

Since multicore processors are now in widespread use, writing parallel programs is
becoming highly relevant to the world of sequential programming. For the parallel
world, interest in shared-memory architectures, as opposed to classical distributed-
memory architectures, is rekindled. A parallel programming model which is simple
in design, yet able to cater to both memory models, can be of key importance.

This chapter shows that the Bulk Synchronous Parallel (BSP) model, originally
designed for distributed-memory systems, can also be applied to shared-memory sys-
tems. Additionally, the proof-of-concept MulticoreBSP library is introduced and ap-
plied to the sparse matrix–vector multiplication. The chapter ends with an algorithm
for SpMV multiplication on shared-memory architectures, which remains quite close
to its distributed-memory version. This method does not yield optimal speedups, but
provides a good basis nevertheless. Chapter 5 extends the method with insights from
both Chapter 1 and 2 to attain a better performing algorithm.

This chapter is based completely on the work [YB11b]:

• A. N. Yzelman and Rob H. Bisseling, An object-oriented BSP library for mul-
ticore programming, Concurrency and Computation: Practice and Experience
(2011), to appear.

4.1 Shared-memory Bulk Synchronous Parallel
For shared-memory multicore systems, sharing data is not free. Usually main mem-
ory is accessible only via a cache hierarchy, which may or may not be shared amongst
cores; threads may thus disrupt each other and slow down computation. An exten-
sion to the BSP model to take caches explicitly into account has been proposed by

60 Bulk Synchronous Parallel SpMV multiplication

Valiant [Val08]. The BSP implementation described here, however, still follows the
original BSP model [Val90]. This original model, as well as BSP communication
libraries such as BSPlib [HMS+98] and PUB [BJvOR03], were introduced to enable
portable parallel programming, while attaining predictable performance. As BSP
was meant as a single program, multiple data (SPMD) model, a natural question is
whether it also performs well in a shared-memory setting. To this end, the Multi-
coreBSP proof-of-concept library has been implemented. This communications li-
brary is an object-oriented adaption of BSPlib, written in Java, and targeting only
shared-memory systems.

The performance of this library is examined by re-implementing the educational
BSPedupack [Bis04] software package. This package contains parallel programs
originally written in BSPlib for the following applications:

• dense vector inner-product calculation,

• dense LU decomposition,

• the fast Fourier transform, and

• sparse matrix–vector (SpMV) multiplication.

The performance of the MulticoreBSP library is examined using these applications.
As a different system architecture is targeted, however, algorithms can differ to some
extent from those originally presented by Bisseling [Bis04]. While experimental re-
sults are given for all these applications, the model and library are introduced by
describing the inner-product calculation and SpMV multiplication only. The library
and all applications are freely available1.

The choice of Java as programming language underscores the portability goal of
BSP. As an interpreted language, the library and applications built on it can be dis-
tributed to every machine for which a Java interpreter is available, without the need
for recompiling. Furthermore, using Java means that the BSP model is implemented
in an object-oriented way, making the model easier to use while also reducing the
number of BSP primitives from the already low number of 20 primitives. This is im-
portant since it enables easy learning, and helps with keeping the (idealised) parallel
machine transparent.

Restricting the number of primitives also restricts the programmer, but this is
preferable to simplicity without restriction. With OpenMP2 [DM98, CJP07], as an
example, parallelism can be introduced in code by adding a parallel directive just be-
fore a for-loop. This is simple and nonrestrictive3, but relies on programmer expertise
to decide on the scope of variables; care must be taken to avoid race conditions and
to actively avoid the unintended sharing of variables. In contrast, the MulticoreBSP

1See: http://www.multicorebsp.com
2See also: http://www.openmp.org
3The use of directives is furthermore also very portable; depending on the application, OpenMP has the

distinct advantage of easily transforming existing sequential code into parallel code.

4.2 — BSP model 61

library adds robustness to algorithms by implicitly assuming all variables are local un-
less explicitly defined otherwise, while retaining programming simplicity. Also, by
structuring computations in independent, sequential phases, separated by synchroni-
sation barriers, another common trap in parallel programming is avoided: deadlocks.
Usually, these errors are subtle and may occur only rarely, sometimes only once in
hundreds of runs, making them hard to detect. In BSP, such deadlocks can only occur
as a sequential error, not by misuse of communication primitives. In summary, the
BSP model has the following desirable properties. It

• is easy to learn by programmers and very transparent to them,

• models both distributed-memory and shared-memory architectures,

• predicts performance, and

• is robust with respect to common parallel programming pitfalls.

This chapter has two aims: first, introduce the MulticoreBSP communications
library, and second, demonstrate how to design shared-memory algorithms in BSP.
In particular, it is shown that it is possible to exploit differences between distributed-
memory and shared-memory architectures on the level of implementation. This is
done by implementing a shared-memory version of the sparse matrix–vector (SpMV)
multiplication, which remains close to the original distributed-memory version from
BSPedupack. Similar efforts have been made for dense LU decomposition and the
Fast Fourier transform.

Within the algorithm listings, all classes, member functions, and variables defined
in the library are printed in italic, while class and function names not defined therein
are printed in typewriter font. Function code in listings is printed in plain roman,
with the only further exception of reserved words, such as for and return, which are
printed boldface.

The remainder of the chapter is structured as follows. The BSP model is in-
troduced in Section 4.2, and the MulticoreBSP library in Section 4.3. Using this
proof-of-concept Java library, Section 4.4 lays the foundation for a parallel SpMV
multiplication by first parallelising the dense vector inner-product calculation. Sec-
tion 4.5 then details the final BSP SpMV algorithm for multicore systems, which is
put to the test in Section 4.6. This section also reports on performance of the dense
LU and FFT algorithms. Conclusions and future work follow in Section 4.7.

4.2 BSP model
The original BSP model [Val90] targets distributed-memory systems and models
them using four parameters: p, g, l, and r. The total number of parallel comput-
ing units (cores) of a BSP machine is given by p, while r measures the speed of each
such core, in flops per second. Each core executes the same given program, usually
working on different data; that is, BSP is a single program, multiple data (SPMD)

62 Bulk Synchronous Parallel SpMV multiplication

model. The parallel program is broken down in supersteps, which are separated by
synchronisation barriers. During a superstep, a process can execute any instruction,
but it cannot communicate with other processes. It can, however, queue communica-
tion requests. When a process encounters a synchronisation barrier, execution halts
until all processes encounter this barrier, upon which the next superstep is started con-
currently. At synchronisation, all queued communication requests from the previous
superstep are processed; the only communication thus occurs as part of synchronisa-
tion. The communication costs occurring this way are modelled in BSP by l, which
models the time required to get past a synchronisation barrier, and g, which mod-
els the communication gap, the time gap between two data words sent by a process
during communication; g corresponds to the inverse of the bandwidth, the speed at
which data is communicated.

Suppose there are t supersteps, where each superstep i contains wi(s) flops of
work for process s, and where each such process receives V iR(s) or sends V iS(s)
bytes of communication. The maximum number of bytes V i(s) communicated then
is V i(s) = max{V iR(s), V iS(s)}, and the total running time (in seconds) on a BSP
machine is:

T =
t−1∑
i=0

(
1
r
·max

s
wi(s) + g ·max

s
V i(s) + l

)
. (4.1)

This is the BSP cost model, as applicable to distributed-memory parallel computing,
and enables performance prediction of BSP algorithms.

4.3 Object-oriented bulk synchronous parallel library
When using object-oriented parallel programming on distributed-memory systems
and communication occurs, entire objects need to be transferred. This is done by
marshalling these objects in transferable code, a complex and time-consuming pro-
cess: other objects that the object to transfer may depend on, have to be identified
and recursively marshalled as well. While this is less an issue on shared-memory
systems, as in principle all objects are stored in shared-memory, MulticoreBSP de-
mands that each communicable object can be cloned in memory; it must be possible
for the library to copy an object and all its dependencies so that the resulting clone
is completely independent of the original variable and its dependencies. Note that
cloning differs from marshalling in that no transferable code is required.

Object-oriented bulk synchronous parallel models have been researched before,
for example by Lecomber [Lec94], targeting distributed-memory systems. Another
parallel model is the Coarse Grained Model (CGM), by Dehne et al. [DFRC96];
its library CGMlib [CD05], by Chan and Dehne, also is object-oriented and targets
distributed-memory systems by using an underlying communications library, such
as MPI. Yelick et al. [YSP+98] introduced a Java dialect specifically for high per-
formance computing and parallelism, using global memory space extended with ad-

4.3 — Object-oriented bulk synchronous parallel library 63

vanced memory management based on programmer input. An object-oriented par-
allel model supporting both shared and distributed memory has been presented by
Kaminsky [Kam07]. Similarly, there also exists a BSP library for the Python pro-
gramming language [Hin03], usable on shared-memory multicore systems as well
as on distributed-memory systems (by using a standard BSPlib implementation). A
BSP model developed specifically for shared-memory systems has previously been
researched by Tiskin [Tis98], who introduced the Bulk Synchronous Parallel random
access machine (BSPRAM). This model assumes that each parallel process can ac-
cess two types of memory: local memory, on which it can execute local computations,
and a shared memory accessible by all processes, facilitating inter-process communi-
cation. This model is more akin to OpenMP than to the pure BSP model used in this
chapter.

Before introducing the object-oriented BSP library for multicore systems, first
some basic terminology from object-oriented languages is recalled. Programming
code is grouped into classes, each class having its own (local) member variables as
well as member functions. Multiple instances of a class can be created; much like
there can be multiple data elements of the same primitive type (e.g., integer). An
instance is created by calling the constructor function of its class. Such a constructor
may require specific parameters, so that an instance cannot be created without supply-
ing those parameters. A class may be extended from a given superclass, meaning that
it inherits all the members, including their visibility (see below), from its superclass.
Such a subclass normally also defines new member variables or functions. Member
variables or functions have one of the following visibilities:

• private, visible only to instances of the same class, but excluding subclasses;

• protected, visible only to instances of the same class, including subclasses;

• public, visible to all instances regardless of class.

Member functions may be defined, yet not implemented; in such a case the function is
called purely virtual, and its corresponding class abstract. A normal virtual member
function is already implemented, but can be redefined in subclasses.

A generic BSP program is defined to be a class, BSP_PROGRAM, having at least
the functions in Table 4.1 defined. Any specific parallel algorithm is extended from
this superclass, and must implement the following two protected and purely virtual
functions:

• main_part(): this code is only executed by a single process, and from the pro-
tected functions in Table 4.1 it can only call bsp_begin(int),

• parallel_part(): this is the code run in parallel; once this function is reached,
all BSP functions can be called, with the exception of bsp_begin().

The sequential phase can be used to prepare data or determine algorithm parameters
needed for the parallel phase. From within the sequential code, a call to bsp_begin(int)

64 Bulk Synchronous Parallel SpMV multiplication

purely virtual:
main_part() will contain sequential code,
parallel_part() will contain parallel code.

protected:
bsp_begin(int) starts the parallel execution,
bsp_nprocs() returns the number of threads executing this algorithm,
bsp_pid() returns the current, unique thread identification number,
bsp_sync() synchronises all threads,
bsp_abort() aborts the parallel execution.

public:
start() starts the program.

Table 4.1: BSP_PROGRAM function list

starts the parallel phase using the given number of processes. Each such process ex-
ecutes the exact same code, defined in the parallel_part() function. The number of
concurrent processes can be queried by calling bsp_nprocs(), and a unique process
ID can be retrieved by using bsp_pid(). Parallel execution can be terminated prema-
turely by calling bsp_abort(). The function bsp_sync() is a barrier that synchronises
all processes; a process will halt execution when encountering this function, only to
continue when all processes were halted.

Defining only this BSP program class, a simple parallel application can already
be written; see the Hello World example, Algorithm 4. Since a program is in essence
a class, to run it, an instance of it has to be created first: “Hello_World myInstance =
new Hello_World();". Creating an instance of a parallel job does not implicitly start
it. To do that, the start() function must be used, so the job is executed by “myIn-
stance.start();". A short-hand way of doing this is shown in Algorithm 4. After
starting, the program will print the following four lines, in an undefined order:

Thread 0 says: Hello World!
Thread 1 says: Hello World!
Thread 2 says: Hello World!
Thread 3 says: Hello World!

Every thread has its own instance of its parallel class, such that no two threads share
the same variables. For most parallel jobs this is insufficient since data communi-
cation should be allowed to occur between threads, implying that inter-thread data
transfer between variables should be possible. In this BSP framework, such vari-
ables are called shared, but a thread can, at all times, only see its own local value of
the variable. Actual communication is only possible through explicit BSP functions,
which will be defined shortly. It is essential to note that as such, these BSP-style
shared variables are not at all shared in the classical sense: no two threads can read or

4.3 — Object-oriented bulk synchronous parallel library 65

Algorithm 4 Hello World example using the MulticoreBSP library
Class Hello_World extends BSP_PROGRAM {
protected function main_part():

1: bsp_begin(4);

protected function parallel_part():

1: print “Thread ”+bsp_pid()+“ says: Hello World!”;

}

Start using:
1: (new Hello_World()).start();

write to the same memory location at the same time, and a BSP-style shared variable
maintains a local instance for each active thread.

To facilitate this, an abstract BSP class BSP_COMM is defined. Any shareable
object type will have to implement (or extend) this class; in other words, all shared
variables have BSP_COMM as superclass. No other objects can be communicated.
Since a shared variable has no meaning if not connected to a parallel program, the
constructor of every shared variable must take a BSP_PROGRAM as parameter, thus
linking the shared variable and the parallel program it is used in. Communication
always entails that some source data is transferred from a source process to a desti-
nation variable at a destination process. The MulticoreBSP library facilitates three
communication methods to do this: one being to put data in the memory local to
another thread, another being a method to get data from variables local to another
thread, and, finally, a method to send messages to a variable local to another thread.
In all cases, the destination variable must be shared, since by definition any non-
shared variable is not visible to other threads. These bsp_put(...), bsp_get(...), and
bsp_send(...) functions are therefore defined as public functions within BSP_COMM;
that is, as functions of destination variables. Thus if “destination" is a shared vari-
able, or rather, an instance of a class derived from BSP_COMM, then the following
communication functions are defined:

• destination.bsp_put(source, destination_thread),

• destination.bsp_get(source, source_thread),

• destination.bsp_send(source, destination_thread).

In all cases, the source parameter is optional, by default referring to the destination
variable at the current process. The source and destination threads are designated by
referring to their thread IDs: a thread can use the get-directive to extract data from
memory local to another thread, while the put-directive allows a thread to push its data
into memory local to another thread. All communication happens at synchronisation

66 Bulk Synchronous Parallel SpMV multiplication

time; multiple puts or gets to the same location at the same process result in only one
of them coming through at the destination. This is in contrast to the message-passing
bsp_send, where messages are queued at the destination variable. When a shared
variable at some processor receives a message (after synchronisation), reading out
the corresponding queue is facilitated by two functions:

• bsp_qsize() which returns the number of messages still in the queue, and

• bsp_move(), which moves an item from the local queue into its local variable.

If a queue is not empty when a synchronisation barrier is encountered, all remaining
entries are evicted and hence are not available in the next superstep. A final function,
bsp_unregister(), is used to invalidate a shared variable, freeing up all memory it uses
at all threads; this should never be called inside a superstep where the variable is still
used.

The functions introduced so far have been available for distributed-memory sys-
tems as well, for example in BSPlib [HMS+98]. MulticoreBSP additionally intro-
duces a new communication directive, bsp_direct_get(...), so that it can take full ad-
vantage of the shared-memory architecture it is designed to work with. The syntax
is the same as that for bsp_get, but semantics differ in that the communication is
not queued: instead, it is executed immediately, within a superstep. This is a ma-
jor change from the BSP paradigm, but an acceptable one due to the similarity to
the plain get-directive and a way to exploit this new directive systematically, as will
be described shortly. Also, BSPlib [HMS+98] in fact contained similar primitives;
the so-called high-performance versions of the get- and put-primitives, which could
initiate communication inside supersteps as well. These function calls, did not wait
for the communication to finish, however. In other words, all BSP communication
primitives cache communication (and then immediately continue, i.e., all primitives
are non-blocking), with the single exception of bsp_direct_get(...) in MulticoreBSP.

A standard distributed-memory BSP algorithm can systematically be adapted to
exploit shared-memory systems using this new primitive. When a superstep only
communicates via get-primitives while the data already is available at the remote pro-
cess, these get-primitives can be substituted for direct-gets and the next synchronisa-
tion barrier can be removed; the direct-get functionality thus can reduce the number
of supersteps of a classical BSP algorithm on shared-memory architectures. Sum-
marising, BSP_COMM defines the purely virtual functions used for communication
shown in Table 4.2.

Note that according to the BSP model, all communication is guaranteed to have
been done after a synchronisation barrier is passed. Differences with the original
BSPlib are that the bsp_init(), bsp_push_reg(), bsp_pop_reg(), and bsp_end() primi-
tives no longer appear; bsp_end() is in effect assumed after the function parallel_part
finishes, initialisation is moved to the program constructor, variable registration is
moved to the variable constructor, and the bsp_pop_reg() function is replaced with
the bsp_unregister function.

4.4 — Inner-product calculation 67

public:
bsp_put(source, destination_pid) puts source to this variable at destination_pid,
bsp_get(source, source_pid) gets source from source_pid and stores it here,
bsp_direct_get(source, source_pid) like bsp_get, but does not wait for sync,
bsp_send(source, destination_pid) sends source to the queue of destination ID,
bsp_qsize() gets the number of messages still in queue,
bsp_move() moves an item from the queue to this variable,
bsp_unregister() frees the local memory used by this variable.

Table 4.2: BSP_COMM virtual function list

Regarding the BSP cost model, a difference is caused by the direct-get primitive,
which is executed during a superstep. In determining the total communication cost,
the cost of a direct get is bounded by the cost of a normal get performed in synchro-
nising. This way, when determining the total running time, the maximum communi-
cation volume is still used; the original BSP cost model shown in Equation (4.1), is
retained.

Before proceeding with describing the implementation of the sparse matrix–vector
multiplication using the library introduced here, a simple description of a parallel
inner-product calculation algorithm is given so that several communication variables
can be introduced. A generic shared variable is implemented as BSP_REGISTER<T>,
which stores a variable of type T, accessible using read and write methods. It extends
BSP_COMM, and, as discussed earlier, T must support cloning. This class alone,
although versatile, is not yet enough to attain efficient code.

4.4 Inner-product calculation

The problem is the parallel calculation of the inner product (x, y) =
∑n−1
i=0 xiyi

for two given vectors x, y ∈ Rn. Assuming p threads are available, an intuitive
approach then is to divide the vectors x and y into p blocks of (roughly) equal
size, where each thread calculates the sum of the corresponding block. This is
followed by communicating the partial results and summing them to obtain the fi-
nal result. Assuming that this inner-product calculation is part of a larger parallel
scheme, the vectors x and y already have been distributed in memory, and the only
remaining task is to compute partial inner products and communicate the resulting
partial sums. Each thread can define a shared array of variables storing double val-
ues, to which partial sums can be communicated. Such an array could be defined
using a BSP_REGISTER and standard Java array constructs, yielding code such as
“ArrayList<BSP_REGISTER<Double>> sums;". The downside is that each regis-
ter added to this array has to be individually constructed. Afterwards, putting a value
x at index i at process s would be done by “sums.get(i).bsp_put(x,s);". This has
several disadvantages:

68 Bulk Synchronous Parallel SpMV multiplication

public:
bsp_put (source, s_offset, destination_pid, d_offset, length)
bsp_get (source, source_pid, s_offset, d_offset, length)
bsp_direct_get (source, source_pid, s_offset, d_offset, length)

Table 4.3: BSP_COMM_ARR virtual function list, excluding those already defined
by BSP_COMM

• low performance; a single entry must be accessed through multiple classes, and
each register added to the array must be constructed separately,

• verbosity; a syntax-heavy approach to control a single element of the array,

• memory overhead; each vector element is registered separately.

Even worse is the syntax and overhead needed to put or get ranges of vectors, as, for
example, required by the dense LU algorithm.

To improve this, the BSP_COMM_ARR subclass of BSP_COMM was introduced.
The functions that BSP_COMM_ARR defines are in addition to those in Table 4.2, and
are shown in Table 4.3. The put, get, and direct-get functions have been modified to
copy a number of length elements of the array in a single communication request. If
this number of elements is smaller than the array length, the use of offsets in either
the source or destination array is convenient. For example, if x and y are arrays
implementing the BSP_COMM_ARR class, the code “y.bsp_put(x, i, s, j, l);” would
replace y at process s by

(y0, . . . , yj−1, xi, . . . , xi+l−1, yj+l, . . .).

The (direct) get function works in the expected similar fashion. The main implemen-
tation of BSP_COMM_ARR is BSP_ARRAY< T >, which makes available an array
with elements of type T at each process. The type T must still support cloning. For
efficiency4, when T should be an int or double primitive type, the specialised
BSP_INT_ARRAY and BSP_DOUBLE_ARRAY classes should be used. Both of these
specialised variants also define the getData() method, giving the programmer access
to the local underlying raw array. This reference is guaranteed constant with respect
to the array object, from construction up until de-registration or end of the parallel
phase. Note that any variable implementing BSP_COMM_ARR, actually stores pn
values, where p is the number of threads used and n the array size; just as a regular
shared variable implementing BSP_COMM keeps track of p local instances. Algo-
rithm 5 shows a MulticoreBSP inner-product algorithm, using the constructs intro-
duced above.

4in Java, “Double" differs from “double", the first being an object wrapping a raw double type.
Accessing such a class incurs overhead, making BSP_ARRAY<Double> an inefficient construct.

4.5 — Sparse matrix–vector multiplication 69

Algorithm 5 Inner-product calculation for identically pre-distributed vectors x, y
Calculates the inner product (x, y) =

∑
i xiyi. Local subvectors x̃ and ỹ are

assumed available, and distributed identically.

protected function bsp_ip() {

1: sums = new BSP_DOUBLE_ARRAY(this, bsp_nprocs());
2: α = 0;
3: for i = 0 to x̃.length−1 do
4: α = α+ x̃[i] · ỹ[i];
5: for i = 0 to bsp_nprocs()− 1 do
6: sums.bsp_put(α, 0, i, bsp_pid(), 1);
7: bsp_sync();
8: α = 0, a = sums.getData();
9: for i = 0 to bsp_nprocs()− 1 do

10: α = α+ a[i];
11: return α;
}

4.5 Sparse matrix–vector multiplication
To enable parallel computing of y = Ax, the matrix A and both vectors x and y must
be distributed. If p processes are used, such distributions are given by the maps

πA : [0,m− 1]× [0, n− 1] → [0, p− 1],
πx : [0, n− 1] → [0, p− 1],
πy : [0,m− 1] → [0, p− 1]. (4.2)

Partitioners such as Mondriaan [VB05] or Zoltan [DBH+06] preprocess sparse ma-
trices to find distributions optimised for parallel SpMV multiplication; this chapter
will not deal with partitioning methods, and simply assumes the maps from (4.2) are
available. These maps, however, while containing in principle all necessary informa-
tion, still need further preprocessing to make them directly suitable for parallel SpMV
multiplication.

4.5.1 Mappings for sparse matrix and dense vector distributions
For each thread s ∈ [0, p− 1], a local matrix As of size ms × ns is stored; this local
matrix can be smaller thanA itself since it stores only those entries aij ∈ A for which
πA(i, j) = s, then removes empty rows and columns, and renumbers nonempty rows
and columns accordingly. A local input vector xs is also stored, so that it contains
the elements from x with index j for which πx(j) = s, and similarly for ys and πy .
Then, during local multiplication with elements from As, information is required at
which process and index the corresponding element from the input vector x resides,

70 Bulk Synchronous Parallel SpMV multiplication

and similarly for the output vector y. Thus the following maps are preferable to those
from Equation (4.2):

• πsr : [0,ms− 1]→ [0, p− 1], so that πsr(i) is the process index for the element
of the output vector corresponding to the ith row of As,

• πsc : [0, ns − 1]→ [0, p− 1], so that πsc(j) is the process index for the element
of the input vector corresponding to the jth column of As,

• Isr : [0,ms − 1] → [0,maxkmk − 1], so that Isr (i) is the index of the local
output vector yπ

s
r(i) corresponding to the ith row of As, and

• Isc : [0, ns−1]→ [0,maxk nk−1], so that Isc (j) is the index of the local input
vector xπ

s
c(j) corresponding to the jth column of As.

The latest version of the Mondriaan package (version 3.11) calculates these mappings
automatically.

4.5.2 Partially buffered multiplication
Assumed is that the local matrices As and vectors xs, ys as well as the appropriate
mappings from the previous section are available. During local multiplication, non-
local elements from the input vector may be required. These values are buffered
beforehand, by allocating an input vector buffer of size ns, and copying local and
non-local input vector elements into this buffer. This buffering of the input vector
is called the fan-out step [Bis04, Chapter 4]; the only difference with the algorithm
described there is that the shared-memory variant will make use of the direct-get
primitive, which prevents the fan-out operation from having to be done in a separate
superstep. This brings the parallel SpMV multiplication algorithm down from three
supersteps, to only two.

After fan-out, upon entering the SpMV multiplication kernel, each process starts
traversing the nonzeroes in its local matrix As in a row-major order. For each en-
countered row, it looks up whether the corresponding output element from y is local
or not. If so, products of nonzero values and elements from x are immediately added
to the local ys. If not, they are added to a local temporary double value, which, upon
switching to the next row, is sent to the correct process using bsp_send. After local
multiplication, all processes synchronise to prepare for the second and last superstep:
the fan-in. In this step, the incoming messages are processed. From each message,
the target index and the remote contribution is read and added to the correct element
of the local output vector.

An implementation detail regards the use of the send primitive in this setting; this
directive on a shared array transmits objects of the same type, which are entire arrays.
For the SpMV multiplication, however, sending only an index and a double value is
required instead. A partial sum for y can then be added at the correct position of the
local vector at the target process. To this end, a separate class (Pair) is defined, storing
both an integer and a double value, and a shared variable of this class is created;

4.6 — Experiments 71

on this type of variable, message passing with bsp_send will perform as required.
Algorithm 6 clarifies this by showing the resulting implementation.

If |{πsr = k}| is the number of elements in πsr equal to k, the number of flops
performed by process s can be expressed as:

2 · nz(As) in superstep 1, and
p−1∑

i=0,i6=s

|{πir = s}| in superstep 2.

Here, each nonzero is counted as two flops, and the number of nonzeroes of a matrix
A is given by nz(A). The communication volume sent VS(s) or received VR(s) by
process s is:

VS(s) = |{πsr 6= s}|+
p−1∑

i=0,i6=s

|{πic = s}| ,

VR(s) = |{πsc 6= s}|+
p−1∑

i=0,i6=s

|{πir = s}| , and

V (s) = max{VS(s), VR(s)}. (4.3)

The time taken by this algorithm according to the BSP model then is:

TSpMV =
1
r
·

2 ·max
s

nz(As) + max
s

p−1∑
i=0,i6=s

|{πir = s}|

+ g ·max
s
V (s) + l.

(4.4)

4.6 Experiments
SpMV experiments have been performed using the datasets presented in Table 4.4.
These matrices are preprocessed using the Mondriaan software package5, which par-
titions them for parallel SpMV and gives local versions of the input matrix, together
with the final mappings introduced in Section 4.5.1. The preprocessing time required
is reported in Table 4.4 as well. The BSP SpMV driver reads in the Mondriaan out-
put, then performs 100 parallel SpMV multiplications as described in Algorithm 6,
and reports the average time taken. This SpMV multiplication software is part of a
re-implementation of BSPedupack and is freely available6.

Experiments are run on three different architectures, namely:

• the AMD Phenom II 945e quad-core processor,
5Available freely at: http://www.math.uu.nl/people/bisselin/Mondriaan
6See: http://www.multicorebsp.com/BSPedupack

72 Bulk Synchronous Parallel SpMV multiplication

Algorithm 6 Parallel sparse matrix–vector multiplication
Calculates y = Ax in parallel. Based on buffering of input vector elements.

Input: local ms × ns submatrix As of A for process s,
local subvector xs of x,
local subvector ys of y,
mappings πsr , πsc , Isr , Isc .

class Pair() {
int tag; double value;
Pair(int _t, double _v) {

tag = _t; value = _v;
}

}

protected function bsp_spmv() {

1: s = bsp_pid();
2: x̃ = new BSP_DOUBLE_ARRAY(this, ns);
3: pairs = new BSP_REGISTER<Pair>(this);
4: for j = 0 to ns − 1 do
5: x̃.bsp_direct_get(xs, πsc(j), I

s
c (j), j, 1);

6: for i = 0 to ms − 1 do
7: if πsr(i) = s then
8: for all aij 6= 0 in the ith row of As do
9: ysIs

r (i) = ysIs
r (i) + aij · x̃j ;

10: else
11: α = 0;
12: for all aij 6= 0 in the ith row of As do
13: α = α+ aij · x̃j ;
14: pairs.bsp_send(new Pair(Isr (i), α), πsr(i));
15: bsp_sync();
16: while pairs.bsp_qsize() > 0 do
17: pairs.bsp_move();
18: yspairs.read().tag = yspairs.read().tag + pairs.read().value;
}

4.6 — Experiments 73

Name Rows Columns Nonzeroes p = 4 p = 64
west0497 497 497 1721 1 sec. 1 sec.
fidap037 3565 3565 67591 1 sec. 2 sec.
s3rmt3m3 5357 5357 106526 1 sec. 5 sec.
memplus 17758 17758 126150 1 sec. 8 sec.
cavity17 4562 4562 138187 1 sec. 3 sec.
bcsstk17 10974 10974 219812 3 sec. 8 sec.
lhr34 35152 35152 764014 6 sec. 16 sec.
bcsstk32 44609 44609 1029655 15 sec. 31 sec.
nug30 52260 379350 1567800 43 sec. 4 min.
s3dkt3m2 90449 90449 1921955 39 sec. 1 min.
tbdlinux 112757 21067 2157675 3 min. 6 min.
stanford 281903 281903 2312497 5 min. 8 min.
stanford-berkeley 683446 683446 7583376 13 min. 21 min.
cage14 1505785 1505785 27130349 16 min. 45 min.
wikipedia-2005 1634989 1634989 19753078 5.5 hr. 9 hr.
wikipedia-2006 2983494 2983494 37269096 19 hr. 23 hr.

Table 4.4: The matrices used in MulticoreBSP SpMV experiments. The matrices
are grouped into two sets by relative size, where the first set typically fits into the
L2 cache, and the second does not. The last two columns show preprocessing times
required for distributing the matrix over p processes, using the Mondriaan software
package with the default strategy. This reordering was done on an AMD Opteron
2378.

74 Bulk Synchronous Parallel SpMV multiplication

• the Intel Core 2 Q6600 quad-core processor, and

• the Sun UltraSPARC T2 processor.

The AMD and Intel systems both run a Linux operating system, and use the 1.6.0_23
version of the Sun Java compiler and runtime environment; the Sun platform runs
on the Solaris operating system, and uses the 1.5.0_27 version of Sun Java. Details
on the AMD and Intel architectures are found in Section I.1.3. What is important to
note is that the AMD processor provides uniform access for its four cores, which is in
contrast to the Intel design: the Q6600 has no L3 cache, and the two available 4MB
L2 caches available are each shared by two cores, so that any one core has a faster
transfer speed with one specific other core, while the two remaining cores must be
accessed through the main memory. As such, the Intel processor is said to be a cache-
coherent non-uniform memory access (cc-NUMA) architecture. The BSP model used
here does not take this into account; this would require the Multi-BSP model [Val08],
as well as an adaptation of the Mondriaan partitioner. The BSP algorithms presented
here are expected to perform better on the AMD architecture, due to the more uniform
memory access.

The UltraSPARC T2 architecture, being built specifically for throughput-intensive
applications, follows a completely different strategy. While typically operating at
lower clock rates, there are 8 cores available on a single processor with each core
supporting fast interleaved execution of 8 concurrent threads; a single processor thus
can execute 64 threads. The idea is that per core, when one of the threads stalls (e.g.,
due to a cache miss), one of the other threads can proceed. This hides the latency
of data transfer. One UltraSPARC T2 core has two calculation units, meaning two
threads can work simultaneously while the other 6 wait, ideally for data still to arrive.

The UltraSPARC T2 has one 4MB L2 cache, shared amongst all cores by means
of a crossbar. Main memory is accessible through this cache, and is divided over four
different memory controllers. The system I/O is connected via the same crossbar.
Each single core has its own 8kB L1 data cache, but note that this cache is shared
amongst 8 threads. It also has more extensive (compared to the Intel and AMD archi-
tectures) instruction caches and translation lookaside buffers. Overall, this architec-
ture is expected to offer the 8 processors a uniform memory access time, and should
offer good scalability, especially for smaller problems. Figure 4.1 gives a schematic
overview for this processor.

For all BSP algorithms, speedups for various problem instances are reported, us-
ing a varying number of threads, as appropriate for the architecture experimented on.
Speedups are relative to the parallel program run with p = 1, as comparable stand-
alone sequential algorithms in Java are not readily available. For the SpMV multiply
and the FFT algorithm, however, the main computational kernel is in fact plain (but
unoptimised) sequential code. Still, the reported values are optimistic speedups as
some parallel overheads remain present for one thread, even if they are constant and
do not scale with the problem size.

4.6 — Experiments 75

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

Core 2

System interface

Core 1

Core 8

RAM4 MB L2Crossbar

Figure 4.1: Diagram of the Sun UltraSPARC T2 processor. The processor consists of
8 cores (3 of which are displayed in this figure), and each core can execute 8 threads,
two of which simultaneously. Each core has a local 8kB L1 data cache (not dis-
played). A single core and its local L1 cache is connected to a crossbar. Through this
crossbar, communication to the other cores, the L2 cache, and the system interface
is made possible. The L2 cache has eight banks, and is connected to main memory
through four memory controllers (2 of which are displayed here).

76 Bulk Synchronous Parallel SpMV multiplication

4.6.1 Benchmarking

The parameters r, g, and l are estimated via a benchmarking program, described
and included in BSPedupack [Bis04]. In short, this benchmark sends messages of
varying length to all processors, and measures the time it takes to send h messages
and synchronise, a total of 1000 times. This measurement is conducted for h =
1, . . . , 128. Afterwards, a least-squares fit is calculated to find the affine relation
(gh + l = t/1000) between the message size h and the time t required to send 1000
messages. The speed of a single core is measured using dense vector operations.
Results are shown in Table 4.5.

The Intel architecture shows a constant computing rate per core (in flop per sec-
ond), while latency increases as the number of cores p is increased. As expected due
to the sharing of the L2 caches, the communication gap and the latencies are much
lower for p = 2 than for p > 2, where the communication gap is constant for p = 3
and p = 4. The AMD processor shows a more variable flop rate, and even shows a
drop in performance for p = 4. When using more than one core the latency is con-
stant, but slightly higher than that of the Intel processor. Like the Intel processor, the
message gap increases for p > 2 but stabilises after p = 3, indicating that L3 cache
sharing is faster for p = 2 than for higher p.

The Sun machine behaves as expected for smaller p: r is constant, and g, l in-
crease only slightly as more processes are used. This indicates that processes are first
allocated to a single core, and spread over cores when more than eight processes are
required. The large increase in g and l from p = 8 to p = 16 supports this, as us-
ing more than one core means communication has to go through the crossbar. This
effect increases as more and more cores are utilised. An anomaly is the decrease in
process speed for p ≥ 32; there, it is possible the number of threads is too high with
respect to the data throughput, such that there is no room for more threads to work
while other threads wait for data to arrive. Indeed, while benchmarking, the 4kB of
data used is quite local and does not cause long latency times. If the required data
would take longer to arrive, the processor cores would have more time available to
interleave other threads, thus retaining the performance speed per thread. This indi-
cates benchmarking with localised data may not yield the correct value for r with p
taken large, on this architecture, when predicting running times for applications with
irregular data accesses.

4.6.2 Prediction

The benchmarks can be used to predict SpMV performance, as after benchmarking a
BSP machine and partitioning an input matrix, all values in Equation (4.4) are known,
and the theoretical running time of the SpMV algorithm can be obtained. From these
values, it is also possible to calculate the theoretical speedups. Using the actual run-
ning times reported in the following subsection, both predicted values can be com-
pared to actual measurements. Dividing the measured values by the predicted values
then gives the error factors; Tables 4.6 and 4.7 show the result of this experiment.

4.6 — Experiments 77

Intel Q6600 AMD 945e
p r (Mflop/s) g (flops) l (flops) r (Mflop/s) g (flops) l (flops)
1 593.62 76.51 666 819.20 84.9 379
2 597.99 174.52 7764 890.43 357.7 31921
3 605.35 281.22 12342 851.23 1001.1 28748
4 600.17 323.79 28947 663.91 935.1 32950

Sun UltraSPARC T2
p r (Mflop/s) g (flops) l (flops)
1 47.08 50.19 228
2 47.98 74.78 3979
4 45.66 97.31 10579
8 44.66 119.17 24232
16 47.45 220.71 54409
32 34.43 577.39 76150
64 22.43 633.60 134631

Table 4.5: BSP benchmark data for an Intel Core 2 Q6600 Quad-core system, an
AMD Phenom II 945e Quad-core system, and the Sun UltraSPARC T2 system con-
sisting of eight cores with eight threads each.

Actual running time measurements are averaged over 100 SpMV multiplications.
Observed are errors of up to 11 times, compared to the actual measurements on the

Intel platform. On the AMD platform slightly better error factors are obtained with
a maximum of 8. Since these factors are not constant, the BSP model does not make
very accurate predictions on the running time of the algorithm, when applied to the
SpMV multiplication. The main cause is that the BSP benchmark measures process
speed according to dense operations; sparse operations such as the SpMV multiply
are known to perform at a fraction of peak performance, due to inefficient cache use
[Tol97, VDY05, WOV+09]. If inefficient cache use indeed is the cause, prediction
should be more successful for smaller and for structured sparse matrices, as also
seen in Chapters 1,2 and 3. Input and output vectors corresponding to the Stanford
matrix do not fit entirely into the L2 caches of both architectures, and the matrix,
representing links within the Stanford domain from 2002, inherently is unstructured.
On the other hand, the s3dkt3m2 matrix is smaller so its vectors do fit into L2 cache,
while additionally the matrix comes from a FEM application on a regular grid and
thus is structured. On all architectures, the prediction errors indeed are smaller for
the s3dkt3m2 matrix, especially on the UltraSPARC T2 with large p. Other causes
for discrepancy may include overhead caused by the MulticoreBSP library, which
can depend on the parallel algorithm executed and can amplify the effects of cache
misses. Hardware behaviour not taken into account with the BSP model (such as the
case with the Intel Q6600), operating system or virtual machine jitter, can also be
factors.

78 Bulk Synchronous Parallel SpMV multiplication

Stanford
p = 2 p = 3 p = 4

Partitioner
output

superstep 1 2418012 1667496 1237054
superstep 2 225 600 607
maxs V (s) 225 601 608

Intel
prediction

time 4.1 3.1 2.4
error factor 7.3 9.3 10.8

speedup 1.9 2.6 3.2
error factor 1.0 0.6 0.7

AMD
prediction

time 2.8 2.7 2.8
error factor 7.3 5.8 5.6

speedup 2.0 2.1 2.0
error factor 0.7 1.0 1.0

Sun
prediction

time 50.8 - 28.6
error factor 3.7 - 3.5

speedup 1.9 - 3.4
error factor 0.9 - 0.9

s3dkt3m2
p = 2 p = 3 p = 4

Partitioner
output

superstep 1 4120988 2719368 2056482
superstep 2 609 603 0
maxs V (s) 609 1206 840

Intel
prediction

time 7.1 5.1 3.9
error factor 2.1 3.3 3.7

speedup 1.8 2.5 3.2
error factor 0.7 0.4 0.4

AMD
prediction

time 4.9 4.6 4.3
error factor 2.5 2.9 1.7

speedup 1.9 2.0 2.1
error factor 0.8 0.7 1.1

Sun
prediction

time 86.9 - 47.1
error factor 2.0 - 1.7

speedup 1.8 - 3.4
error factor 0.9 - 0.8

Table 4.6: Prediction of MulticoreBSP SpMV running time (in ms) and speedups
with their error factors, defined as the measured value divided by the predicted value;
an error factor of 7 in timing thus means the parallel run took 7 times longer than pre-
dicted, and an error factor of 1 indicates prediction matched exactly. Factors smaller
than one indicate parallel execution was faster than predicted (or speedup was larger
than predicted). Values are given for two test matrices. The BSP parameters r, g, l for
the architectures tested are taken from Table 4.5.

4.6 — Experiments 79

Stanford
p = 16 p = 32 p = 64

Partitioner
output

superstep 1 317822 158942 79484
superstep 2 683 829 737
maxs V (s) 684 829 738

Sun
prediction

time 11.1 20.8 30.4
error factor 3.5 2.1 1.5

speedup 8.9 4.7 3.2
error factor 0.8 1.7 2.0

s3dkt3m2
p = 16 p = 32 p = 64

Partitioner
output

superstep 1 516096 258048 129024
superstep 2 474 558 408
maxs V (s) 804 624 424

Sun
prediction

time 15.8 20.2 23.7
error factor 2.2 2.1 2.0

speedup 10.1 7.9 6.7
error factor 0.7 1.0 1.0

Table 4.7: As Table 4.6, but for a larger number of concurrent threads as supported
by the Sun UltraSPARC T2.

If library overheads or hardware peculiarities are the cause for bad prediction,
and these overheads are constant regardless of the number of processors involved,
speedup prediction should perform much better. Indeed, the speedup prediction error
factors are much smaller compared to the predicted running time error factors. Also,
speedups are more often underestimated (as opposed to overestimating absolute al-
gorithm speed). It is possible to use the predicted speedup for instance to decide how
many processes to allocate for a specific job, but otherwise it has limited practical
applicability. Estimating speedups is more successful on the Stanford matrix and for
the (non-NUMA) AMD architecture.

4.6.3 Sparse matrix–vector multiplication timings

The SpMV multiplication results for the Intel and AMD architectures are found in
Table 4.8, and those for the Sun platform in Table 4.9. For the classical cache-based
architectures, that is, the Intel and the AMD processors, speedups are only attained
for larger matrices. This should come as no surprise, since for smaller matrices the
input and output vectors both fit into L1 cache, which is not shared amongst cores.
This differs for the UltraSPARC T2 architecture, where the L1 cache is much smaller
and is shared amongst 8 threads simultaneously. For this machine, speedups are
obtained even for the smaller matrices. The highest speedup obtained is 9.31 for the

80 Bulk Synchronous Parallel SpMV multiplication

Intel Q6600 AMD 945e
Matrix p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

west0497 0.61 0.69 0.59 0.97 1.08 0.54
fidap037 0.27 0.25 0.19 0.41 0.26 0.22
s3rmt3m3 0.28 0.23 0.34 0.44 0.32 0.29
memplus 0.96 0.35 0.32 0.95 0.48 0.37

cavity17 0.26 0.24 0.18 0.30 0.30 0.25
bcsstk17 0.96 0.41 1.18 1.20 0.45 0.78

lhr34 1.22 1.08 0.53 1.17 1.77 0.55
bcsstk32 0.73 0.89 0.87 1.04 0.99 1.20

nug30 0.69 0.64 0.46 0.74 0.75 0.59
s3dkt3m2 1.20 1.09 1.26 1.46 1.29 2.33
tbdlinux 1.20 0.96 0.87 1.52 1.23 1.46
stanford 1.72 1.79 1.98 1.46 1.92 1.93
stan-ber 1.22 1.25 1.26 1.51 1.79 1.82

cage14 0.85 0.93 0.78 1.14 1.46 1.34
wikipedia-2005 1.97 2.31 2.21 2.33 2.68 3.34
wikipedia-2006 1.83 2.06 2.17 1.38 2.17 2.00

Table 4.8: Measured speedup of MulticoreBSP sparse matrix–vector multiplication
on the Intel Q6600 and AMD945e architectures. The speedup is calculated as the
time taken for p = 1 divided by the time taken for the parallel run, and these timings
are taken averaged over 100 SpMV runs. The best speedup for each architecture is
shown in boldface.

Stanford-Berkeley matrix using p = 32 processes.
In general, better speedups are attained for the larger matrices, as the ratio of

local work versus data movement due to communication is more favourable there.
Increasing matrix size is not automatically beneficial for scalability, however; larger
vectors may no longer fit into lower-level caches, and for higher-level caches the
bandwidth is more limited, thus making minimisation of inter-core communication
proportionally more important. In other words, for small matrices there is not enough
work to attain efficient parallelisation, while for larger matrices communication costs
may increase, as do the effects of inefficient cache use, especially when caches are
shared.

4.6.4 The Fast Fourier transform

The fast Fourier transform (FFT) application from BSPedupack maps a complex-
valued input vector of length n to its discrete Fourier transform, and does this in two
supersteps, if p ≤

√
n. For algorithm details, see Bisseling [Bis04, Chapter 3]; what

now follows is but a brief description. The input vector is assumed to be distributed
cyclically over the p processors, and the algorithm starts with a parallel bit reversion,

4.6 — Experiments 81

Matrix p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
west0497 1.20 0.94 0.81 0.62 0.39 0.24
fidap037 0.58 0.54 0.64 0.50 0.68 0.37
s3rmt3m3 0.91 1.42 1.47 1.63 0.93 0.68
memplus 1.50 1.18 1.01 0.86 0.78 0.44

cavity17 0.85 0.98 1.27 1.33 0.72 0.60
bcsstk17 1.79 2.95 2.57 2.96 2.20 1.36

lhr34 1.98 2.60 4.34 4.33 3.68 2.19
bcsstk32 1.59 2.71 4.68 6.40 7.02 4.43

nug30 1.24 1.41 1.21 1.03 0.79 0.55
s3dkt3m2 1.65 3.56 5.55 8.50 8.59 6.46
tbdlinux 1.89 3.01 3.97 4.19 2.75 1.51
stanford 1.64 3.05 5.03 6.80 8.02 6.42
stan-ber 1.64 2.95 5.00 7.31 9.31 9.27

cage14 1.31 2.04 2.43 2.62 1.98 1.63
wikipedia-2005 1.86 3.40 6.02 5.38 2.96 1.97
wikipedia-2006 1.82 3.38 6.12 2.50 1.98 2.56

Table 4.9: Measured speedup of MulticoreBSP sparse matrix–vector multiplication
on a Sun UltraSPARC T2 machine, obtained in the same way as for Table 4.8.

followed by a number of concurrent unordered sequential FFTs, and finally redis-
tributes data and synchronises. The second and last superstep then proceeds with p
concurrent unordered sequential generalised FFTs. If n is not large enough compared
to the number of processors, more steps consisting of redistribution and concurrent
unordered FFTs are required. Both the input vector size and the number of proces-
sors used by the algorithm are required to be powers of two. The advantage of this
algorithm is that the sequential FFTs can be provided by external libraries like FFTW
[FJ98], or can even be recursively parallelised, for example when applied within a
hierarchy of parallel machines.

Table 4.10 shows scalability results of this algorithm. Speedups on the Intel and
AMD platforms are only attained for large n; this must be due to the smaller vectors
fitting into the local caches, so that communicating between cores is more expensive
than doing the entire computation on a single core. The AMD 945e computation
starts to attain speedups for n ≥ 218, which corresponds to 4MB of data; for p = 1,
this is eight times the size of an L2 cache, for p = 4, this is twice the size. The
Intel computation starts getting speedups for p = 2 at 16MB of data, and for p = 4 at
32MB. Note that the Intel processor does not have an L3 cache and will communicate
through main memory for n > 218. The AMD does have an L3 cache, but its capacity
is exceeded for the same n and it communicates through main memory as well.

Starting at n = 222 (64MB) for the AMD processor, or n = 223 (128MB) for the
Intel processor, speedups become superlinear. This is explained by better cache use
due to data locality: the first superstep of the parallel FFT algorithm performs n/p

82 Bulk Synchronous Parallel SpMV multiplication

unordered FFTs on contiguous blocks of size p, in parallel; that is, each processor
performs n/p2 unordered FFTs of small size, and thus performs extremely data-local
computations. The second superstep performs p unordered generalised FFTs of size
n/p; these are less data-local and performance will drop if a vector of size n/p no
longer fits into local cache. This drop is in comparison to the first superstep, however,
and does not seem to negatively affect overall scalability7.

Table 4.11 reports speedups attained on the Sun architecture. Experiments start
at a vector size n = 213 since the larger number of available threads would otherwise
make more than one redistribution necessary. For this n and p = 64, the only reported
slowdown of a factor 0.8 for the FFT on the UltraSPARC T2 occurs. While for
the AMD and Intel processors no speedups could be obtained for the shorter input
vectors, the Sun platform starts at a speedup of 5.3 (for p = 8), with the lowest
maximum speedup being 2.9 for n = 215. As the problem size increases, the best
speedups are attained for increasingly larger p. Superlinear speedups are attained as
well, but, in contrast, only for p < 16 and sufficiently large n; and in all cases a larger
(but sublinear) speedup can be obtained by using a larger p.

4.6.5 Dense LU decomposition

The BSP LU algorithm performs an LU decomposition of a dense n × n matrix A.
It is a straightforward parallelisation of the well-known LU decomposition algorithm
with partial pivoting, for example presented by Golub and van Loan [GVL96, Al-
gorithm 3.4.1]. Note that this algorithm is not based on level-3 BLAS and that a
better-performing algorithm may be obtained by using those; optimisation or paral-
lelisation for high performance computing then typically requires hand-tuned [GG02]
or auto-tuned [WPD01] software. The parallel algorithm used is described in detail
by Bisseling [Bis04, Chapter 2]; again only a short description is given. A two-
dimensional cyclic distribution of the input matrix over the p = pypx processes is
assumed. This means that the ith row of A is local to a process with si = i mod py ,
and the jth column of A is local to a process with tj = j mod px. Taking, e.g., the
map s = sipx+ tj , each combination of row and column properly corresponds to one
unique process. For each stage k from 0 to n− 1, first a pivot element in the kth col-
umn is searched for, in parallel. When identified, the corresponding row is swapped
with the kth row by using the get primitives. During this procedure, it is possible that
2px processes work and (py−2)px others idly stand by, thus negatively impacting the
load balance. On the other hand, when the two swapped rows are local to the same
processes, communication is local only, which may be preferable even if it causes
load imbalance. These considerations do not contradict when py is taken to be 1;
then there is no load imbalance and only local computations during pivoting. When
swapping is complete, all local elements of the lower-right (n−k)× (n−k+1) sub-
matrix can be updated in parallel by caching (using direct-get primitives) the relevant

7See the results of n ≥ 221 for the Intel architecture and n ≥ 219 for the AMD; both exceed the L2
cache for the second superstep.

4.6 — Experiments 83

Intel Q6600 AMD 945e
log2 n p = 2 p = 4 p = 2 p = 4

9 1.1 0.9 0.8 0.6
10 1.1 0.9 0.6 0.7
11 0.3 0.2 0.7 0.8
12 0.4 0.5 1.2 1.1
13 0.5 0.3 0.9 0.9
14 0.7 0.4 1.0 1.2
15 0.7 0.4 0.9 1.0
16 0.4 0.2 0.8 0.8
17 0.5 0.3 0.9 1.0
18 0.6 0.4 1.0 1.2
19 1.0 0.6 1.3 1.5
20 1.5 0.7 1.7 2.2
21 1.7 1.5 1.9 2.7
22 1.8 1.9 2.3 3.2
23 2.3 2.4 2.6 3.6
24 2.2 2.2 2.9 4.9
25 2.6 3.2 2.9 5.0

Table 4.10: Measured speedups of MulticoreBSP FFT on two shared-memory archi-
tectures, the Intel Q6600 and the AMD 945e. The speedup is calculated as the time
taken for p = 1 divided by the time taken for the parallel run, and these timings
are taken averaged over 30 FFT runs. The input vector size varies between 8kB (for
n = 29) to 512MB (for n = 225).

log2 n p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
13 1.9 3.5 5.3 4.6 2.1 0.8
14 1.4 2.4 3.9 4.2 1.8 1.2
15 1.6 1.6 2.8 2.4 2.9 1.3
16 1.4 2.0 2.6 4.0 2.8 1.7
17 1.3 2.2 3.1 3.4 3.7 2.7
18 1.4 2.0 3.4 3.0 3.0 2.4
19 1.8 2.6 3.6 5.4 3.3 3.0
20 2.2 3.2 4.7 6.8 5.8 4.2
21 2.5 3.8 5.8 8.6 9.0 6.8
22 2.7 5.2 6.4 10.8 13.5 12.6
23 2.9 6.2 8.3 11.1 18.5 22.0
24 2.9 5.9 10.5 13.6 15.4 23.9
25 2.9 5.9 9.8 13.0 16.4 16.7

Table 4.11: Measured speedups of MulticoreBSP FFT on the Sun UltraSPARC T2,
obtained in the same way as for Table 4.10. The input vector size varies between
128kB (for n = 213) to 512MB (for n = 225).

84 Bulk Synchronous Parallel SpMV multiplication

ranges of the kth row and the kth column, including the pivot value. After updating,
the algorithm increments k and continues with the next stage.

The LU algorithm differs from SpMV and FFT mainly in that the number of su-
persteps, as well as the amount of communication, are linearly related to n instead of
being constant; the overhead of the algorithm is thus expected to be higher. Another
difference is that local matrix entries are reused in the calculation, instead of only the
components of input or output vectors; this makes it easier to attain good speedups.
In the experiments, A is taken as a random matrix and 30 decompositions are timed,
and the average time is reported. The matrix size must be divisible by both py and
px; in experiments the sizes n = 120, 600, 1200 are taken for this reason.

For the smallest size tested, n = 120, no speedup was attained on the Intel and
AMD architectures, while the UltraSPARC T2 architecture gained a maximum factor
1.4 for py = 3 and px = 1 and did not get slowdowns as long as pypx < 8; these
results are not included in tabular form. Speedups for n = 600, 1200 are reported
in Table 4.12 and 4.13. For the Intel processor, no speedup is attained for n = 600.
The AMD processor performs somewhat better with a factor 1.1 for 2 · 1 processors.
As expected, the results improve for yet larger n; both these architectures perform
up to a factor 1.4 better, again by using 2 · 1 processors. The Sun platform performs
somewhat better, reporting speedups up to 3.0 for n = 600 and 6.7 for n = 1200,
using 2 · 3, respectively, 6 · 2 processors. Larger n will likely yield larger speedups
using more processors, on this architecture. All architectures seem to prefer py > px,
even though this causes load-imbalance as discussed earlier.

4.7 Conclusions
It was shown that the Bulk Synchronous Parallel [Val90] programming paradigm can
be efficiently used for shared-memory parallel programming. A proof-of-concept
BSP library, MulticoreBSP, targeted towards shared-memory architectures, has been
implemented and is freely available. It differs from previous work in that it exploits
the shared-memory architecture solely through a direct-get method, otherwise assum-
ing processes only have local memory and communicate only through the original
distributed-memory primitives: the get, the put and the send. A sparse matrix–vector
multiplication (SpMV) algorithm has been described and implemented using this li-
brary, similar to the algorithms introduced in BSPedupack [Bis04], except that the
number of supersteps has been reduced by use of the direct-get. Experiments on both
the predictability and scalability of this algorithm have been performed. Predictions
of the run time leave much to be desired; predictions of the speedup are more accu-
rate.

Actual speedup measurements have been carried out on three different architec-
tures, two quad-core machines (Intel and AMD) and one highly-threaded machine
(Sun). Results of the SpMV multiplication show modest overall speedup, with the
higher speedups reserved for the larger matrices, showing a speedup of 3.34 for the
wikipedia-2005 matrix with p = 4, and superlinear speedup of 2.33 for p = 2 on

4.7 — Conclusions 85

Intel Q6600 AMD 945e
600× 600 : 1 2 3 4 1 2 3 4

1 1.0 0.7 0.6 0.5 1.0 0.7 0.5 0.3
2 0.8 0.5 0 .3 0 .3 1.1 0.4 0 .2 0 .2
3 0.7 0 .4 0 .3 0 .2 0.6 0 .3 0 .2 0 .2
4 0.4 0 .3 0 .2 0 .2 0.4 0 .2 0 .2 0 .2

1200× 1200 :
1 1.0 1.2 1.0 0.9 1.0 1.1 0.8 0.5
2 1.4 1.2 0 .9 0 .8 1.4 0.7 0 .4 0 .4
3 1.2 1 .0 0 .8 0 .6 1.2 0 .5 0 .4 0 .3
4 1.3 0 .9 0 .7 0 .6 0.8 0 .5 0 .3 0 .3

Table 4.12: Measured speedups for the MulticoreBSP LU algorithm on the Intel
Q6600 and the AMD 945e processors. The algorithm has been run for square dense
matrices of size 600 and 1200. The matrices are distributed over processes both row-
wise and column-wise; the number of processes px used in the column direction are
displayed horizontally in the four parts of the table, and the number of processes
py used in the row direction are displayed vertically. The total number of processes
p = pxpy thus exceeds the available number of cores (4) in half the cases presented;
those speedups are printed in italic. The largest speedup for each of the four parts is
printed in boldface.

600× 600: 1 2 3 4 5 6 8
1 1.0 1.8 2.3 2.6 2.8 2.2 2.1
2 1.8 2.8 3.0 2.9 2.6 2.0 1.8
3 2.4 3.0 2.9 2.4 2.2 1.6 1.4
4 2.7 2.9 2.4 2.0 1.8 1.4 1.2
5 2.9 2.6 2.2 1.9 1.6 1.2 1.0
6 3.0 2.4 2.0 1.7 1.4 1.0 0.8
8 2.9 2.2 1.6 1.3 1.0 0.8 0.7

1200× 1200:
1 1.0 2.2 3.3 3.9 4.5 5.0 5.4
2 2.1 4.3 5.4 5.9 6.1 6.1 5.7
3 3.0 5.6 6.1 6.4 6.2 5.6 5.1
4 4.1 6.3 6.3 6.2 5.7 5.4 4.7
5 4.9 6.6 6.4 5.9 5.3 4.9 4.1
6 5.5 6.7 6.1 5.6 5.0 4.3 3.7
8 6.3 6.2 5.4 4.6 4.1 3.6 2.8

Table 4.13: Similar to Table 4.12, but for the Sun UltraSPARC T2 architecture.

86 Bulk Synchronous Parallel SpMV multiplication

the same matrix, both on the AMD architecture. Speedups for SpMV multiplication
on the Sun UltraSPARC T2 processor are very good when compared to those of the
other architectures for p ≤ 4. For larger p, performance increases even more, with
a largest measured speedup of 9.31 for p = 32 threads, on the Stanford-Berkeley
link matrix; this is also the matrix which was hardest to partition (see Section 1.5 and
2.4). This might not come as a surprise, since difficulty in partitioning implies that
there is no apparent data locality to be found, thus causing many irregular accesses
which is precisely where the UltraSPARC T2 architecture performs well. For the
larger test matrices, the performance drops, gaining only good speedups for small p.
By the same reasoning, it appears that for these matrices there is enough data locality
to cause the processor core to saturate on a lower number of threads.

Other example applications have been implemented and experimented with as
well. They are the fast Fourier transform and dense LU decomposition. Both are
easier to parallelise: most data elements are used several times, instead of only once
as is the case with SpMV multiplication. Good speedup, even superlinear speedup, is
attained for the FFT: up to 6.2 for p = 4 on the Sun UltraSPARC T2, 5.0 for p = 4 on
the AMD 945e, and 2.6 for p = 2 on the Intel Q6600. The maximum speedup for the
Intel is 3.2 out of the maximum expected of 4, and that of the UltraSPARC T2 hovers
around a factor 24, which still seems to increase for larger n. The LU decomposition
performs less well on the AMD and Intel architectures. This is probably due to the
lack of optimisation of the algorithm: during each iteration of the algorithm, threads
move along the pivot column unchecked while updating the local submatrices, which
generally do not fit into local caches. This may yield much, possibly conflicting, data
movement for each thread in shared caches or main memory while inside a compu-
tation superstep; this points to another large difference between distributed-memory
and shared-memory BSP. Solutions lie in employing existing sequential optimisation
techniques (such as blocking) to limit unnecessary data movement, which should then
lead to speedups when using multiple threads, and not just in a constant factor gain.
Supporting this, on the UltraSPARC T2 where locality actually reduces potential scal-
ability, the speedups are much more pronounced, going up to a factor 6.7. Also for
smaller problems, the UltraSPARC T2 attains a much better speedup than the more
traditional Intel and AMD platforms. Latency hiding thus gives ample opportunity
for speedups on highly unstructured problems, but it seems hard to predict the size of
such speedups within the BSP model used here.

In general, it is shown that the BSP model, library, and algorithms can be adapted
for shared-memory architectures, and that these algorithms can work well, as tested
on a variety of architectures. Similarities, but also some of the large differences have
been discussed, leading to the observation that sequential optimisation is of increas-
ing importance in shared-memory computing; gains in data movement result in less
contention between memory accesses of many threads, resulting in better scalability.
Nevertheless, such optimisations will benefit distributed-memory computing as well.
Hence, the same efficient and scalable BSP algorithms can be employed, for both
distributed-memory and shared-memory architectures.

4.7 — Conclusions 87

4.7.1 Future work

While the MulticoreBSP library shows that the BSP model is valid for current shared-
memory systems, the Java implementation is not viable for high-performance com-
puting. While it attains modest speedups and is proper for concept testing and ed-
ucational use, the algorithms are seen to perform slower than expected. Construc-
tion of a similar, more competitive library in, e.g., the C++ programming language
should be worthwhile. Such a library can build forth on existing technologies such as
POSIX threads, and may be augmented with the Message Passing Interface (MPI), or
distributed-memory BSP; combining both can result in a BSP library which is able
to switch as required between shared-memory and distributed-memory implementa-
tions. Moreover, by incorporating the Multi-BSP model [Val08] instead of the flat
BSP model, such a library can automatically distribute a BSP algorithm over a hybrid
distributed-memory and shared-memory system, thereby completely eliminating the
need for explicit hybrid parallel programming.

While predictability here only has been investigated for the SpMV algorithm,
results indicated that processor speed is not always properly measured in flops per
second. Instead, timings based on irregular data accesses may be of more impor-
tance, and may yield better predictions of BSP algorithms working on sparse prob-
lems. Such benchmarks may be integrated into the BSP benchmarking application,
which would also benefit from an update to the Multi-BSP model; message size can
be varied so that properties of the different levels of the memory hierarchy can be
measured. Ideally, however, this also requires information on the exact memory size
of each such memory level.

Regarding the SpMV multiplication specifically, interleaving the querying of πsr
for locality of output vector elements results in a constant overhead during execution
of the SpMV multiplication. An alternative is to buffer the remote elements locally,
thus removing this overhead, which results in a more efficient kernel. After execution
of this kernel, the local buffer is read out and non-local elements can again be sent
out using the send primitive. The resulting fully buffered SpMV multiplication kernel
enables the use of external multiplication code, which may perform additional opti-
misation; such as, e.g., OSKI [VDY05] or the techniques from Chapter 3. Using a full
buffer also enables trivial application of reordering techniques from Chapter 1 and 2.
To attain better scalability in the half-buffered case, further optimisation surely is re-
quired. Applying partitioning to minimise communication between computing cores
is not enough, as data access patterns of the input vector are not improved while band-
width becomes more limited as more cores are involved in the computation. Future
work should be directed towards combining communication minimisation on all lev-
els, including enhancement of cache use, e.g., by reordering or by adapting the sparse
matrix storage scheme [BFF+09, MFT+10, VDY05] (or both), while still retaining a
way to perform fan-in on output vectors. This is discussed in more detail in Chapter 5.

88 Bulk Synchronous Parallel SpMV multiplication

Acknowledgements
The results presented here were established with support from the Center for Com-
puting and Communication of RWTH Aachen University, who graciously provided
access to their Sun UltraSPARC T2 cluster and provided assistance with experiments.
We also extend our special thanks to Ruud van der Pas from Oracle Corporation, who
offered extensive feedback on this chapter, as well as valuable insights on the Ultra-
SPARC T2 architecture and its performance during the experiments described here.

89

Chapter 5

Integration with the
cache-oblivious method

The cache-oblivious methods introduced in Chapter 1 and 2 can be used in a parallel
setting as well. As discussed in the previous chapter, in Section 4.5.1, a Bulk Syn-
chronous Parallel algorithm requires that each process s stores a local matrix As con-
sisting of a subset of nonzeroes from the global matrix A. Using either full buffering
or partial buffering of input and output vectors, a local SpMV multiplication is per-
formed on As. A straightforward combination of reordering and parallel techniques
then is to perform local SpMV multiplications on PAsQ, with PAsQ in (doubly)
SBD form. This chapter builds on this idea, and constructs a scalable cache-oblivious
parallel SpMV for shared-memory systems.

Other work in this same area includes using space-filling curves to achieve data-
locality, while distribution of work is based on the same curve. For instance, Martone
et al. [MFT+10] use the Morton curve [Mor66] combined with 1D row distribu-
tions. Buluç et al. [BFF+09] use a 2D distribution based on the same curve, and also
employ index compression to reduce memory bandwidth consumption. Williams et
al. [WOV+09] do not use space-filling curves, but employ many sparse optimisa-
tion techniques earlier applied in sequential auto-tuning [VDY05, Im00] and com-
bine these with further architecture-aware optimisations: for instance, on cc-NUMA
systems, they explicitly control which thread runs on which core, and adapt the data
distribution accordingly. As in the sequential case, the difference with the method de-
scribed in this chapter, is that speed gains will be mainly due to changing the structure
of the input matrix, and not by adapting data structures.

5.1 Exploiting matrix reordering for parallelism
The easiest way of combining reordering with parallel SpMV multiplication is to
reorder with p→∞, and then assign contiguous parts of the reordered matrix to the

90 Integration with the cache-oblivious method

actual processes. For example, Figure 1.4 showed a 1D reordering based on p = 16,
while the four differently coloured parts indicate which data goes to which processor
when four different processing units are available.

This is more accurately described as follows. Let the array r store the row-wise
starting points of the various blocks identifiable in the DSBD structure, and let c
be similarly defined for the column-wise starting point. Note that there are exactly
2p−1 of such starting points. Additionally, let r2p = m and c2p = n. Then, for even
i, the index block [ri, ri+1] × [ci, ci+1] corresponds to the ith pure block of PAQ;
for odd i, nonzeroes with row index in [ri, ri+1] or nonzeroes with column index in
[ci, ci+1] correspond to separator blocks. Suppose PAQ is in DSBD form with p
parts, while for parallel execution there are t threads available, with t < p. Then the
array r of length 2p can be upscaled to an array r̃ of length 2t by copying each p

t th
element from r to r̃, and similarly for upscaling c to c̃. Nonzeroes in the ith pure
block according to r̃, c̃ were originally assigned to p/t processors from the (not nec-
essarily consecutive) range [0, p− 1], which now all should map to processor i from
the range [0, t− 1]; all maps from Section 4.5.1 can be adapted using these new pro-
cessor assignments. Given these adaptations, the Bulk Synchronous Parallel SpMV
multiplication scheme from the previous chapter can be applied directly. While on
distributed-memory architectures the SBD form cannot be further exploited than this,
it is possible to enhance performance further on shared-memory systems.

In particular, the matrices need no longer be localised for use with local input and
output vectors. Instead, one global input vector and one global output vector can be
used. Combined with reordering, accesses on these global vectors are still localised in
exactly the same manner as cache usage for sequential computation was optimised.
However, there is a complication with global addressing: concurrent writes to the
output vector can occur, resulting in undefined algorithm behaviour and errors in
output. The troublesome areas correspond to the cut rows; that is, the row-indices
corresponding to the ranges [r̃i, r̃i+1] with i odd. In these areas, the owner of a matrix
row is not uniquely determined; that is, πy([r̃i, r̃i+1]), with i odd, maps to more than
one processor. Note that many processors may have nonzeroes on a specific separator
row, but only one of those processors has ownership over the output vector component
corresponding to that row. This ownership is given by the mapping πy .

A simple way of preventing concurrent writes is to let each processor cycle through
the writeable output elements according to πy: in the first superstep, processor s
writes output elements i for which πy(i) = s, while in the next superstep that proces-
sor writes to elements for which πy(i) = (s+ 1) mod t. This is repeated until t− 1
supersteps have been performed; for a small number of threads t this is an acceptable
cost, while for larger t, the full BSP SpMV multiplication (see Algorithm 6) will be
preferred due to its constant number of supersteps. It must be noted that performance
now not only depends on the sparse matrix structure, but also on the distribution of
the output vector, which brings further room for improvement. Mondriaan, for ex-
ample, when having obtained a sparse matrix partitioning, tries to further minimise
communication costs by constructing vector distributions in a smart way [BM05].
Due to this, the consecutive values of πy are, in general, quite irregular. This means

5.2 — Experiments 91

that threads still disrupt each other during multiplication on separator areas, as many
elements sharing a cache line will not have the same processor as owner. A solu-
tion is to refine the permutation found by the reordering method, by ordering rows
in separator areas according to their owner in πy . After this operation, accesses to
the output vector in separator areas are more localised, and conflicts only occur on
transitions between processor owners. Optionally, these conflicts can be prevented by
adding empty matrix rows in between transitions, so that each thread is guaranteed
to operate on a different cache line [WOV+09]. In any case, conflicts can be reduced
significantly by additional refinement of reorderings, and the final shared-memory
parallel scheme is summarised in Algorithm 7.

5.2 Experiments

The parallel scheme has been applied on two architectures, namely the AMD Phe-
nom II 945e, and the Intel Q6600. See Section I.1.3 for a complete description of
these architectures. Comparisons to sequential schemes will be made, namely the
Triplet, Compressed Row Storage (CRS), and Incremental CRS (ICRS) methods.
Timings from the Hilbert scheme introduced in Chapter 3 are included as well. Also,
the parallel code running on multiple processors is compared to the same code run-
ning on one processor; this is equivalent to a sequential method based on reorder-
ing, backed by the BICRS data structure without explicit block-based ordering, with
negligible overhead from parallel codes. An initial version of the parallel scheme
described in this chapter has been implemented in C++ using POSIX threads, and is
part of the same sparse library also used in other experiments throughout this thesis1;
thus, for all experiments, the exact same SpMV multiplication kernels are used. For
these multi-threaded experiments, wall-clock timing had to be based on the system
clock which has a low resolution of one second. To be able to nonetheless have ac-
curate timings of up to a millisecond, timings are averaged over 1000 runs instead of
the 100 used in most other experiments in this thesis. The matrices used in experi-
ments are s3dkt3m2 and GL7d18. The s3dkt3m2 matrix is a structured square matrix
of size 90449, and contains about 1.9 million nonzeroes; the GL7d18 matrix is an
unstructured 1955309 × 1548650 matrix, containing about 35.6 million nonzeroes.
The structured matrix arises from a FEM application, while the GL7d18 matrix arises
from pure mathematics.

Both test matrices have been reordered (and partitioned) by using Mondriaan with
the load imbalance parameter ε = 0.1 and with p = 4, 16, 32, 64. The partitioning
strategy used is the Mondriaan scheme, the storage scheme for each pure thread-
local matrix (i.e., the matrices Ãs) is BICRS, and the storage scheme for nonzeroes
on row-wise separators (the matrices in Ss, see Algorithm 7) is ICCS. As both test
architectures are quad-core machines, the number of threads tested is t = 1, 2, 4. The
various p with t = 1 correspond to the reordering method described in Chapter 2,

1Freely available via http://albert-jan.yzelman.net/software

92 Integration with the cache-oblivious method

Intel Q6600 AMD 945e

s3dkt3m2 GL7d18 s3dkt3m2 GL7d18
Triplet 18 1323 12 466

CRS 14 794 12 437
ICRS 13 856 9 610

Hilbert 28 415 16 349

Table 5.1: Sequential results for SpMV multiplication. Results for the Intel Q6600
are on the left, while those for the AMD 945e are found on the right. The fastest
sequential results are printed in italic. All timings are in milliseconds.

without using block-based structures. To be complete, the sequential experiments on
the original matrices have been repeated and results are reported in Table 5.1. Results
for the parallel code on the Intel and AMD architectures are given in Table 5.2.

On the Intel architecture, no speedups versus optimised sequential codes are ob-
tained for the s3dkt3m2 matrix; the same is true when instead comparing to t = 1.
For the GL7d18 matrix, a speedup of 1.5 (for t = 2) is obtained, compared to the
Hilbert scheme. When comparing only against results with t = 1, speedups are in
between 1.3 (p = 4) and 1.8 (p = 16) for t = 2. The speedups for the full number
of threads, t = 4, are less impressive: those are in between 1.2 (p = 32) and 1.6
(p = 4). Note that nevertheless, when reordering with high enough p, parallel code
on the reordered matrices outperforms the sequential cache-oblivious methods on this
larger matrix.

Better results are obtained on the AMD platform, where modest speedups are
attained on the smaller and structured s3dkt3m2 matrix. For this matrix, the best
results are obtained for the maximum number of threads (t = 4), where speedups go
up to a factor 1.5 compared to sequential code. Compared to t = 1 no slowdowns are
reported at all, and speedups lie in between 1.6 (for p = 16) and 2.3 (with p = 32, t =
4). For the GL7d18 matrix, the maximum speedup against the best sequential time
is 1.8, but there are also some slowdowns for low p and low t.2 Parallel code with
t = 2 on the reordered matrices is only effective for p = 32. With t = 4, however,
the parallel code always outperforms the sequential Hilbert code. Compared to t = 1
instead of the Hilbert scheme, speedups lie in the range of 1 and 1.9; for p = 16 and
t = 2 a small slowdown is observed.

5.3 Conclusions
The matrix reordering method from Chapter 1 and 2 has been refined for exploit-
ing parallelism, by also considering the effects of reordering on the distribution of
the components of the output vector. A simple synchronising multiplication algo-

2In fact, reordering with t = 1 without any of the blocking schemes from Chapter 2 is less efficient
than the Hilbert scheme from Chapter 3.

5.3 — Conclusions 93

Algorithm 7 Parallel, non-BSP SpMV multiplication on shared-memory systems

Let r̃, πÃ, and πy as described in the text, and available for this algorithm. Let Ã
furthermore be the upscaled reordered matrix, and let t be the total number of
threads. Initialisation will build, for each thread s, a main matrix Ãs as well as t− 1
smaller matrices stored in the array Ss, where the nonzeroes in the matrix (Ss)i will
correspond to the nonzeroes of thread s contained in row-wise separators, for which
the output vector element is distributed to processor i.

Initialisation:

1: for each thread s do
2: Allocate Ãs, the main sparse matrix assigned to thread s.
3: Allocate Ss as an array of size t of sparse matrices, storing separator

nonzeroes.
4: for each ith row-wise separator in Ã do
5: Find a permutation of the row indices [r̃2i+1, r̃2i+2] so that the corresponding

values in πy([r̃2i+1, r̃2i+2] are ordered from low to high; apply this
sub-permutation to Ã, πÃ, and πy .

6: for each nonzero aij from Ã do
7: if πÃ(i,j) = πy(i) then
8: Assign aij to ÃπÃ(i,j)

.
9: else

10: Assign aij to (SπÃ(i,j)
)πy(i).

After initialisation, each thread s executes the SpMV multiplication code of the
various matrices created during initialisation. A call to an SpMV multiplication
kernel of a matrix A, is simply denoted by y = Ax. The input vector x and output
vector y are assumed to be globally addressable.

Multiplication:

1: Execute y = Ãsx.
2: Synchronise.
3: for k = 1 to t− 1 do
4: Set j = (s+ k) mod t.
5: Execute y = (Ss)tx.
6: Synchronise.

94 Integration with the cache-oblivious method

Intel Core 2 Q6600

s3dkt3m2 t\p 4 16 32 64
1 17 16 18 17
2 17 16 18 17
4 20 18 22 21

GL7d18 t\p 4 16 32 64
1 906 633 492 486
2 718 347 345 285
4 583 491 398 385

AMD Phenom II 945e

t\p 4 16 32 64
1 11 11 14 11
2 8 7 9 8
4 6 7 6 6

t\p 4 16 32 64
1 482 373 352 372
2 333 376 236 357
4 250 200 199 237

Table 5.2: Results for the Intel Core 2 Q6600 (left) and the AMD Phenom II 945e
(right). The number p, displayed horizontally, indicates the number of parts used
for the reordering scheme. The actual number of threads t used in parallel SpMV
multiplication are displayed vertically. Fastest timings for a given t are printed in
italic. All timings are in milliseconds.

rithm for globally addressable shared-memory architectures is introduced, which is
capable of attaining speedups around a factor 2 when using 4 threads, compared to
efficient sequential code. Compared to plain CRS implementations, the highest ob-
served speedup is superlinear with a factor of 2.8 (with the GL7d18 matrix on the
Intel Q6600, for t = 2 and p = 64). These speedups are obtained using flat data
structures (ICCS and BICRS), without any sparse blocking as, e.g., introduced in
Chapter 2. A reordering with a large number of parts was used, which was upscaled,
and used in a straightforward parallel SpMV multiply which avoids row-wise writing
conflicts by synchronising. Any column-wise distribution is not explicitly used by
this parallel algorithm, as the data locality of the input vector is already improved
by reordering. This already results in oblivious minimisation of communication dur-
ing multiplication; that is, minimising communication on shared-memory systems
directly translates to improving data locality.

5.4 Future work

The methods presented here are preliminary, as many avenues for improvement can
be identified. As a first, since row-wise separators cause the need for a synchronised
parallel SpMV multiply, it might be interesting to investigate a one-dimensional re-
ordering scheme based on the column-net hypergraph model. Similarly, as partition-
ing is assumed to be based on recursive bipartitioning, it is possible that only a subset
of processors have nonzeroes in a specific row-wise separator area. This means that a
global synchronisation is wasteful, but even worse: due to the synchronising parallel
SpMV algorithm, load imbalance is introduced between the processors with nonze-
roes in the separator, and those without. The load-imbalance parameter only forces

5.4 — Future work 95

a balance between vertices assigned to different sets, but it is possible many of the
involved hyperedges are, in fact, cut due to this partitioning. Algorithm 7 does not
take this into account, and by synchronising several times between row-wise separa-
tors, the assigned work is cut in a way not foreseen by the hypergraph partitioner; in
other words, it only guaranteed that the amount of work in both the pure matrix and
the separator corresponding to a specific bipartitioning is divided evenly. Note that
employing subset synchronisation so that only the processors actually involved in a
given separator wait on each other, also would fix the load-balance issue. Judging by
the results on the cc-NUMA Intel architecture, which does not perform well with 4
threads, adding this feature to the parallel code must be a worthwhile investment.

As due to the parallel algorithm used here, the vector distribution is also taken
into account for reordering purposes, the integration of the vector distribution into
the sparse matrix partitioning process and the resulting interplay with the reordering
method becomes an interesting field for future work as well. Uçar and Aykanat [UA04]
already presented various advanced methods for post-processing a matrix distribu-
tion to minimise more than just the total communication volume; and in fact, bal-
ancing and minimising the number of synchronisations during the SpMV algorithm
presented here, is one of the metrics they take into account. On a deeper implemen-
tation level, this algorithm does not use any low-level optimisation such as sparse
blocking, prefetching, index compression, et cetera. Integration is again possible by
using external auto-tuning [VDY05] or cache-oblivious [BFF+09] software for mul-
tiplying the Ãs, but Williams et al. [WOV+09] show that direct architecture-aware
implementations can attain even better performance.

96 Integration with the cache-oblivious method

97

Appendix A

Sparse matrix data structures

Throughout this thesis, several sparse matrix data structures have been introduced and
used within larger schemes, whether it be reordering, block-based traversal, multipli-
cation based on space-filling curves, or parallel multiplication. In this appendix, the
main sparse matrix data structures are investigated in more detail, and a performance
summary in terms of both memory usage and complexity of the resulting SpMV mul-
tiplication kernel is given in Table A.1. Also, the multiplication kernels are given in
more detail than was done previously, and an in-depth motivation1 for the reported
performance bounds is included. Implementation of the data structures and corre-
sponding SpMV multiplication kernels are freely available, and can be found at:

http://albert-jan.yzelman.net/software

A.1 Deriving memory usage and complexity
All sparse matrix data structures in principle use an array to store nonzero values in;
this is denoted by V , in all cases. Whether it be compressed or otherwise adapted,
row and column indices also correspond to arrays; these are I for the rows, and J for
columns. The sparse input matrix is of size m × n and contains nz nonzeroes. The
dense input vector is x and the output vector is y.

To enable a fair comparison of algorithmic complexities of the multiplication ker-
nels, only a small number of functions are allowed. These are the following. In the
first place there is the floating-point multiply/add; this represents the calculation of
yi + aijxj and storing this value at yi. Second are stream operations: these include
streaming an array of values to the processor, where they are used in a computational
kernel such as the floating-point multiply/add. The terms under which array access is
considered a stream, is that the access be linear and that elements are only considered

1This does require some knowledge on lower-level programming, since the differences between the
SpMV multiplication kernels are subtle. Listings are kept close to C for this reason.

98 Sparse matrix data structures

precisely once. For example, getting nonzeroes from V in the order they are stored in
is considered streaming, while getting elements from the input vector x in the usual
irregular pattern, is not a stream operation. A further operation is a while-loop on a
single condition. This includes both checking for the condition and jumping based
on its result.

Further there is the pointer add/assign; a pointer is in essence a memory address
of, for instance, the start of an array (which is the same as a pointer to the first element
of that array). When writing efficient code, it is worthwhile to program pointer move-
ment explicitly, instead of referring to arrays by indices; see Section A.1.3 on the
ICRS data structure for an example. The pointer add/assign (e.g., px=x+1) means
that a value (1) is added to an existing pointer (x), the result of which is stored in a
second pointer (px). Pointers can be ‘de-referenced’ to access the value they point
at. This is denoted by a star in front of the pointer (e.g., *px which in this example
equals x1). The last operation is the pointer add, which adds a value to an existing
pointer and stores the result at the same location, e.g., px+=7 which increments the
px with 7. This is included as a separate instruction as on some (older) architectures,
this can be done faster than a pointer add/assign. All SpMV kernels are written us-
ing only the constructs described here. Any initialisation required is not counted in
Table A.1, but is added in parentheses in the kernel listings.

A.1.1 The Triplet data structure
The Triplet scheme, otherwise also known as the coordinate (COO) scheme, stores
three values for each nonzero: its row index, its column index, and its nonzero value.
The nonzero values are stored in the array V , the row indices in I , and the column
indices in J . All these arrays are of size nz, and thus the memory requirement equals
O(3nz). The SpMV multiplication kernel in terms of streams, multiply/adds and
basic pointer arithmetic is the following:

(pV = V; Vend = V + nz; pI = I; pJ = j;)
while(pV < Vend) {

py = y + *pI++;
px = x + *pJ++;

*py += *pV++ * *px;
}

The values from V , I , and J are all streamed, while the memory pointers I , J , pV ,
Vend , px , py , y and x are used in each iteration of the for loop; thus the kernel re-
quires 8 memory registers. Counting the different operations appearing, the algorithm
is seen to attain the complexity given in Table A.1.

A.1.2 The CRS data structure
The Compressed Row Storage (CRS, also known as Compressed Sparse Row), for in-
stance described by Bai et al. [BDD+00], assumes a row-major order on the nonzero

A.1 — Deriving memory usage and complexity 99

Triplet (ZZ-)CRS (ZZ-)ICRS ICRSn BICRS
Data words nz nz nz nz nz
Index words 2nz nz +m+ 1 nz + m̃ nz nz + j
Registers 8 9 8 (9) 7 8
Multiply/add nz nz nz nz nz
Streams 3nz 2nz +m 2nz + m̃ 2nz 2nz + j
Conditionals nz nz +m nz + m̃ nz +m nz + j
Pointer add/assign 2nz nz +m 0 0 0
Pointer add 0 m nz + 2m̃ nz + 2m nz + 2j

Table A.1: Comparison of different SpMV multiplication kernels. The first category
(in between the horizontal separator lines) considers memory usage, while the second
considers operation costs. ZZ-CRS uses the same kernel as CRS and is subject to the
same storage requirements as well; the same is true for ZZ-ICRS and ICRS, but
ZZ-ICRS requires one more register. ICRSn indicates the ICRS variant for sparse
matrices without empty rows. For general matrices, the normal ICRS variant must be
used, of which the complexity depends on the number of nonempty rows m̃ instead
of the full number of rows m.

values of the input matrix, so that the index array of the Triplet scheme can be com-
pressed; due to the CRS ordering it is known that a given range of nonzeroes resides
on the same row, so it makes no sense to repeat those values in memory. Thus the V
and J arrays are equal to those of the Triplet scheme, while I only stores the ranges
of the m rows such that the nonzeroes in [VIi

, VIi+1) are on the ith row of the input
matrix. Thus I contains the starting index of each row in the arrays V and J , with
additionally Im set to nz . The storage requirement thus is O(2nz + m + 1). Using
only the operations defined earlier, the SpMV multiplication kernel using CRS is the
following.

(pV = V; Vend = V + nz; pI = I; pJ = J;)
k = V + *pI++; py = y;)

while(pV < Vend) {
while(pV < k) {

px = x + *pJ++;

*py += *pV++ * *px;
}
k = V + *pI++;
py++;

}

Note that the conditional of the while-loop is checked once for every nonzero, but
also an additional time when an actual row change occurs; this is necessary since
rows may be empty. Otherwise, counting the number of operations is straightforward
and the complexity is given in Table A.1. The number of register variables required
is 9, one more than for the Triplet scheme due to the row-start pointer k.

100 Sparse matrix data structures

A.1.3 The ICRS data structure
The ICRS data structure [Kos02] further optimises the CRS structure by eliminating
the need for add/assigns on vector pointers; i.e., instead of letting J explicitly control
which element of x is addressed, J now stores the differences in column indices
of successive nonzeroes, so that the pointer towards x can be explicitly controlled
during multiplication. As such, the vector pointer update needs only an increment,
instead of adding the correct value to the vector start position, and assigning that to
the vector pointer; on some architectures, this alone results in more efficient code.
The control of row transitions also improves: instead of keeping an explicit pointer
k, overflows on xp are used to indicate row changes, after which yp is changed based
on consecutive row differences. This was observed to result in kernels with lower
instruction overhead (see also Koster [Kos02, Figure 2.5]):

(pV = V; Vend = V + nz; pI = I; pJ = j;
py = y; px = x + *pJ++; xend = x + n;)

while(pV < Vend) {
py += *pI++;
while(px < xend) {

*py += *pV++ * *px;
px += *pJ++;

}
px -= n;

}

However, the main advantage for ICRS is that the kernel only incurs operation cost
for nonempty matrix rows; empty ones are efficiently skipped. With m̃ the number of
nonempty rows, the operation counts for ICRS are included in Table A.1. Although
instruction overhead may be decreased, the total number of operations remains very
close to that of plain CRS. When there are no empty rows, no adaptive row jump
is required and py can be simply incremented, making the array I obsolete. This
‘nonempty’ variant of ICRS, ICRSn reduces algorithm complexity and is also found
in Table A.1. The required number of registers for ICRS is 8, and for ICRSn it is 7.

A.1.4 Zig-zag variants of (Incremental) CRS
Zig-zag CRS (ZZ-CRS) only adapts the nonzero ordering of sparse matrices. The
original CRS ordering is row-major, ordering the rows from low to high first, and the
columns ordered from low to high second. ZZ-CRS remains row-major, first ordering
rows from low to high, but differs in that on even rows columns are ordered from low
to high, while on odd rows columns are ordered from high to low. For ZZ-CRS, this
requires only a change in data structure construction; the memory requirements and
the computational kernel remain exactly equal to those of plain CRS.

For ZZ-ICRS, construction also differs from normal ICRS, with no changes in
memory requirements as well. The computational SpMV multiplication code does

A.1 — Deriving memory usage and complexity 101

change, but note that the computational operation count does not differ from that of
ICRS. The number of required registers does increase by one, however.

(pV = V; Vend = V + nz; py = y;
px = x + *J++; xend = x + n;)

while(pV < Vend) {
py += *I++;
while(px < xend) {

*py += *pV++ * *px;
px += *J++;

}
px -= n;
if(pV >= Vend) break;
py += *I++;
while(x <= px) {

*py += *pV++ * *px;
px -= *J++;

}
px += n;

}

A.1.5 The BICRS data structure
The BICRS data structure [YB11a] is a very straightforward adaptation of ICRS.
First, the nonzero order is no longer assumed row-major; any arbitrary ordering can
be followed. This is enabled by allowing the row and column increments to be nega-
tive, so that bi-directional traversal of the sparse matrix during multiplication is pos-
sible. By doing this, the number of row jumps j may increase from m̃, but it still
remains bounded by the total number of nonzeroes nz . The actual SpMV multiplica-
tion kernel remains the same as that of (normal) ICRS, but with j substituted for m̃.
This has been included in Table A.1.

On matrices in doubly separated block diagonal (DSBD) form, and with using
sparse blocking as described in Chapter 2, BICRS performance worsens as the num-
ber of blocks increases. In theory, this poses a limit to how far p can be taken. The
performance gains of sparse blocking should therefore overtake the penalty for in-
creasing p, or other data structures will become more efficient. In terms of memory
usage, BICRS performs better than the Triplet scheme in all but the worst case; while
on the other hand, the Triplet scheme employs a much simpler multiplication kernel.

A.1.6 The simple block data structure
The simple block data structure assumes a matrix is divided in submatrices, and stores
all those submatrices in multiple other data structures, which may be of a mixed type.
Thus performance is a sum of the data structures used on the submatrices, and in

102 Sparse matrix data structures

this section the concatenation of data structures for the various DSBD-form blocks
is considered. The most basic case is when plain CRS and CCS are used for the
various blocks, and this is considered first. Second, using the Incremental variants
(ICRS/ICCS) is analysed. The case of BICRS already has been discussed briefly in
the previous subsection. In the considerations, a full 2D SBD form is assumed, as
would be obtained by using reordering with p = 2k based on the fine-grain scheme.
On the block matrices on the diagonal the row-major structures are assumed, as is the
case for the vertically-oriented separators. The horizontally-oriented separators use
column-major structures. See Chapter 2 for details.

Using CRS/CCS

In this case, the storage requirement is independent of the matrix structure. Ideally,
all separator blocks are empty and the remaining p blocks on the diagonal are of the
size (m/p)×(n/p); this corresponds to perfect partitioning and perfect load-balance.
Then, applying CRS on each block takes O(nz + m) storage, which is optimal; but
this ideal case is highly unlikely to occur.

Assuming separator blocks are not empty, the number of centre separator blocks is
p− 1, and the number of pure blocks is p. Furthermore, there are 2(p− 1) vertically
oriented separator blocks, and 2(p − 1) horizontally oriented separator blocks. By
switching between CRS and CCS, the total storage is of

O(2nz + c1m+ c2n), (A.1)

where the ci depend on p, and are derived as follows.
Let the row-wise length of the ith horizontal separator block (numbering from top

to bottom of the DSBD matrix) be denoted by ỹi. Note that ỹi also is the row-wise
length of the neighbouring centre block and neighbouring horizontally-oriented sep-
arator block; i.e., there are 3 separator blocks of the same row-wise length. Similarly,
x̃j can be defined for the column-wise lengths. The row-wise length yi is the row-
wise length of the ith pure block (again numbered from top to bottom), and similarly
for xj . Then, the total length of the p pure blocks and the p− 1 centre blocks exactly
equals m: [

p−1∑
i=0

yi

]
+

[
p−2∑
i=0

ỹi

]
= m. (A.2)

The remaining blocks using CRS are the vertically oriented blocks. For p = 2,
this length is m − ỹ0; the total length minus the length of the horizontal separators.
For p = 4, the two recursively created DSBD structures add similarly constructed
values: y0 + y1 for the top-left substructure, and y2 + y3 for the bottom-right sub-
structure. Summing these two contributions, this becomes m − ỹ0 − ỹ1 − ỹ2, In the
DSBD picture for p = 4 (see, e.g., Figure 2.1, right) this can be visually made clear
by placing the two substructures above each other, and removing the row-wise sepa-
rator intervals; the remainder is exactly the combined length of the vertically aligned

A.1 — Deriving memory usage and complexity 103

separator blocks. Alternatively, the sum can be rewritten using Equation (A.2) to ob-
tain the same result. In any case, summing the results for p = 2 and p = 4 brings the
total row-wise length of vertically aligned separators to m− ỹ0 +m− ỹ0 − ỹ1 − ỹ2,
which equals

2m− 2ỹ0 − ỹ1 − ỹ2.

Taking this sum in full recursion for arbitrary p = 2k, and when ordering the ỹi
on value so that ỹ0 always corresponds to the separator with the largest length, ỹ1
to the one with second-largest length, and so on, the following formula for the total
row-wise length is obtained:

k−1∑
j=0

m− 2j+1−2∑
i=0

ỹi

 . (A.3)

As larger separator values decrease the total row-wise lengths of the vertical separa-
tors, and thus decrease the memory usage of the simple block data structure, the ỹi
can be bounded by mini ỹi so Equation (A.3) can be bounded from above by:

mk −min
i
ỹi(2p− k − 2). (A.4)

With Equation (A.2) and (A.4), c1 in Equation (A.1) becomesm+m log p−pmini ỹi.
Now only the total column-wise length of the vertically-aligned separator blocks,

which counts towards the memory usage of CCS sub data-structures, remains to be
counted. This length can be derived in exactly the same manner as the total length of
the horizontally-aligned separator blocks, in fact adapting Equation (A.4) to n(k −
1)− 2 minj x̃j(p− k). This means c2 in Equation (A.1) equals n log p− pminj x̃j .
The total memory storage for the simple block-based data structure backed by CRS
and CCS thus is:

O(2nz +m+ (m+ n) log2 p− (min
i
ỹi + min

j
x̃j)p),

which means that the extra overhead compared to (I)CRS scales logarithmically in p.
The effect of the minimum separator size is quite limited; in the worst case, mini ỹi =
m/p and minj x̃j = n/p (otherwise there is a smaller separator), so (mini ỹi +
minj x̃j)p is bounded by (m+ n) and thus is asymptotically unimportant2.

Using ICRS/ICCS

In this case, much depends on the exact nonzero structure of the DSBD matrix. In the
worst case, however, each nonzero causes a row or column jump within its block, thus
causing the simple block-based data structure, like the BICRS scheme, to be bounded

2Also note that, perhaps ironically, mini ỹi � m and minj x̃j � n if partitioning was successful;
which means that the better the partitioning, the worse memory usage becomes. This increase is only slight
however, and with the exception of perfect partitioning.

104 Sparse matrix data structures

by the Triplet scheme. In the best case, assuming separator blocks are nonempty,
each separator block contains nonzeroes on one row only. Then, each instance of
I at all sub data-structures stores exactly one element, and the problem reduces to
counting the number of separator blocks, which is 5p − 5, as deduced at the start
of this subsection. Using these best- and worst-case bounds, memory usage for the
simple block data structures with ICRS/ICCS scales as

O(2nz + min{m̃+ 5p, nz})

which performs well if p is small compared to the number of rows, which is true
in practice. If in future work p can be taken much larger to enable cache-oblivious
multiplication, then at worst p will be of the order of m + n, and still much better
scalability compared to the non-incremental version is obtained. Also, with such
detailed partitioning it is expected that many of the separator blocks will become
empty, in contrast to the larger separators encountered in this thesis; this bound on
storage space thus is expected to be too pessimistic for large p. Still, a block-based
data structure which does not scale in p at all and remains competitive with plain
(I)CRS, still remains something to strive for.

105

Bibliography

[APÇ04] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, Permuting sparse rectangu-
lar matrices into block-diagonal form, SIAM J. Sci. Comput. 25 (2004),
no. 6, 1860–1879.

[BBF+07] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari, Op-
timal sparse matrix dense vector multiplication in the I/O-model, Pro-
ceedings 19th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, ACM Press, New York, 2007, pp. 61–70.

[BDD+00] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.),
Templates for the solution of algebraic eigenvalue problems: A practical
guide, SIAM, Philadelphia, PA, 2000.

[BFAY+11] Rob H. Bisseling, Bas O. Fagginger Auer, A. N. Yzelman, Tristan van
Leeuwen, and Umit Çatalyürek, Two-dimensional approaches to sparse
matrix partitioning, Combinatorial Scientific Computing (Uwe Nau-
mann and Olaf Schenk, eds.), CRC Press, 2011, To appear.

[BFF+09] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert,
and Charles E. Leiserson, Parallel sparse matrix-vector and matrix-
transpose-vector multiplication using compressed sparse blocks, SPAA
’09: Proceedings of the twenty-first annual symposium on Parallelism
in algorithms and architectures (New York, NY, USA), ACM, 2009,
pp. 233–244.

[Bis04] Rob H. Bisseling, Parallel scientific computation: A structured ap-
proach using BSP and MPI, Oxford University Press, Oxford, UK,
March 2004.

[BJvOR03] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping, The
Paderborn University BSP (PUB) library, Parallel Comput. 29 (2003),
no. 2, 187–207.

[BM05] Rob H. Bisseling and Wouter Meesen, Communication balancing in
parallel sparse matrix-vector multiplication, Electronic Transactions on

106 BIBLIOGRAPHY

Numerical Analysis 21 (2005), 47–65, Special Issue on Combinatorial
Scientific Computing.

[BP98] S. Brin and L. Page, The anatomy of a large-scale hypertextual web
search engine, Comput. Netw. ISDN Systems, vol. 30, 1998, pp. 107–
117.

[ÇA99] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication, IEEE
Trans. Parallel Distrib. Systems 10 (1999), no. 7, 673–693.

[ÇA01] , A fine-grain hypergraph model for 2D decomposition of sparse
matrices, Proceedings 8th International Workshop on Solving Irregu-
larly Structured Problems in Parallel, IEEE Press, Los Alamitos, CA,
2001, p. 118.

[CD05] Albert Chan and Frank Dehne, CGMgraph/CGMlib: Implementing and
testing CGM graph algorithms on PC clusters and shared memory ma-
chines, International Journal of High Performance Computing Applica-
tions 19 (2005), 81–97.

[CJP07] Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using
OpenMP: Portable shared memory parallel programming, Scientific
and Engineering Computation, The MIT Press, Cambridge, MA, 2007.

[Dav11] T. A. Davis, University of Florida sparse matrix collection,
http://www.cise.ufl.edu/research/sparse/matrices, University of Florida,
Department of Computer and Information Science and Engineering,
Gainesville, FL, 1994-2011.

[DBH+06] K. D. Devine, E. G. Boman, R.T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek, Parallel hypergraph partitioning for scientific computing,
Proceedings IEEE International Parallel and Distributed Processing
Symposium 2006, IEEE Press, Long Beach, CA, 2006.

[DER86] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse
matrices, Monographs on Numerical Analysis, Oxford University Press,
Oxford, UK, 1986.

[DFRC96] Frank Dehne, Andreas Fabri, and Andrew Rau-Chaplin, Scalable paral-
lel computational geometry for coarse grained multicomputers, Interna-
tional Journal on Computational Geometry and Applications 6 (1996),
379–400.

[DJ07] J. M. Dennis and E. R. Jessup, Applying automated memory analysis to
improve iterative algorithms, SIAM J. Sci. Comput. 29 (2007), no. 5,
2210–2223.

BIBLIOGRAPHY 107

[DM98] L. Dagum and R. Menon, OpenMP: an industry standard API for
shared-memory programming, Computational Science and Engineering
5 (1998), no. 1, 46–55.

[DMS+94] R. Das, D. J. Mavripilis, J. Saltz, S. Gupta, and R. Ponnusamy, Design
and implementation of a parallel unstructured Euler solver using soft-
ware primitives, AIAA J. 32 (1994), no. 3, 489–496.

[FJ98] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture
for the FFT, Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 3, IEEE Press, Los Alamitos, CA,
1998, pp. 1381–1384.

[FJ05] , The design and implementation of FFTW3, Proceedings of the
IEEE 93 (2005), no. 2, 216–231.

[FLPR99] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-
oblivious algorithms, Proceedings 40th Annual Symposium on Foun-
dations of Computer Science, IEEE Press, Los Alamitos, CA, 1999,
p. 285.

[GBDD10] L. Grigori, E. Boman, S. Donfack, and T. A. Davis, Hypergraph-based
unsymmetric nested dissection ordering for sparse LU factorization,
SIAM J. Sci. Comput. 32 (2010), no. 6, 3426–3446.

[Geo73] A. George, Nested dissection of a regular finite element mesh, SIAM J.
Numer. Anal. 10 (1973), no. 2, 345–363.

[GG02] K. Goto and R. van de Geijn, On reducing TLB misses in matrix mul-
tiplication, Tech. Report TR-2002-55, University of Texas at Austin,
Department of Computer Sciences, 2002, FLAME Working Note #9.

[GVL96] Gene H. Golub and Charles F. Van Loan, Matrix computations, third
ed., Johns Hopkins Studies in the Mathematical Sciences, The Johns
Hopkins University Press, Baltimore, MD, 1996.

[Hin03] Konrad Hinsen, High-level parallel software development with Python
and BSP, Parallel Processing Letters 13 (2003), 473–484.

[HLP07] Gundolf Haase, Manfred Liebmann, and Gernot Plank, A Hilbert-order
multiplication scheme for unstructured sparse matrices, International
Journal of Parallel, Emergent and Distributed Systems 22 (2007), no. 4,
213–220.

[HMB00] Y. F. Hu, K. C. F. Maguire, and R. J. Blake, A multilevel unsymmet-
ric matrix ordering algorithm for parallel process simulation, Comput.
Chem. Engrg 23 (2000), 1631–1647.

108 BIBLIOGRAPHY

[HMS+98] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W.
Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas,
and Rob H. Bisseling, BSPlib: The BSP programming library, Parallel
Computing 24 (1998), no. 14, 1947–1980.

[HR98] B. Hendrickson and E. Rothberg, Improving the run time and quality
of nested dissection ordering, SIAM J. Sci. Comput. 20 (1998), no. 2,
468–489.

[HS52] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solv-
ing linear systems, Journal of Research of the National Bureau of Stan-
dards 49 (1952), 409–436.

[Im00] Eun-Jin Im, Optimizing the performance of sparse matrix-vector multi-
plication, Ph.D. thesis, University of California at Berkeley, 2000.

[IY01] E.-J. Im and K. A. Yelick, Optimizing sparse matrix–vector multipli-
cation for register reuse in SPARSITY, Proceedings International Con-
ference on Computational Science, Part I, Lecture Notes in Computer
Science, vol. 2073, 2001, pp. 127–136.

[Kam07] Alan Kaminsky, Parallel Java: A unified API for shared memory and
cluster parallel programming in 100% Java, International Parallel and
Distributed Processing Symposium, IEEE Press, Long Beach, CA,
2007, pp. 1–8.

[KK98] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for
partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), no. 1,
359–392.

[KK99] , Multilevel k-way hypergraph partitioning, Proceedings 36th
ACM/IEEE Conference on Design Automation, ACM Press, New York,
1999, pp. 343–348.

[KKHY06] T. Katagiri, K. Kise, H. Honda, and T. Yuba, ABCLibScript: a directive
to support specification of an auto-tuning facility for numerical soft-
ware, Parallel Comput. 32 (2006), no. 1, 92–112.

[Kle99] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, J.
ACM 46 (1999), no. 5, 604–632.

[KMRS88] Anna Karlin, Mark Manasse, Larry Rudolph, and Daniel Sleator,
Competitive snoopy caching, Algorithmica 3 (1988), 79–119,
10.1007/BF01762111.

[Kos02] Joris Koster, Parallel templates for numerical linear algebra, a high-
performance computation library, Master’s thesis, Utrecht University,
Department of Mathematics, July 2002.

BIBLIOGRAPHY 109

[KUWK00] M. Kowarschik, U. Rüde, C. Weiß, and W. Karl, Cache-aware multigrid
methods for solving Poisson’s equation in two dimensions, Computing
64 (2000), no. 4, 381–399.

[Lec94] David Lecomber, An object-oriented programming model for BSP com-
putations, Proc. PPECC Workshop on Parallel and Distributed Comput-
ing, 1994.

[Len90] T. Lengauer, Combinatorial algorithms for integrated circuit layout,
John Wiley and Sons, Chichester, UK, 1990.

[LM06] A. N. Langville and C. D. Meyer, Google’s PageRank and beyond: The
science of search engine rankings, Princeton University Press, Prince-
ton, NJ, 2006.

[LW07] K. Patrick Lorton and David S. Wise, Analyzing block locality in
Morton-order and Morton-hybrid matrices, SIGARCH Comput. Archit.
News 35 (2007), no. 4, 6–12.

[MFT+10] Michele Martone, Salvatore Filippone, Salvatore Tucci, Marcin Paprzy-
cki, and Maria Ganzha, Utilizing recursive storage in sparse matrix-
vector multiplication - preliminary considerations, Proceedings of the
ISCA 25th International Conference on Computers and Their Appli-
cations (CATA) (Hawaii, USA) (Thomas Philip, ed.), ISCA, 2010,
pp. 300–305.

[Mor66] G. Morton, A computer oriented geodetic data base and a new technique
in file sequencing, Tech. report, IBM, Ottawa, Canada, March 1966.

[NS11] Uwe Naumann and Olaf Schenk, Combinatorial scientific computing,
CRC Press, 2011, To appear.

[NVDY07] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, When cache
blocking of sparse matrix vector multiply works and why, Appl. Algebra
Engrg. Comm. Comput. 18 (2007), no. 3, 297–311.

[PH99] A. Pinar and M. T. Heath, Improving performance of sparse matrix-
vector multiplication, Proceedings Supercomputing 1999, ACM Press,
New York, 1999, p. 30.

[PS82] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear
equations and sparse least squares, ACM Transactions on Mathemati-
cal Software 8 (1982), 43–71.

[PTL85] B. N. Parlett, D. Taylor, and Z. Liu, A look-ahead Lanczos algorithm for
unsymmetric matrices, Mathematics of Computation 44 (1985), 105–
124.

110 BIBLIOGRAPHY

[SCFK04] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck, Sparse tiling for
stationary iterative methods, Int. J. High Perf. Comput. Appl. 18 (2004),
no. 1, 95–113.

[SF93] G. L. G. Sleijpen and D. R. Fokkema, BiCGSTAB(`) for linear equa-
tions involving unsymmetric matrices with complex spectrum, Elec-
tronic Transactions on Numerical Analysis 1 (1993), 11–32.

[SH04] M. M. Strout and P. D. Hovland, Metrics and models for reordering
transformations, Proceedings 2004 Workshop on Memory System Per-
formance, ACM Press, New York, 2004, pp. 23–34.

[SS86] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems, SIAM Journal on Scien-
tific and Statistical Computation 7 (1986), 856–869.

[SvdV00] Gerard L. G. Sleijpen and Henk A. van der Vorst, A Jacobi-Davidson
iteration method for linear eigenvalue problems, SIAM Review 42
(2000), no. 2, 267–293.

[SvG08] Peter Sonneveld and Martin B. van Gijzen, IDR(s): a family of sim-
ple and fast algorithms for solving large nonsymmetric linear systems,
SIAM Journal on Scientific Computing 31 (2008), no. 2, 1035–1062.

[Tis98] Alexandre Tiskin, The bulk-synchronous parallel random access ma-
chine, Theoretical Computer Science 196 (1998), no. 1-2, 109 – 130.

[TK04] A. Trifunovic and W. J. Knottenbelt, A parallel algorithm for multilevel
k-way hypergraph partitioning, Proceedings 3rd International Sympo-
sium on Parallel and Distributed Computing, IEEE Press, Los Alamitos,
CA, 2004, pp. 114–121.

[Tol97] S. Toledo, Improving the memory-system performance of sparse-matrix
vector multiplication, IBM J. Res. Dev. 41 (1997), no. 6, 711–725.

[UA04] Bora Uçar and Cevdet Aykanat, Encapsulating multiple communication
cost metrics in partitioning sparse rectangular matrices for parallel ma-
trix vector multiplies, SIAM Journal on Scientific Computing 25 (2004),
no. 6, 1837–1859.

[Val90] Leslie G. Valiant, A bridging model for parallel computation, Commun.
ACM 33 (1990), no. 8, 103–111.

[Val08] , A bridging model for multi-core computing, Algorithms - ESA
2008, Lecture Notes in Computer Science, vol. 5193, Springer, Berlin,
2008, pp. 13–28.

BIBLIOGRAPHY 111

[VB05] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication, SIAM Rev. 47
(2005), no. 1, 67–95.

[vdS10] Aad J. van der Steen, Overview of recent supercomputers 2010, Tech.
report, Netherlands National Computing Facilities Foundation, The
Hague, the Netherlands, September 2010.

[vdV92] H. van der Vorst, BiCGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal
on Scientific and Statistical Computation 13 (1992), 631–644.

[VDY05] R. Vuduc, J. W. Demmel, and K. A. Yelick, OSKI: A library of auto-
matically tuned sparse matrix kernels, J. Phys. Conf. Series 16 (2005),
521–530.

[vHBB02] A. van Heukelum, G. T. Barkema, and Rob H. Bisseling, DNA elec-
trophoresis studied with the cage model, J. Comput. Phys. 180 (2002),
no. 1, 313–326.

[VM05] R. W. Vuduc and H.-J. Moon, Fast sparse matrix-vector multiplication
by exploiting variable block structure, High Performance Computing
and Communications 2005, Lecture Notes in Computer Science, vol.
3726, 2005, pp. 807–816.

[VS02] V. Valsalam and A. Skjellum, A framework for high-performance matrix
multiplication based on hierarchical abstractions, algorithms and opti-
mized low-level kernels, Concurrency and Computation: Practice and
Experience 14 (2002), 805–839.

[Wor] CPU World, Microprocessors/Central Processing Units, retrieved on
27th of April, 2011.

[WOV+09] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Kather-
ine Yelick, and James Demmel, Optimization of sparse matrix-vector
multiplication on emerging multicore platforms, Parallel Computing 35
(2009), no. 3, 178–194.

[WP05] R. C. Whaley and A. Petitet, Minimizing development and maintenance
costs in supporting persistently optimized BLAS, Software: Practice and
Experience 35 (2005), no. 2, 101–121.

[WPD01] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical op-
timizations of software and the ATLAS project, Parallel Comput. 27
(2001), no. 1–2, 3–35.

112 BIBLIOGRAPHY

[WS97] J. B. White, III and P. Sadayappan, On improving the performance of
sparse matrix-vector multiplication, Proceedings 4th International Con-
ference on High-Performance Computing, IEEE Press, Los Alamitos,
CA, 1997, pp. 66–71.

[YB09] A. N. Yzelman and Rob H. Bisseling, Cache-oblivious sparse matrix–
vector multiplication by using sparse matrix partitioning methods,
SIAM Journal on Scientific Computing 31 (2009), no. 4, 3128–3154.

[YB11a] , A cache-oblivious sparse matrix–vector multiplication scheme
based on the Hilbert curve, Progress in Industrial Mathematics at ECMI,
Springer, Berlin, 2011, To appear.

[YB11b] , An object-oriented BSP library for multicore programming,
Concurrency and Computation: Practice and Experience (2011), To ap-
pear.

[YB11c] , Two-dimensional cache-oblivious sparse matrix–vector multi-
plication, Parallel Computing (2011), To appear.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben
Liblit, Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David
Gay, Phil Colella, and Alex Aiken, Titanium: a high-performance Java
dialect, Concurrency: Practice and Experience 10 (1998), no. 11-13,
825–836.

113

List of Figures

1 Multilevel cache architecture . xi
2 k-way set associative cache . xiii
3 Diagram of the IBM Power6+ cache hierarchy xiv
4 Diagram of the Intel Core 2 Q6600 cache hierarchy xv
5 Diagram of the AMD Phenom II 945e cache hierarchy xv
6 LRU stack in dense SpMV multiplication xviii
7 LRU stack in sparse SpMV multiplication xx
8 Row-net hypergraph model . xxi
9 Fine-grain hypergraph model . xxi

1.1 CRS and Zig-zag CRS (ZZ-CRS) orderings 7
1.2 One-dimensional reordering for two parts 10
1.3 One-dimensional reordering for three and four parts 12
1.4 Separated block diagonal (SBD) form 13
1.5 Plots of structured and unstructured matrices 22
1.6 Plots of the memplus matrix; p = 2 and p = 100 22
1.7 Plots of the rhpentium matrix for p = 100 and p = 400 23
1.8 Simulated cache effect of reordering on the memplus matrix 23
1.9 Simulated cache effect of reordering on the rhpentium matrix 25
1.10 Timings of SpMV multiplications with 1D reordered small matrices

on an Intel Q6600 . 26
1.11 Timings of SpMVs multiplications with 1D reordered small matrices,

using OSKI on an Intel Q6600 . 27
1.12 Timings of SpMV multiplications with 1D reordered large matrices

on an Intel Q6600 . 28
1.13 Timings of SpMV multiplications with 1D reordered large matrices,

using OSKI on an Intel Q6600 . 28
1.14 Timings of SpMV multiplications with 1D reordered large matrices

on an IBM Power6+ . 28

2.1 Doubly SBD form for p = 2 and p = 4 31
2.2 Reordering of the wikipedia 2006 matrix, 1D and 2D 32
2.3 Doubly SBD form for p = 4 with separator tree 33

114 LIST OF FIGURES

2.4 Various possible block orderings for matrices in doubly SBD form . . 34

3.1 Hilbert curve on two-by-two and four-by-four grids 52

4.1 Diagram of the Sun UltraSPARC T2 processor 75

115

List of Tables

1 Cache parameters of various architectures xvi
2 Glossary of objects used throughout the thesis xxiv

1.1 Matrices used in 1D reordering experiments 14
1.2 Relative cache efficiency for reordering with various p 16
1.3 Reordering costs in terms of SpMV multiplications 19

2.1 Matrices used in 2D reordering experiments 41
2.2 SpMV multiplication timings on an IBM Power6+ 43
2.3 SpMV multiplication timings on an Intel Core 2 Q6600 45
2.4 SpMV multiplication timings on an AMD Phenom II 945e 46

3.1 Matrices used in Hilbert experiments 54
3.2 Results for the Hilbert scheme on an Intel Q6600 54
3.3 Results of the Hilbert scheme on an AMD 945e 55

4.1 BSP_PROGRAM function list . 64
4.2 BSP_COMM virtual function list . 67
4.3 BSP_COMM_ARR virtual function list 68
4.4 Matrices used in MulticoreBSP SpMV multiplication experiments . . 73
4.5 BSP benchmark results for three architectures 77
4.6 Prediction results for SpMV multiplication on three architectures . . . 78
4.7 Prediction results for larger p on the Sun UltraSPARC T2 79
4.8 Speedups for SpMV multiplication on an AMD and an Intel system . 80
4.9 Speedups for SpMV multiplication on the Sun UltraSPARC T2 81
4.10 Speedups for the FFT on an AMD and an Intel system 83
4.11 Speedups for the FFT on the Sun UltraSPARC T2 83
4.12 Speedups for the LU on an AMD and an Intel system 85
4.13 Speedups for the LU on the Sun UltraSPARC T2 85

5.1 Sequential results for SpMV multiplication 92
5.2 Parallel SpMV multiplication with reordering on the Intel Q6600 and

the AMD 945e . 94

116 LIST OF TABLES

A.1 Comparison of different SpMV multiplication kernels 99

117

List of Algorithms

1 Matrix–vector multiplication using CRS xix
2 Matrix–vector multiplication using the Triplet scheme xix
3 Matrix–vector multiplication using ICRS 6
4 Hello World example using the MulticoreBSP library 65
5 Inner-product calculation for identically pre-distributed vectors x, y . 69
6 Parallel sparse matrix–vector multiplication 72
7 SpMV multiplication using globally addressable vectors 93

118 LIST OF ALGORITHMS

119

List of Notes

1 Architectures not reliant on caches xvii
2 Reordering for sparse LU decomposition 9
3 Partitioning random sparse matrices 24
4 Symmetric fine-grain and matrix reordering 49

120 LIST OF NOTES

121

Samenvatting
een uiteenzetting voor niet-experts

Computers bewerken gegevens, maar voor computers maakt het nogal wat uit in wel-
ke volgorde deze gegevens behandeld worden. In dit proefschrift zijn bestaande tech-
nieken, oorspronkelijk bedoeld voor het verdelen van gegevens, aangepast en uitge-
breid zodat zij het herordenen van data mogelijk maken. Dit herordenen zorgt ervoor
dat de nieuwe volgorde van gegevens de computerberekeningen veel sneller maakt.

De oorzaak dat ongestructureerde gegevens het rekenen vertragen ligt bij de ar-
chitectuur van de computer. Berekeningen op computers worden gedaan door een
processor, terwijl de gegevens die een computer nodig heeft typisch niet direct op
die processor aanwezig zijn; deze komen van de harde schijf, van compact discs, of
van het internet. Een stukje gegeven dat nodig is om een berekening uit te voeren
moet eerst dus een behoorlijke weg naar de processor afleggen. De infrastructuur die
gegevens moeten gebruiken om bij de processor uit te komen, is de oorzaak dat voor
ongestructureerde gegevens de berekeningen langzamer lopen.

We nemen voor het gemak aan dat alle nodige gegevens in het grote interne ge-
heugen (het zogenaamde Random Access Memory, RAM) van een computer aan-
wezig zijn. Tussen de processor van een computer en het interne geheugen, zijn
meerdere steeds kleinere (maar snellere) stukjes geheugen te vinden; deze worden
‘caches’ genoemd. Caches worden gebruikt om gegevens die het meest recent nodig
waren dichtbij de processor te houden. Voor gestructureerde problemen levert dit een
snelheidswinst op: als recente gegevens weer nodig zijn kunnen die uit het snelle
geheugen worden gehaald, in plaats van uit het langzamere grotere geheugen. Echter
zijn lang niet alle interessante problemen gestructureerd, en als er te vaak gerefe-
reerd wordt aan het langzame geheugen, is de processor langer bezig met wachten op
gegevens dan met het daadwerkelijk verwerken van die gegevens.

Deel I
De oplossing welk wordt gepresenteerd in de eerste twee hoofdstukken, begint met
het analyseren van afhankelijkheid tussen gegevens. Vervolgens worden gegevens in
twee groepen ingedeeld, zodanig dat de groepen zo min mogelijk van elkaar afhanke-

122 Samenvatting

lijk zijn. Elk van die twee stukken kan vervolgens recursief op dezelfde manier verder
gesplitst worden; het origineel wordt in twee stukken verdeeld, die elk wederom ge-
splitst worden zodat er vier stukken ontstaan, daarna nogmaals voor acht stukken,
enzovoorts. Hierop gebaseerd kunnen gegevens geordend worden, zodanig dat data
in kleinere groepen worden behandeld en dus beter in de kleinere caches passen.

De gegevens en de berekening

Dit proefschrift behandelt bovenstaande in de context van de ijle matrix–vector ver-
menigvuldiging; dat wil zeggen, we nemen aan dat de gegevens in de vorm van een
matrix gegoten kunnen worden. Een matrix A van dimensie m × n bevat m maal n
stukjes gegevens, en wordt in het algemeen als een blok weergegeven. Het volgende
is een 2× 3 voorbeeldmatrix, met als type gegevens gewoonweg getallen:

A =
(

1
√

2 0√
2 0 1

)
.

Één getal uit de matrix wordt genoteerd door middel van haar coördinaten: zo is A12

gelijk aan
√

2 en is A23 gelijk aan 1. Een matrix waarvan één van de dimensies 1 is,
wordt ook wel een vector genoemd. Een n× 1 vector is bijvoorbeeld:

x =

 0√
2

1

 .

Nergens in het proefschrift wordt overigens vereist dat de gegevens getallen moe-
ten zijn, in principe zouden gegevens van elke soort behandeld kunnen worden. Wat
wel wordt vereist, is dat sommatie (+) en vermenigvuldiging (·) tussen twee stukjes
gegevens mogelijk is, en dat er een nul-element bestaat wat niets doet als het ergens
bij wordt opgeteld, en resulteert in het nul-element zelf wanneer het betrokken is bij
een vermenigvuldiging (natuurlijk is dit vanzelfsprekend voor normale getallen, maar
misschien niet voor andere soorten gegevens).

Sommatie en vermenigvuldiging zijn nodig om de matrix–vector vermenigvuldi-
ging uit te voeren: voor een matrixA en een vector x als hierboven, isAmaal x (sim-
pelweg genoteerd als Ax) gelijk aan een vector y van dimensie m × 1, met het i-de
getal van y gelijk aan de sommatie van elk getal uit de i-de rij vanA vermenigvuldigd
met het bijbehorende getal uit x. In wiskundige notatie is dit yi =

∑n
j=1Aijxj , en

met het voorbeeld van hierboven krijgen we:

y =
(

1
√

2 0√
2 0 1

) 0√
2

1

 =
(

1 · 0 +
√

2 ·
√

2 + 0 · 1√
2 · 0 + 0 ·

√
2 + 1 · 1

)
=
(

2
1

)
.

Merk op dat x en y niet van dezelfde grootte zijn als A niet vierkant is.

123

Voor de bovenstaande matrix–vector vermenigvuldiging waren er 6 normale ver-
menigvuldigingen en 4 sommaties nodig. Echter zagen we dat er relatief vaak ver-
menigvuldigd werd met het getal 0, terwijl de uitkomst daarvan natuurlijk altijd 0 is.
Kijken we dieper dan zien we dat een 0 inA tot gevolg heeft dat het corresponderende
element uit x niet wordt bekeken. Aan de andere kant heeft een 0 in de vector x tot
gevolg dat een complete kolom van A wordt genegeerd. Simpelweg verwijderen van
nullen uit x, tezamen met de bijbehorende kolommen uit A, levert dus een directe
snelheidswinst.

Het verkrijgen van snelheidswinst uit nullen in A zelf is wat lastiger, en kan pas
worden gedaan wanneer de matrix overwegend uit nullen bestaat, ofwel, wanneer de
matrix ijl is. Dit is precies de situatie waarvoor in dit proefschrift naar een versnelling
wordt gezocht, en verklaart de eerste helft van de titel van het proefschrift: “Snelle
ijle matrix–vectorvermenigvuldiging...”.

Een wiskundige representatie

Alvorens we overgaan tot uitleg van het tweede deel van de titel, is het eerst nood-
zakelijk te beschrijven hoe de structuur van niet-nullen kan worden gevangen in een
wiskundig model. Hiervoor worden zogenaamde hypergrafen gebruikt, wat een gene-
ralisatie is van een normale graaf. Een graaf is een simpel concept, en bestaat alleen
uit twee ingrediënten: punten en lijnen, waar lijnen twee bepaalde punten met elkaar
verbinden. Het treinnetwerk is een simpel voorbeeld van een graaf; stations kunnen
worden weergegeven door punten en sporen tussen verschillende stations door lijnen.
Het hoeft dus zeker niet zo te zijn dat elk punt met elk ander punt is verbonden door
een lijn; het hoeft zelfs niet zo te zijn dat alle punten indirect met elkaar verbonden
zijn (het spoornetwerk van Nederland en van de Verenigde Staten zijn bijvoorbeeld
niet verbonden).

Tussen grafen en matrices bestaat al een verband. Stel bijvoorbeeld dat het Ne-
derlandse spoornetwerk bestaat uit vier stations: Utrecht, Groningen, Arnhem en
Rotterdam. Qua spoor nemen we aan dat Utrecht verbonden is met alle andere stati-
ons, en dat er voor de rest een directe lijn is van Arnhem naar Groningen. Deze graaf
is weer te geven als een 4× 4 matrix met langs elke as de vier stations, en een 1 in de
matrix als er een verbinding is tussen de corresponderende stations:

U G A R
Utrecht - 1 1 1

Groningen 1 - 1 0
Arnhem 1 1 - 0

Rotterdam 1 0 0 -

,

waar we de diagonaal even laten voor wat het is. In het geval van een veel groter
aantal stations, is het te verwachten dat de bijbehorende matrix veel nullen gaat be-
vatten; ofwel, de matrix is ijl. Maar deze representatie stelt nog een andere eis aan
de matrix: hij moet symmetrisch zijn (de linkeronderhoek is gespiegeld gelijk aan de

124 Samenvatting

rechterbovenhoek, met de streepjes op de diagonaal als scheiding). Natuurlijk hebben
we liever dat alle ijle matrices goed gerepresenteerd kunnen worden, en daarom gaan
we nu kijken naar de hypergraaf.

Net als een normale graaf, bevat een hypergraaf punten. De ‘lijnen’ in een hyper-
graaf verbinden echter niet twee punten, maar een arbitraire hoeveelheid punten; zo
een ‘hyperlijn’ wordt ook wel net genoemd omdat het meerdere punten vangt. Als
we weer als voorbeeld steden als punten in een hypergraaf nemen, dan kunnen pro-
vincies bijvoorbeeld de netten voorstellen. Een ander voorbeeld is dat we alle steden
met een treinstation in een net groeperen, en evenzo voor steden aan de snelweg, bij
vliegvelden, of bereikbaar per bus. Dit laatste voorbeeld geeft aan dat punten in een
graaf in meerdere netten kunnen voorkomen, naast dat netten meerdere steden kun-
nen bevatten. Het geval dat netten onderling nooit dezelfde punten bevatten, zoals het
geval met steden en provincies, is juist een erg speciaal geval.

Het verband tussen hypergrafen en matrices kan op verschillende manieren wor-
den gebouwd. De punten in een hypergraaf kunnen gegeven worden door de kolom-
men van een ijle matrix, en de netten corresponderen dan met de rijen van dezelfde
matrix: het net behorende bij rij nummer i verbindt dan de kolommen waar op die
rij niet-nullen te vinden zijn: zie bijvoorbeeld Figuur 8 op pagina xxi. Natuurlijk is
het ook mogelijk de rollen van rijen en kolommen om te draaien om zo een andere
vertaling mogelijk te maken. Een hele andere manier is echter om elke niet-nul in de
matrix tot een punt in de hypergraaf te benoemen. Vervolgens maken we twee ver-
schillende groepen netten, ongeveer zoals we hierboven verschillende netten hadden
voor steden met vliegvelden en steden met treinstations: maar nu voor niet-nullen in
een bepaalde rij en niet-nullen in een bepaalde kolom. Dus als Aij een niet-nul is in
rij i en kolom j, dan zit deze niet-nul in de netten behorende bij rij i en kolom j. Zie
Figuur 9 voor een voorbeeld.

Partitionering van hypergrafen
Nu op naar het tweede deel van de titel: “...door partitionering en herordening”. Ge-
geven het voorgaande kunnen we elke ijle matrix omzetten naar een hypergraaf. Stel
dat we de verzameling punten in de hypergraaf opschrijven als V en de verzameling
van alle netten als N . Dan wil partitionering in onze context zeggen dat V in stuk-
jes wordt opgedeeld. Natuurlijk kan dit op veel verschillende manieren en moeten
we wat eisen opleggen aan de partitionering om er iets van betekenis uit te krijgen.
Daar de punten in V corresponderen met niet-nullen, en dus eigenlijk met werk voor
de computer, is de eerste eis standaard dat de stukjes waarin V wordt opgehakt on-
geveer even groot moeten zijn. Origineel wordt partitionering namelijk gebruikt om
parallel rekenen mogelijk te maken; dat wil zeggen, het probleem wordt opgedeeld in
ongeveer gelijke stukjes die zo min mogelijk met elkaar te maken hebben, zodat die
stukjes zo onafhankelijk mogelijk van elkaar kunnen worden berekend op meerdere
computers tegelijkertijd.

De tweede eis is dus dat de stukjes onafhankelijk moeten zijn, en hiervoor gaan
we de gegevens van de verschillende netten gebruiken. Stel dat V in een arbitrai-

125

re hoeveelheid groepen is verdeeld, laten we zeggen p, en dat we deze groepen als
V1, . . . ,Vp noteren. Een bepaald net ni kan nu punten uit meerdere van deze groepen
bevatten; hoeveel precies noemen we de verbindingsgraad, en noteren we met λi.
De som van de verbindingsgraden van alle netten geeft ons een idee van hoe goed de
punten uit de verschillende groepen met elkaar verbonden zijn.

Over het algemeen maakt het ons niet uit als een net precies verbonden is met 1
groep; dat betekent namelijk dat de bijbehorende berekeningen compleet lokaal zijn
aan die ene groep. Ook is het ene net meestal niet belangrijker dan enig andere, en
dus gebruiken we de volgende kostenfunctie:

∑
i:ni∈N

(λi − 1) .

Dit wordt ook wel de (λ− 1)-metriek genoemd. De perfecte situatie correspondeert
met een uitkomst 0 van bovenstaande som, dat wil zeggen, wanneer het probleem
uiteenvalt in kleine stukjes die totaal niets met elkaar te maken hebben. Dit gebeurde
bijvoorbeeld bij het voorbeeld van steden als punten en provincies als netten; het
groeperen van punten aan de hand van provincies geeft een perfecte partitionering,
als er tenminste evenveel steden zijn in elke provincie. Indien niet, is het geen eerlijke
verdeling, en moeten er bij partitionering concessies gemaakt worden waardoor de
kosten hoger uit zullen vallen.

Partitionering en herordening

De nieuwe bijdragen van dit proefschrift zitten niet zozeer in technieken ter verbe-
tering van partitionering. Er wordt ervan uitgegaan dat een manier om een goede
partitionering te vinden al beschikbaar is, en bovendien aan bepaalde voorwaarden
voldoet. Op basis van het resultaat van zo’n partitioneerder wordt herordening toege-
past, en dat is waar dit proefschrift iets aan wil toevoegen in Hoofdstuk 1 en 2. Om
de resultaten kracht bij te zetten is de herordeningsmethode wel toegevoegd aan het
Utrechtse softwarepakket ‘Mondriaan’, welk voorheen alleen geschikt was voor het
partitioneren van ijle matrices en hypergrafen.

De herordeningsmethode werkt door de link tussen matrices en hypergrafen ver-
der uit te buiten. Niet alleen wordt de partitionering van de punten (V) van de hy-
pergraaf gebruikt, maar ook de informatie van de netten (N) wordt betrokken bij het
terugvertalen van hypergraaf naar matrix. Als we wederom aannemen dat V in twee
groepen is verdeeld, namelijk VL en VR, dan kunnen we N in drie groepen verde-
len: een groep N+ met netten die alleen iets te maken hebben met punten in VL,
een groepN− met netten alleen in VR, en de groepN c met overgebleven netten met
verbindingsgraad 2. Dit betekent dat onze oorspronkelijke matrix A na partitionering

126 Samenvatting

kan worden ingedeeld als:

Ã =

VL VR A1 0
A2 A3

0 A4

N+

N c

N−
;

ofwel, alle niet-nullen in VL verplaatsen we naar links, die in VR naar rechts, en tege-
lijkertijd verplaatsen we rijen bevat in N+ naar boven, de rijen in N− naar beneden,
en de resterende rijen in N c laten we in het midden. De resulterende vorm van Ã na
herordening, ook hierboven afgebeeld, is nieuw en noemen we de Separated Block
Diagonal (SBD) vorm, of, in goed Nederlands, de ‘gescheiden blokdiagonaal’-vorm.
Dit omdat de submatrices (blokken) A1 en A4 hierboven op een diagonaal lijken te
liggen, gescheiden door een rij van matrices A2 en A3.

Waarom is deze vorm goed voor het probleem van ijle matrix–vector vermenig-
vuldiging? Dit wordt duidelijk wanneer we y = Ax vervangen door ỹ = Ãx̃, met
x̃, ỹ op dezelfde manier geherordend als Ã. Herinner dat A ijl is, en dat A1, . . . , A4

dat dan ook zijn, terwijl A en Ã even groot zijn; dat wil zeggen, A1, . . . , A4 zijn
kleinere ijle matrices dan A maar bevatten samen dezelfde informatie als de originele
A zelf. De vermenigvuldiging wordt:

ỹ = Ãx̃ =

 A1 0
A2 A3

0 A4

(x1

x2

)
=

 A1x1

A2x1 +A3x2

A4x4

 .

Het eerste wat opvalt is dat de uitkomst ỹ uit drie delen bestaat (A1x1, A2x1 +A3x2,
en A4x2), terwijl ỹ hetzelfde is als de originele y, maar in een andere volgorde. Ook
zijn x1 en x2 samen even groot als x (en ook gelijk, op herordening na), maar de
vermenigvuldiging op zowel x1 en x2 wordt alleen gebruikt op het middelste deel
van ỹ; het eerste en het laatste deel gebruiken alleen x1 of alleen x2. Met andere
woorden zijn de berekeningen nu geconcentreerd in het bovenste deel of het onderste
deel van x̃, behalve wanneer het middelste deel A2x1 +A3x2 wordt berekend. En de
hoogte van A2 en A3 is impliciet juist dat wat de partitioneerder minimaliseert met
de (λ− 1)-metriek (zie de vorige sectie).

Als het in tweeën splitsen van berekeningen (dat wil zeggen, rekenen met x1 en
x2) al lijkt te helpen, waarom zouden we dan stoppen met twee? Inderdaad is het
mogelijk een x̃ te hebben die in 4 stukken is verdeeld, door simpelweg dezelfde truuk
toe te passen met A1 en A4. In het hele herordeningsverhaal hierboven kunnen we
namelijk A vervangen door A1, om zo een Separated Block Diagonal vorm van A1

krijgen:

Ã1 =

 A11 0
A12 A13

0 A14

 ,

en evenzo voor A4. Deze manier van overnieuw toepassen heet recursie. Plakken
we bovenstaand plaatje na recursie op A1 en A4 in het originele SBD-plaatje van Ã,

127

en hernoemen we de matrices met onderscheid tussen de diagonaalmatrices Ai en de
scheidingsmatrices Si, dan krijgen we de volgende structuur:

Ã =



A1 0 0 0
S1 S2 0 0
0 A2 0 0
S3 S4 S5 S6

0 0 A3 0
0 0 S7 S8

0 0 0 A4


.

En natuurlijk kunnen we doorgaan met recursie op de verschillende submatrices Ai,
totdat niet meer verder kan worden gegaan; dat wil zeggen, totdat alle rijen in een
scheidingsmatrix zitten, of totdat de submatrices zo klein zijn dat ze precies 1 kolom
bevatten. Door op deze manier recursie en partitionering te combineren, kan de ijle
matrix–vector vermenigvuldiging dus zo lokaal mogelijk worden gemaakt zodat het
goed werkt op computers met caches, ongeacht de precieze grootte van die caches.
In die zin zijn we ons niet bewust van de cache, of, in goed Engels, de herordenings-
methode is cache-oblivious.

Ook heeft het minimaliseren van de kostenfunctie
∑
i:ni∈N (λi − 1) nog een bij-

komend voordeel, naast dat het de verschillende scheidingsmatrices (Si) rij-gewijs
dun houdt: het zorgt ervoor dat de SBD-structuur ook wordt nagestreefd binnen de
rijen van scheidingsmatrices zelf. Bovendien is er theoretisch, gegeven een bepaal-
de cache, een aantal recursiestappen aan te wijzen waarvoor de kostenfunctie exact
aangeeft hoeveel elementen uit x er maximaal van buiten de cache moeten worden
gehaald. Ofwel, het is aangetoond dat de kostenfunctie inderdaad de onnodige bewe-
ging van gegevens minimaliseert, en dat terwijl het klassiek gezien de communicatie
tijdens een parallelle ijle matrix–vector vermenigvuldiging minimaliseert.

In de praktijk zien herordeningen er uit zoals in de Figuren 1.5, 1.6 en 1.7 (te zien
vanaf pagina 22). Figuren 1.10, 1.11 en verder laten de tijdwinst van daadwerkelijke
vermenigvuldigingen zien. De hier uitgelegde methode kan worden uitgebreid zodat
na herordening de zogenaamde Doubly SBD-vorm tevoorschijn komt. Deze ziet er
na een splitsing in tweeën als volgt uit: A1 S1 0

S2 S3 S4

0 S5 A2

 .

Wederom kan er recursief gewerkt worden op A1 en A2. Het voordeel van deze vorm
is dat dankzij introductie van een tweede dimensie (er is nu ook een verticale kolom
scheidingsmatrices, in plaats van alleen een horizontale rij), de rij-hoogte van S{2,3,4}
en de kolom-breedte van S{1,3,5} kleiner kunnen worden gemaakt dan wanneer er al-
leen één van die richtingen beschikbaar was. Om deze vorm in recursie te kunnen
gebruiken, is er echter meer dan alleen herordening nodig; theoretisch is de vraag in
welke volgorde de submatrices en scheidingsmatrices doorlopen moeten worden, en

128 Samenvatting

praktisch is de vraag hoe de matrix opgeslagen moet worden in het computergeheu-
gen. Dit alles is het domein van Hoofdstuk 2, en de resultaten verbeteren inderdaad
die van de oorspronkelijke methode uit Hoofdstuk 1; zie de Tabellen 2.2, 2.3 en 2.4.

Een andere oplossing
Het herordenen komt volgens bovenstaande dus uit op een methode die goed werkt
ongeacht de specifieken van caches, maar heeft wel de hulp van een ijle matrix par-
titioneerder nodig. Hoofdstuk 3 behandelt echter een alternatief dat werkt vanuit een
ander perspectief: het veranderen van de volgorde waarin elementen uit een matrix
betrokken worden in een matrix–vector vermenigvuldiging. Tot nu toe hebben we
impliciet aangenomen dat de volgorde rij-voor-rij is, van boven naar beneden, en
binnen een rij van links naar rechts. Laten we dit los, dan kan het kiezen van een goe-
de volgorde ervoor zorgen dat berekeningen lokaal blijven. Een geschikte volgorde
wordt gegeven door de Hilbert curve; zie Figuur 3.1 op pagina 52. In die figuur wordt
laten zien hoe een curve op een 4× 4 matrix kan worden uitgebreid tot eentje op een
16×16 matrix. Elk 4×4 kwadrant van die grotere matrix bevat echter een geroteerde
versie van de originele curve op de 4×4 matrix; er is dus een recept om elk kwadrant
weer verder te verfijnen, om zo een Hilbert curve op een 32×32 matrix te verkrijgen.
Wederom is een cruciaal ingrediënt recursie, en hiermee gewapend kunnen arbitrair
grote matrices ingetekend worden met een Hilbert curve.

De truuk is nu om de volgorde van deze curve te laten bepalen in welke volg-
orde niet-nullen behandeld worden. Vanwege de recursieve manier waarop de curve
gebouwd is, zitten opeenvolgende niet-nullen in deze volgorde ook ruimtelijk dicht
bijelkaar; en dus worden er elementen uit x en y aangesproken die ook dicht bijelkaar
zitten. Deze methode vereist verder alleen de berekening van de plek van niet-nullen
op de Hilbert curve, een relatief veel simpelere berekening dan die partitionering met
zich meebrengt. Deze methode was niet nieuw, echter was ze voorheen niet competi-
tief vanwege de moeilijkheid hoe de niet-nullen in een arbitraire volgorde op te slaan.
De voor de hand liggende methode (sla voor elke niet-nul de waarde en positie op),
gebruikt noodgedwongen meer geheugen dan de standaard opslagmethode. Als de
matrix meer geheugen nodig heeft, is er natuurlijk ook meer geheugenverkeer nodig
om de vermenigvuldiging uit te voeren; en hier ging het mis. De extra lokaliteit werd
teniet gedaan door het veroorzaakte extra verkeer. Dit proefschrift beschrijft een nieu-
we datastructuur die dit probleem deels oplost, waardoor de methode met de Hilbert
curve opeens wel competitief is geworden. Deze aangepaste datastructuur kan overi-
gens ook worden gecombineerd met de twee-dimensionale herordeningsmethode uit
Hoofdstuk 2.

Alhoewel dus sneller te prepareren en competitief gemaakt met de nieuwe data-
structuur, zijn de resultaten met deze methode niet zo sterk als wanneer gebruik wordt
gemaakt van herordening; zie de Tabellen 3.2 en 3.3. Het verdient wel op te merken
dat de methodes van matrixherordening en de hier besproken methode van verande-
ring van de niet-nul volgorde, elkaar totaal niet uitsluiten; er is niets op tegen eerst
een matrix te herordenen, om vervolgens aan de slag te gaan met de Hilbert curve.

129

Deel II

De voorheen behandelde hoofdstukken bevinden zich in een ander deel dan Hoofd-
stuk 4 en 5. Dit heeft een eenvoudige reden: tot nu toe is de ijle matrix–vector
vermenigvuldiging behandeld als zijnde één enkele berekening, ofwel, een sequen-
tiële berekening. Bij herordening wordt echter gebruik gemaakt van partitionering,
welk oorspronkelijk parallel rekenen mogelijk maakte; een logische vraag is of we de
gevonden methodes niet kunnen combineren met een parallelle vermenigvuldiging,
en dit is waar Deel 2 van het proefschrift zich mee bezig houdt.

Een eerste vraag van de lezer is wellicht wat parallellisatie precies inhoudt. Sim-
pel gezegd is het precies het verschil tussen één persoon een taak geven, of die taak
geven aan een groep personen. Zijn er vier muren te schilderen en wordt dit gedaan
door een enkele schilder, dan is dat een sequentiële oplossing. Wordt de taak vol-
bracht door meerdere schilders, dan noemen we dat een parallelle oplossing. In de
wereld van computerberekeningen zijn er, net zoals in het echte leven, triviale taken
en moeilijke taken wat betreft parallellisatie. In het geval van vier schilders bijvoor-
beeld, is er niet veel fantasie nodig om een initiële taakverdeling te bedenken: Er
rijst dan wel direct de vraag wat er gebeurt als de muren niet even groot zijn; als de
schilders met de kleinere muren eerder naar huis gaan en zij hun collega’s met grotere
muren alleen door laten werken, duurt het schilderen in zijn geheel langer dan wan-
neer samen zou worden gewerkt aan de overgebleven muren. We zeggen dan dat de
parallellisatie slecht gebalanceerd is, want ideaal willen we dat de benodigde schil-
dertijd precies gelijk is aan de sequentiële tijd (de tijd die één schilder nodig gehad
zou hebben), gedeeld door het aantal schilders.

Computers zijn niet zo intelligent als mensen, en als de taak ook maar een beetje
complex is, dan is parallellisatie niet makkelijk. Elke stap moet expliciet duidelijk
gemaakt worden aan de computer: hoe moet het probleem initiëel verdeeld worden,
hoeveel werkers moet ik tegelijkertijd opstarten, wat als één van die werkers al klaar
is, en hoe combineer ik de individuele resultaten van al die werkers tot het eigen-
lijke eindresultaat? Ook zijn er nog steeds behoorlijk wat verschillende computers
op de markt, die allemaal hun eigen communicatiemiddelen tussen werkers beschik-
baar stellen; moeten geparallelliseerde taken specifiek voor een bepaalde computer
geschreven worden?

Zelfs lastigere vragen doemen op wanneer het kan gebeuren dat werkers ‘cras-
hen’, vergelijk het met een schilder die plotseling ziek wordt en naar huis gaat. Al-
licht nog kwalijker kan het in de toekomst ook nog zo zijn dat een computerwerker
zijn berekening niet goed doet, en foute antwoorden geeft; zeg maar als een schilder
die met de verkeerde pot verf aan de gang is gegaan. Computers, inclusief de voorzie-
ne toekomstige architecturen, zijn niet creatief en initiatiefrijk genoeg om werk van
hun zieke collega over te nemen, of om zelf achter de fout te komen en vervolgens
zelf dan maar de goede pot verf te halen om overnieuw te beginnen; al dat soort acties
moeten expliciet geprogrammeerd worden.

130 Samenvatting

Bulk Synchronous Parallel en multicore rekenen

Of toch niet? Sommige van deze problemen komen al langer voor, en men heeft daar
oplossingen voor bedacht in de vorm van bridging models; modellen die het idee van
een parallelle computer (eentje die meerdere werkers op een enkele taak kan zetten),
abstraheren tot een theoretisch apparaat dat iedereen kan programmeren. Vervolgens
stellen computerontwikkelaars software-bibliotheken beschikbaar die programma’s
voor het theoretische apparaat kunnen vertalen naar code die werkt op de computers
die zij verkopen. Klassieke voorbeelden van zulke modellen en bibliotheken zijn
Message Passing Interface (MPI) en Bulk Synchronous Parallel (BSP), en richten
zich voornamelijk op supercomputers die bestaan uit meerdere fysieke processoren,
met elkaar verbonden middels een gespecialiseerd snel netwerk. Het parallelliseren
van een berekening begint dan ook meestal met het kiezen van een bridging model,
en vervolgens het nadenken en implementeren van een oplossing die snel zou moeten
werken binnen dat model.

In het geval van programmeren in BSP, waar in Hoofdstuk 4 van wordt uitgegaan,
zijn parallelle programma’s opgedeeld in superstappen, en voert elke werker hetzelf-
de parallelle programma uit. In een superstap kan een werker alleen berekeningen
uitvoeren met lokaal beschikbare data; het kan niet zelf bij de gegevens van andere
werkers komen, noch kan het communiceren met andere werkers. Tussen superstap-
pen in wordt gesynchroniseerd; dat wil zeggen, alle werkers wachten op elkaar zodat
tegelijkertijd kan worden begonnen aan de volgende superstap. Het is alleen toege-
staan dat tussen de superstappen in wordt gecommuniceerd. De opdrachten daartoe
kunnen echter alleen tijdens de superstap worden gegeven. Data van andere werkers
kunnen dus tijdens een superstap opgevraagd worden (of andersom, data kan aan an-
dere werkers verzonden worden), maar deze communicatie wordt pas later uitgevoerd
en de data is pas op de opgegeven bestemming beschikbaar wanneer de volgende su-
perstap begint. Dit gaat expliciet uit van een parallelle computer met gedistribueerd
geheugen; werkers hebben hun eigen lokale geheugen en communicatie tussen super-
stappen in, gebeurt via een netwerk. Een groot voordeel van deze opzet is dat BSP
de benodigde parallelle rekentijd kan voorspellen. Dit komt omdat de snelheid van
werkers bekend is, alsook de snelheid van het netwerk (hoe lang duurt het om zus en
zoveel te versturen). Bovendien is de tijd nodig om te synchroniseren (zonder com-
municatie) meetbaar. Als vervolgens de maximale hoeveelheid berekeningen van de
verschillende werkers per superstap bekend is, en als per werker ook bekend is wat
de maximum hoeveelheid verstuurde of ontvangen data is, dan zijn alle ingrediënten
bekend om de verwachte tijd uit te rekenen.

Tegenwoordig zijn de multicore processoren wijd verspreid. Deze combineren
meerdere ‘cores’ (werkers) op een enkele processor; een gemiddelde computer heeft
tegenwoordig twee cores, en de wat duurdere varianten hebben er vier of zes op één
chip. Het grootste verschil met wat hierboven is beschreven, is dat omdat de werkers
op één processor zitten, ze ook de geheugenstructuur delen. Hetzelfde globale ge-
heugen wordt gedeeld, net zoals de caches die tussen de processor en dat geheugen
zitten. Dit delen van caches maakt het interessant te bekijken wat de wisselwerking is

131

met de technieken uit het eerste deel, die ten doel hadden optimaal gebruik te maken
van de caches. Bibliotheken specifiek voor gedeeld-geheugen parallellisme bestaan
al geruime tijd; bekende voorbeelden zijn OpenMP en POSIX Threads (PThreads).

Hoofdstuk 4 houdt zich echter eerst bezig met het brengen van het oorspronkelijke
BSP model naar parallelle computers met gedeeld geheugen. In dit model wordt
nog steeds aangenomen dat werkers verbonden zijn met het netwerk, alleen is het
netwerk hier nu synoniem met de caches die alle cores met elkaar verbinden; dat
wil zeggen, het eigenlijke theoretische model is niet veranderd. Een versimpeling
komt wel tevoorschijn bij de bijbehorende BSP software-bibliotheek; communicatie
over dat netwerk is dan namelijk synoniem met het kopiëren van data, in plaats van
codering en verzending over een netwerk. Omgekeerd maakt de gedeeld-geheugen
architectuur het lezen van gegevens, ongeacht van welke werker deze gegevens zijn,
veel makkelijker. Op dit gebied is de standaard BSP bibliotheek dan ook uitgebreid,
en een concept software-bibliotheek genaamd MulticoreBSP is tegelijkertijd met dit
proefschrift ontwikkeld.

IJle matrix–vector vermenigvuldiging in BSP
Nu volgt een korte beschrijving van de parallelle implementatie van de ijle matrix–
vector vermenigvuldiging in het BSP model. Het werk dat hoort bij deze vermenig-
vuldiging wordt veroorzaakt door de niet-nullen in de matrix A; elke niet-nul moet
vermenigvuldigd worden met het juiste element uit x, en de uitkomst daarvan moet
opgeteld worden bij het juiste element uit y. Dit betekent dat de niet-nullen verdeeld
moeten worden over werkers, en wel op een manier zodat de werkers elkaar zo min
mogelijk voor de voeten lopen door hetzelfde element uit x op te vragen of te schrij-
ven naar hetzelfde element uit y. Zoals eerder opgemerkt worden zulke verdelingen
gevonden door ijle matrix partitioneerders zoals Mondriaan, maar wordt er in dit
proefschrift niet ingegaan op de technieken van partitioneerders, en wordt simpelweg
verondersteld dat externe partitioneerders beschikbaar zijn (en goed werken).

Het klassieke parallelle algoritme partitioneert niet alleen de matrix A, maar ook
de vectoren x en y. Dit is vanwege schaalbaarheid; een reden voor parallellisatie is
niet alleen snelheidswinst, maar soms ook dat het verdelen over meerdere werkers
een extreem groot probleem behandelbaar maakt (een probleem kan simpelweg te
groot zijn voor een enkele computer). Om deze reden moet alle benodigde data dan
ook daadwerkelijk verdeeld worden over alle werkers, in dit geval de matrix inclusief
de betrokken vectoren. Bovendien zou er erg veel communicatie nodig zijn als elke
werker beide vectoren accuraat bij moet blijven houden.

Alle niet-nullen voor een bepaalde werker worden gegroepeerd in een lokale ma-
trix Ā, en gelijk zo met de lokale versies x̄ en ȳ van x en y, respectievelijk. De grootte
van lokale objecten Ā, x̄ en ȳ is kleiner dan of gelijk aan de grootte van de originele
matrix en vectoren. Het is nu verleidelijk te zeggen dat elke werker ȳ = Āx̄ moet
uitrekenen en dat is alles; maar niets is minder waar. Omdat x en y verdeeld zijn, is
het mogelijk dat niet-nullen in Ā corresponderen met elementen uit x die niet lokaal
zijn (niet in x̄ zitten), maar juist bij een andere werker aanwezig zijn. Evenzo kunnen

132 Samenvatting

er niet-nullen in Ā zitten die moeten communiceren met elementen uit y aanwezig
bij andere werkers. Het standaard BSP algoritme haalt derhalve in de eerste super-
stap alle lokaal nodige elementen uit x vanuit de andere processoren. In de volgen-
de superstap zijn deze elementen beschikbaar, en kan rij-voor-rij de daadwerkelijke
matrix–vector vermenigvuldiging uitgevoerd worden. Als een rij niet lokaal is, dat
wil zeggen, als de uitkomst bij een element van y moet worden opgeteld dat niet aan-
wezig is in ȳ, dan wordt deze uitkomst doorgestuurd naar de werker die het element
wel heeft. Hierna wordt weer gesynchroniseerd, en in de laatste superstap worden
de binnenkomende bijdragen voor ȳ opgeteld; het is immers net zo goed mogelijk
dat andere werkers niet-nullen in een rij hadden die corresponderen met elementen in
onze ȳ.

Op systemen met gedeeld geheugen is het opvragen van niet-lokale gegevens uit
xwel direct mogelijk, zonder superstap, maar ook hier gebeurt zoiets liever met mate.
Dit omdat het inefficiënt cachegebruik waarschijnlijk maakt: cache-gebruik zou goed
zijn juist wanneer alle werkers hetzelfde element op hetzelfde moment opvragen,
maar om dit te garanderen moeten de werkers constant communiceren om ervoor
te zorgen dat ze in hetzelfde tempo werken (ofwel, constant synchroniseren). Zoiets
zou betekenen dat ze meer met elkaar praten dan dat ze daadwerkelijk werk verzetten.
Voor y is hetzelfde niet mogelijk. Stel dat element y3 uit y op het moment gelijk is
aan 0.5, en dat een werker het getal 3.5 bij y3 wil optellen terwijl er tegelijkertijd een
tweede werker is die 5 wil optellen bij y3. De eerste werker telt lokaal 3.5 bij 0.5
op en komt uit op 4, en schrijft dat terug naar y3. De tweede werker is zich, net zo
min als de eerste werker, van geen kwaad bewust en doet hetzelfde met 5, en schrijft
dan 5.5 terug naar y3. Beide schrijfopdrachten racen terug naar het globale geheugen
waar de vector y staat, en wie als laatste aankomt wint3. De waarde van y3 wordt
dus 5.5 of 4, beide ongelijk aan het eigenlijke antwoord (9). Dit is dan ook de reden
dat MulticoreBSP het lezen van data van een andere werker wel toestaat, maar het
schrijven daartoe niet. Al met al is het algoritme voor systemen met gedeeld geheugen
hetzelfde als het algoritme voor gedistribueerd geheugen wat hierboven beschreven
is, behalve dat niet-lokale elementen uit x direct kunnen worden uitgelezen en er
dus een superstap minder nodig is. Wegens efficiënt cachegebruik met betrekking tot
niet-lokale elementen uit x, is een goede partitionering in beide richtingen (x en y)
nog steeds belangrijk.

Herordening en parallellisme op systemen met gedeeld geheugen

Zoals eerder opgemerkt worden ook caches gedeeld tussen werkers wanneer mul-
ticore systemen gebruikt worden. Hoofdstuk 5 combineert de inzichten van al het
voorgaande om een cache-efficiënte parallelle vermenigvuldiging te bewerkstelligen.
De methode daar gepresenteerd kan als volgt geschetst worden.

Stel dat we de beschikking hebben over twee cores, en dat de matrix in doubly

3Het is ook goed mogelijk dat deze fout door het systeem gedetecteerd wordt, wat doorgaans de hele
parallelle berekening afbreekt met een foutmelding.

133

SBD-vorm is gebracht dankzij de technieken ontwikkeld in Deel I:

Ã =

 A1 S1 0
S2 S3 S4

0 S5 A2

 .

Met de vorige sectie in gedachten, en onder aanname van geschikte vector-distributies
voor x en y, zien we dat A1 en A2 corresponderen met de niet-nullen die werkers 1
en 2 compleet onafhankelijk van elkaar kunnen behandelen. S1 correspondeert met
niet-nullen waarvoor werker 1 mogelijk een element uit x van werker 2 moet halen,
en evenzo voor S5 maar met de rollen van de twee werkers omgedraaid. S2 corres-
pondeert met niet-nullen waarvoor werker 1 mogelijk bijdragen aan een element uit
y naar werker 2 moet sturen, en wederom omgekeerd hetzelfde voor S4. S3 heeft de
hoofdprijs; hier moeten werker 1 en 2 zowel mogelijk elementen van x van de andere
werker opvragen, alsook mogelijk bijdragen aan y sturen naar de andere werker.

Willen we gebruik maken van de herordening, dan is het makkelijker te veron-
derstellen dat er geen lokale versies van Ã, x en y gevormd worden, maar dat alle
werkers op het origineel opereren. Dit betekent dat we buiten het BSP model om wer-
ken; de experimentele software ontwikkeld bij dit hoofdstuk is dan ook geschreven in
PThreads in plaats van met MulticoreBSP. In de vorige sectie is beargumenteerd dat
het lezen van elementen van x bij andere werkers toegestaan is voor systemen met
gedeeld geheugen. Dit betekent dat het voor werkers toegestaan is om zonder meer
te lezen uit een globale x, omdat de herordening gebaseerd is op de partitionering.
S{1,5} lijken zich in die zin automatisch goed te gedragen, maar S{2,3,4} zijn lastiger
aangezien onder geen voorwaarde meerdere werkers naar hetzelfde deel van y mogen
schrijven. Dit is in het huidige hoofdstuk opgelost door meervoudige synchronisatie;
eerst wordt alleen werker 1 toegestaan op S{2,3,4} te werken, en daarna, dus na syn-
chronisatie, is werker 2 aan de beurt. Deze methode is verder verfijnd door de rijen
van S{2,3,4} van te voren in tweeën te verdelen, zodat beide werkers op (ongeveer)
de helft van de rijen van deze scheidingsmatrices kunnen opereren. Na synchroni-
satie wisselen de werkers van helft om de berekening af te maken. Op deze manier
is de werkbalans optimaal; in de voorgaande versie zou telkens één werker louter
toekijken hoe de ander aan de slag gaat, terwijl ze nu beiden ongeveer evenveel te
doen hebben. Het enige nadeel is dat het aantal synchronisatiestappen proportioneel
is aan het aantal werkers. Hoe meer werkers, hoe meer tijd er verloren gaat aan syn-
chronisaties. Wil deze methode aantrekkelijk blijven, dan moet de grootte van de te
vermenigvuldigen matrix dus meeschalen met het aantal werkers.

Net zoals bij Hoofdstuk 1 en 2 is het mogelijk meer te halen uit deze methode
door gebruik te maken van recursie. Ook al zouden er alleen twee werkers beschik-
baar zijn, het recursief opdelen van A1 en A2 zou voor beter cache-gebruik van die
twee werkers moeten zorgen, omdat berekeningen van beide werkers lokaler worden
in x en y. Samenvattend is de truuk om het aantal partities dus hoger te nemen dan
het aantal beschikbare werkers, zodat elke werker de SBD-vorm individueel kan uit-
buiten, terwijl op hoger niveau de werkers elkaar dankzij de partitioneerder zo min

134 Samenvatting

mogelijk voor de voeten lopen wat betreft de elementen die gedeeld moeten worden
tussen meerdere werkers.

Resultaten van parallelle methoden
Resultaten van parallellisatie met MulticoreBSP zijn te vinden in de Tabellen 4.8
en 4.9, vanaf pagina 80. De combinatie met herordening is minder uitgebreid ge-
test, met de resultaten op twee architecturen en twee voorbeeldmatrices weergegeven
in Tabel 5.2 op pagina 94. Het verdient nog een opmerking dat de MulticoreBSP
software-bibliotheek zich niet beperkt tot de ijle matrix–vector vermenigvuldiging
alleen; ook oplossingen van andere problemen zijn geïmplementeerd en onderzocht
op efficiëntie. Deze andere problemen zijn het berekenen van het inwendig product
van twee vectoren, de snelle Fouriertransformatie (zoals ook gebruikt in compressie
van muziek en beeld), en LU decompositie (welke werkt op volle, in tegenstelling
tot ijle, matrices). Hoofdstuk 4.6 zet alle resultaten verkregen met deze toepassingen
uiteen. De combinatie van resultaten laat zien dat MulticoreBSP, inclusief de uit-
breiding op de standaard BSP bibliotheken, inderdaad voor goede parallellisatie op
huidige multicore computers kan zorgen.

135

Curriculum Vitae

Albert-Jan Nicholas Yzelman was born on the 17th of July, 1984, at the Rijnstate hos-
pital in Zevenaar, the Netherlands. He was raised in Duiven, where he attended the
elementary school ‘De Wiekslag’. After obtaining his Atheneum diploma in 2002
from the ‘Candea College’ high school, he pursued a bachelor’s degree in Math-
ematics at Utrecht University. He graduated in both Mathematics and Computing
Sciences, with his final research project on the subject of parallel radiosity rendering
done under the supervision of Rob Bisseling.

Albert-Jan stayed at Utrecht University to continue with the master’s programme
Scientific Computing, which he concluded in 2007. For his thesis he moved to Rot-
terdam to start an internship at Alten Nederland. This involved researching R-trees
in application to oil reservoir simulation software, and was performed in cooperation
with Royal Dutch Shell. He was supervised by Arno Swart, Gerard Sleijpen, Eric
Haesen and Hans Molenaar.

Following this, Albert-Jan took an opportunity to remain at Utrecht University
as a PhD candidate under supervision of Rob Bisseling. Four years were spent in
researching various aspects of high performance computing applied to the problem
of sparse matrix–vector multiplication, which resulted in the thesis now before you.

His secondary duties at the university also included teaching; ranging from head-
ing exercise sessions for undergraduates, to being solely responsible for teaching a
graduate-level class. From 2009 onwards, he also participated in organising a yearly
event for PhD students in Scientific Computing located in the Netherlands and Flan-
ders.

Albert-Jan will continue research in parallel computing at the Katholieke Universiteit
Leuven in Belgium, starting September 2011.

