

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 4, pp. 3128–3154

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR
MULTIPLICATION BY USING SPARSE MATRIX PARTITIONING

METHODS∗

A. N. YZELMAN† AND ROB H. BISSELING†

Abstract. In this article, we introduce a cache-oblivious method for sparse matrix–vector
multiplication. Our method attempts to permute the rows and columns of the input matrix using a
recursive hypergraph-based sparse matrix partitioning scheme so that the resulting matrix induces
cache-friendly behavior during sparse matrix–vector multiplication. Matrices are assumed to be
stored in row-major format, by means of the compressed row storage (CRS) or its variants incremental
CRS and zig-zag CRS. The zig-zag CRS data structure is shown to fit well with the hypergraph
metric used in partitioning sparse matrices for the purpose of parallel computation. The separated
block-diagonal (SBD) form is shown to be the appropriate matrix structure for cache enhancement.
We have implemented a run-time cache simulation library enabling us to analyze cache behavior for
arbitrary matrices and arbitrary cache properties during matrix–vector multiplication within a k-way
set-associative idealized cache model. The results of these simulations are then verified by actual
experiments run on various cache architectures. In all these experiments, we use the Mondriaan
sparse matrix partitioner in one-dimensional mode. The savings in computation time achieved by
our matrix reorderings reach up to 50 percent, in the case of a large link matrix.

Key words. matrix–vector multiplication, sparse matrix, parallel computing, recursive biparti-
tioning, cache-oblivious

AMS subject classifications. 65F10, 65F50, 65Y05, 65Y20

DOI. 10.1137/080733243

1. Introduction. Many important linear algebra kernels typically take a perfor-
mance hit on modern cache-based computer architectures [9, 21, 34] due to inefficient
use of the system cache. Cache use is best when data from main memory is stored
contiguously and accessed in a single straight pass. Each data item is preferably used
many times, and is not needed in further computation afterwards. Unfortunately,
many nontrivial applications require one to jump through data in main memory, even
if data is stored contiguously. A notorious example is sparse matrix–vector (SpMV)
multiplication. In these cases, we can try to minimize the number of jumps or other-
wise improve cache efficiency. As recent work in the field of the BLAS by Goto and
van de Geijn [16] has shown, tweaking algorithms to specific architectures results in
large speedups.

Such cache-aware algorithms have as a disadvantage the need to adapt exist-
ing code to new architectures every time they become available. To resolve this,
auto-tuning software libraries have become a focus for much research [24, 41], most
notably FFTW (for fast Fourier transforms) [12, 13], OSKI (basic sparse BLAS) [39],
and ATLAS (dense BLAS) [42]. These libraries may run various benchmarks upon in-
stallation to help optimize algorithms for the hardware specifics of the target machine,
or may even attempt this during real-time execution.

Another approach is to design algorithms in such a way that optimal cache ef-
ficiency is achieved on any (regular) machine architecture. These cache-oblivious

∗Received by the editors August 20, 2008; accepted for publication (in revised form) March
23, 2009; published electronically July 31, 2009. This work was supported by the BSIK/BRICKS
MSV1-2 program.

http://www.siam.org/journals/sisc/31-4/73324.html
†Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

(A.N.Yzelman@uu.nl, R.H.Bisseling@uu.nl).

3128

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3129

Table 1.1

List of parameters used throughout this paper.

m × n matrix dimensions
A, x, y matrix and vectors

C the cache
S cache size in bytes

LS cache line size in bytes
L number of cache lines (L = S/LS)
w number of data words in a cache line
k number of subcaches

algorithms have been researched to some extent, and for some applications have been
shown to obtain asymptotically optimal bounds [3, 14].

In this article, we propose a cache-oblivious sparse matrix–vector multiplication
algorithm. We use techniques from load-balancing for parallelism to increase data
locality for cache reuse. Before introducing our method, we first describe our sparse
matrix storage format in section 2. We then proceed in section 3 with an analysis
of cache efficiency. Related cache-aware and cache-oblivious methods for the SpMV
multiplication are discussed in section 4. In section 5, we connect the SpMV multi-
plication problem to hypergraph partitioning theory, and formulate the basic idea of
our method. In section 6, we formalize this idea in terms of matrix permutations.

Theoretical cache efficiency analysis depends very much on the exact matrix in-
put; even when this is known, analysis is still difficult due to algorithm complexity.
Experimental results on actual machines, on the other hand, suffer from inflexibility
in the cache parameters, such as cache size, leading to observations with only a limited
range of applicability. This motivated the development of our run-time cache simu-
lator, which we introduce in section 7. We finish with experimental results on this
simulator and on actual hardware in section 8 and general conclusions in section 9.

The contributions of the present work can be summarized as follows: (i) we
present a new variant of the CRS data structure, zig-zag CRS, which reduces end-
of-row cache misses; (ii) we introduce the separated block-diagonal (SBD) form as a
matrix reordering that achieves better cache use; (iii) we present a new cache-oblivious
approach to SpMV and demonstrate that it can work well in practice; (iv) we estab-
lish a connection between matrix reordering for cache enhancement and hypergraph
partitioning, which can be used to detect and exploit beneficial structure in a matrix.

Throughout the paper, we assume a k-way set-associative idealized cache model,
with k subcaches, where the case k → ∞ corresponds to the ideal-cache model intro-
duced in [14]. In our model, we assume a total cache size equal to S bytes, and a line
size of LS bytes. The total number of cache lines is thus L = S/LS. A cache C can
then be modeled as an (L/k) × k matrix, where entries ci,j correspond to individual
cache lines and each matrix column c∗,j to a subcache. A matrix row ci,∗ is called
a set. The number i is commonly called the Set ID, while j is called the Line ID.
Table 1.1 provides an easy reference of the parameters introduced here.

A further assumption we make regarding the cache model is that data is modulo-
mapped onto Set IDs and that the Line ID is selected by the least recently used (LRU)
policy. This means that the data in main memory (RAM) at the bytes in the range
[rLS , (r + 1)LS), for any r ∈ N0, is mapped to the Set ID i = r mod L

k . The Line
ID j is determined by selecting the cache line containing the least recently used data
item, and the cache line we select thus becomes ci,j . Such behavior can be modeled
by using a stack of size k; memory contents may be (re)inserted at the top of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3130 A. N. YZELMAN AND ROB H. BISSELING

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

Fig. 1.1. Schematic view of the k-way set-associative cache model with modulo mapping of
main memory to subcache.

Algorithm 1 Matrix–vector multiplication using CRS.
Input: nzs, col ind, and row start corresponding to a sparse matrix A;

the dimensions m and n of A;
a dense input vector x.

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialize: y = 0
2: for i = 0; i < m; i = i + 1 do
3: for k = row start [i]; k < row start [i + 1]; k = k + 1 do
4: j = col ind [k]
5: y[i] = y[i] + nzs [k]∗x[j]
6: end for
7: end for
8: return y

stack, while the least recently used data are evicted from the bottom. Each cache set
ci,∗ thus maps to a single LRU stack. See also Figure 1.1 for an illustration of this
model. For a further introduction to cache architecture, one may consult [36].

2. Incremental CRS. A standard storage scheme for sparse matrices is the
compressed row storage (CRS) format [2]. This format utilizes three arrays: one
array for storing individual nonzero matrix entry values (nzs), one for storing the
column index of those nonzeros (col ind), and one for indexing where in the previous
two arrays individual rows start (row start).

The arrays nzs and col ind each require nz(A) space in memory, where nz(A)
denotes the number of nonzeros of the m × n sparse matrix A. The array row start
requires only m words of space, bringing the total up to 2nz(A)+m. An algorithm to
perform the SpMV multiplication y = Ax on a matrix stored in CRS format is given
in Algorithm 1. Note that we index vector and matrix elements starting from 0: the
matrix elements are aij , 0 ≤ i < m, and 0 ≤ j < n.

A drawback of standard CRS implementation is the use of the row start array for
keeping track which nonzeros belong to which row. Looking at Algorithm 1, a for-loop
was started on line 3 along indices k relevant to the row i being processed. Since there

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3131

Algorithm 2 Matrix–vector multiplication using ICRS.
Input: nzs, diff, and row jump corresponding to a sparse matrix A;

the dimensions m and n of A;
a dense input vector x;
the number of nonzeros nz(A).

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialize: y = 0
2: i = row jump[0], j = diff [0], k = 0, r = 1
3: while k < nz(A) do
4: y[i] = y[i] + nzs [k]∗x[j]
5: k = k + 1
6: j = j + diff [k]
7: if j ≥ n then
8: j = j − n
9: i = i + row jump[r]

10: r = r + 1
11: end if
12: end while
13: return y

is no other way of knowing when a row ends, optimized CRS multiplication code will
always have to keep track of k. Furthermore, although the array nzs is straightfor-
wardly accessed according to k, x is accessed according to j = col ind [k]; this kind of
index translation also causes instruction overhead: if we store the address (pointer) xp
of the currently used element from x, this is updated like xp=x+col_ind[k]. Faster
would be xp+=diff[k], with diff[x]=col_ind[k]-col_ind[k-1] and
diff[0]=col_ind[0]; this, combined with an alternative for the row start array,
leads to the incremental CRS (ICRS) scheme proposed by Koster in his master’s
thesis [26]. A sparse matrix–vector algorithm utilizing this ICRS scheme is given in
Algorithm 2. Note that an increment in row index is signaled by causing j to overflow
(i.e., j ≥ n) so that j − n corresponds to the actual column index corresponding to
the first nonzero in the new row. The increase in the row index i after each column
overflow is stored in the array row jump. Although the pseudocode of Algorithm 2
is a few lines larger than that of Algorithm 1, we can implement it more efficiently
by using suitable pointer arithmetic. This causes the instruction overhead to drop
dramatically [26, Figure 2.5].

Changing CRS to handle data incrementally does not change its worst-case mem-
ory requirements; nzs and the new difference array diff both use nz(A) space while
row jump is still of size m in the worst case. The total memory requirement thus also
equals 2nz(A) + m. If there are some empty rows, however, memory requirements as
well as memory accesses are reduced slightly, resulting in further speedup. If there
are no empty rows, the array row jump need not be stored since all its entries equal 1.

3. Cache performance for dense and sparse matrix–vector multiplica-
tion. Cache performance is deemed optimal if an algorithm does not cause more cache
misses than necessary. This is most easily achieved when data is stored contiguously
and accessed only once with stride one, i.e., consecutively from front to back. Con-
tiguous access is necessary since multiple data words may fit into a single cache line.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3132 A. N. YZELMAN AND ROB H. BISSELING

x0 =⇒ a00

x0
=⇒

y0

a00

x0

=⇒
x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Fig. 3.1. LRU stack progression during the first steps of dense MV multiplication. Whenever a
new data element is pushed onto the stack, it is displayed on top. Older elements thus appear lower
in this figure, with the least recently used element at the bottom. Note that if all memory lines below
the bars are evicted, y0 is evicted at step 4 (denoted by the fourth arrow), while it is immediately
reused the step after.

However, in most cases previously accessed data is reused, which complicates finding
an optimal access pattern.

We consider the dense case first. For simplicity, we assume that one data word
fits exactly in one cache line, i.e., w = 1. Figure 3.1 shows a small example of cache
effects in the context of dense MV multiplication, where we assume the perfect cache
idealization k → ∞; that is, the cache C is given by a 1×L matrix and cache lines are
solely selected by use of the LRU policy. The algorithm starts off with y0 = y0+a00x0,
pushing the elements from x, A, and y onto the top of the LRU stack. If the cache
size S is such that the cache can contain exactly two data words, i.e., L = 2, we see
that x0 is pushed out of the cache at the end of this instruction.

The next instruction is y0 = y0 + a01x1, and again the variables x and A are
brought in first, pushing y0 out of the cache just before it was needed again. If the
cache could contain exactly three data words instead of two, y0 would still have been
available. Note that when the MV algorithm reaches the next row (i.e., executes
y1 = y1 + a10x0), then, depending on the cache size S, there are two possibilities:
either x0 is still in cache and no cache miss occurs, or x0 was evicted and it must
be brought back in. This results in O(n) cache misses on x, on each row, and hence
O(mn) cache misses during the whole algorithm.

A way to prevent those cache misses on x is to limit the number of subsequent
accesses using some blocking parameter q so that after processing xq−1, the MV
algorithm proceeds with the next row. Obviously, we choose q so that elements from
x are not prematurely evicted. When the last row has been processed, the algorithm
jumps back to the first row and goes on to process xq until it reaches xmax {2q−1,n−1},
et cetera.

At this point, y is repeatedly accessed from index 0 until m − 1, as each column
block is processed. Thus, it is possible that elements from y are prematurely evicted
in the same way as originally for x, causing O(m) cache misses each time a column
block is processed. This already is quite an improvement since we typically have far
fewer column blocks than we have rows. Although the problem is less severe, we still
may want to limit access on y using some blocking variable p (which need not be
equal to q) and apply the same trick on the row indices. This method is appropriately
named cache blocking [30] since, in effect, we are subdividing A into blocks of size
p × q for which an MV algorithm does not incur unnecessary cache misses.

Let us now discuss the sparse case. With the dense case described above in mind,
we observe the following regarding general sparse MV multiplication algorithms:

• every matrix element is accessed exactly once during MV multiplication;
• the order of matrix element access determines the access patterns of the x

and y vectors;
• the order of matrix element access is determined by its storage scheme.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3133

xj1 =⇒ ai1,j1
xj1

=⇒
yi1

ai1,j1
xj1

=⇒
xj2
yi1

ai1,j1
xj1

=⇒

ai2 ,j2
xj2
yi1

ai1 ,j1
xj1

=⇒

yi2
ai2,j2
xj2
yi1

ai1,j1
xj1

Fig. 3.2. LRU stack progression during the first steps of sparse MV multiplication using CRS.
The indices ir and jr are the row and column index of the rth nonzero element from A. Note that for
most r, jr �= jr+1, while ir only differs from ir+1 when the nonzeros at a given row are exhausted
and the algorithm moves to the next row.

From this last point, we expect that CRS and ICRS obtain the same performance
in terms of cache efficiency since the order of element access remains unchanged; thus
for readability, by discussing the CRS ordering, we refer to both the CRS and ICRS
data structures. We may analyze a sparse MV multiplication algorithm using the or-
dering induced by CRS in much the same way as in the dense case; Figure 3.2 shows
that the LRU stack during SpMV multiplication using CRS behaves quite similarly to
the stack of a dense MV multiplication. The major difference is that most of the time,
the column indices are not consecutive. This greatly increases the difficulty of predict-
ing when cache misses occur; it all depends on the relative column-wise positions of
the nonzeros in A. Hence the blocking parameters p and q cannot be determined solely
from m, n, and the cache size S; this also requires information on the structure of A.
Cache-aware blocking thus becomes much harder to apply, amongst others motivating
the development of run-time cache-aware auto-tuning kernels such as OSKI [39].

4. Related work on sparse matrix–vector multiplication. In this section,
we present an overview of earlier work dealing explicitly with improving cache effi-
ciency in SpMV multiplication. Kowarschik et al. [27] improve the speed of a multigrid
method for Poisson’s equation on a two-dimensional grid by exploiting knowledge of
the cache characteristics. The multigrid example they use is based on a red-black
ordered Gauss–Seidel operation with a 5-point finite-difference stencil. This opera-
tion can be viewed as multiplying the vector representing the grid points by a certain
Laplacian sparse matrix. Among the techniques applied are: loop blocking, i.e.,
combining computations from different iterations of the main loop; reordering of the
computations, obtained by sliding a small window in which computations are carried
out across the whole grid, instead of performing the computations row by row. A
speedup of a factor of 4.6 is obtained by the latter technique for certain grid sizes.
The authors note that cache effects will be even stronger in the three-dimensional
case.

Das et al. [7] use reordering techniques developed for reducing fill-in (i.e., new
nonzeros) in direct solvers, such as the Cuthill–McKee (CM) method and the reverse
CM method, to reduce the bandwidth of the matrix for the purpose of avoiding cache
misses in SpMV multiplication. Toledo [34] performs an extensive study of such
ordering techniques, and other techniques such as finding small dense 1× 2 and 2× 2
blocks, and prefetching of data. He found that CM ordering works well for his test
matrices (all 3D finite-element matrices) when used in combination with blocking into
small dense blocks. He notes that CM is cheap to compute, requiring computing time
equivalent to a few SpMV multiplications. Reverse CM ordering is not as good, as it
leads to fewer dense blocks.

Pinar and Heath [31] try to create contiguous blocks of nonzeros in the matrix rows
by reordering the columns, formulating the problem as an instance of the traveling

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3134 A. N. YZELMAN AND ROB H. BISSELING

salesman problem (TSP). In their formulation, cities represent the matrix columns
and distances the inner products between columns (considering the sparsity pattern
only, not the numerical values). This inner product metric is the same as the column
similarity metric used in many partitioners, including Mondriaan [38] and PaToH [5].
Small dense 1 × 2 blocks are then used to halve the integer overhead of the SpMV,
and also to reduce the number of loads of a cache line: for w > 1, the two required
adjacent values xj and xj+1 will often be in the same cache line. In their experiments,
Pinar and Heath achieve on average 21 percent reduction in SpMV time by using the
TSP ordering, and only 5 percent by using the reverse CM ordering. The largest gain
observed for TSP is 33 percent.

Vuduc and Moon [40] write the sparse matrix A as the sum of several matrices,
each of which is stored in a blocked variant of the CRS format, with its own block size
and alignment of the starting nonzero. Here, each block is small and dense, e.g., 1×2
or 1 × 3. A matrix with block size 1 × 1 is also included to represent the remaining
nonzeros in the standard CRS format. Blocks are created by greedily grouping rows
and columns based on a scaled inner product metric.

Nishtala et al. [30] investigate cache blocking for SpMV multiplication by splitting
the matrix into several smaller p× q sparse submatrices (blocks), using the CRS data
structure for each separate block. They present an analytic cache-aware model to
determine the optimal block size and demonstrate that this scheme works well in
practice. The authors achieve speedups for over half of their test matrices with a
maximum speedup of 2.93. They note that gains are largest for m × n matrices with
m � n. Their algorithms and software are included in the OSKI package [39].

White and Sadayappan [43] use the Metis graph partitioner [22] to reorder the
matrix for better SpMV performance on machines with a single-level cache. They
report no gains by this method, which they attribute to the natural well-structured
ordering of their test matrices. Nevertheless, reordering by partitioning did show
some speedup compared to a random ordering. The authors propose to unroll loops
and change the CRS data structure, e.g., by sorting the rows by length and creating
blocks of rows of the same length.

Strout and Hovland [32, 33] use (regular) graph partitioning to achieve a better
data ordering in memory. They use hypergraph partitioning to improve inter-iteration
(temporal) locality, which can be done in some iterative algorithms where it is not
necessary to finish one iteration before partially continuing with the next.

Haase, Liebmann, and Plank [18] use the Hilbert space-filling curve to order the
elements of the matrix A, storing the nonzero elements in the order they are encoun-
tered along the curve. Each element aij is stored as a triple (i, j, aij). They call the
resulting data structure fractal storage. Experimental results on finite-element matri-
ces show speedups of up to 50 percent in computing rate compared to the common
CRS format, for SpMV multiplication with eight simultaneous input vectors. This
approach has the advantage that it exploits naturally existing locality in the matrix
at all levels of detail simultaneously, without knowing about the characteristics of the
cache; the Hilbert space-filling approach thus is cache-oblivious. This approach is
two-dimensional, in contrast to our own approach, which is one-dimensional since it
is based on storing matrix rows. No attempt is made to enhance locality, in contrast
to our own method. It may be possible to combine the Hilbert method with ours, by
first running the matrix reordering presented here and then using fractal storage.

Summarizing the related work, we can say that only a few approaches are explic-
itly cache-aware or cache-oblivious. The approach incorporated in OSKI [30, 39] is
cache-aware since it adapts to the cache sizes and other characteristics; this also holds

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3135

Fig. 5.1. The CRS (left) and ZZ-CRS (right) orderings. The dash-dotted lines show the order
in which matrix nonzeros are stored.

for the approach of [27]. The space-filling curve approach [18], like ours, can be called
cache-oblivious since by its recursive nature it exploits locality at all levels. Most
approaches, however, fall outside these two categories. They try to enhance cache
use by reordering or splitting the matrix, without knowing the cache size, but also
without tackling all levels simultaneously. Often, the approach is based on using small
dense blocks [7, 31, 34], sometimes called register blocking, and this will improve use
of the registers and the L1 cache, but not the L2 and L3 cache. In the next sections,
we will present our own approach.

5. Zig-zag CRS data structure and its connection to hypergraphs. A
first, cache-oblivious way to reduce the number of cache misses in CRS is to prevent
jumping from the last to the first column when a row increment occurs. Instead, we
could just start at the last column of that row, and then process nonzeros in reverse
order until we arrive at the first column. At the next row increment we repeat this
recipe. Assuming all rows are nonempty, we thus process in the standard increasing
order on even-numbered rows, and in decreasing order on odd-numbered rows. We
call the resulting data structure zig-zag CRS (ZZ-CRS). Figure 5.1 illustrates both
the CRS and zig-zag CRS orderings.

When using the zig-zag scheme, a cache that is too small will not cause the full
O(n) cache misses on the vector x (assuming w = 1) for each row in the dense case.
Instead, we incur only O(n − L) cache misses per row, where L is the total number
of cache lines. For the general case w ≥ 1, where more than one data word may fit
into a cache line, we have O(n

w − L) misses instead of O(n
w). This improvement may

seem small, but we do not advocate zig-zag ordering for this reason alone. In fact, we
shall now show that by using this particular storage scheme, we can find similarities
between established matrix partitioning schemes and the cache dynamics we have
observed earlier. To this end, we quickly review basic hypergraph-based partitioning
methods for sparse matrices.

5.1. Hypergraph partitioning. It is possible to represent a sparse matrix A
as a hypergraph H = (V ,N), as follows. We let a vertex vj ∈ V correspond to the jth
column of A. The net (or hyperedge) ni ∈ N is a subset of V that contains exactly
those vertices vj for which aij 	= 0. This is called the row-net model [5], since each
matrix row is represented by a net. Figure 5.2 displays a small example sparse matrix
and its row-net hypergraph. Other models to represent sparse matrices include the
column-net [5] and fine-grain model [6]. In the column-net model, the roles of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3136 A. N. YZELMAN AND ROB H. BISSELING

2 3 5

4 67 1

0

0 1 2 3 4 5 6 7

Fig. 5.2. Example translation from a sparse matrix to a hypergraph using the row-net model.
Vertices 0 through 7 represent the columns. A net is cast over those vertices that share nonzeros in
a row. Hence, each net represents a row.

row and column indices are interchanged as compared to the row-net model. The
fine-grain model differs from the previous models in that the vertices correspond to
individual nonzeros aij . A net then contains nonzeros sharing the same row or column.

We will use the row-net model because of the rowwise storage of CRS. Suppose
we partition the vertex set V into subsets V0,V1, . . . ,Vp−1, where the Vs ⊂ V are
pairwise disjoint while ∪p−1

s=0Vs = V . Given a specific partitioning, it can happen that
the vertices in a net ni are distributed over several subsets (or parts), resulting in a
cut net. Let us denote the number of subsets over which the ith net is cast, by λi;
this is also called the connectivity of the ith net.

Given the net cost ci, which is a factor expressing the relative importance of each
net, and the net connectivity λi, a cost can be assigned to a given partitioning by
means of a cost function:

(5.1)
∑

i:ni∈N
ci(λi − 1).

This cost function is commonly called the λ−1 metric, or connectivity−1 metric, and
is used extensively in parallel computing; see [5]. It originates in the field of electronic
circuit simulation; see [29]. Generally, in our matrix partitioning, we assume there
is no preference of any kind as to which matrix rows are cut, and thus take ci = 1
for all i. While partitioning a hypergraph in this manner, we strive to minimize the
function (5.1).

When applying hypergraph partitioning with parallel distribution of sparse ma-
trices in mind, we also want to maintain a good load balance; that is, the number of
nonzeros in each part should deviate only by a small factor from the average number.
To achieve this, each vertex vj is weighted with wj = nzj , the number of nonzeros in
the jth column of the matrix. We then also minimize

(5.2) max
0≤s<p

∑

j:vj∈Vs

wj .

Consider a recursive algorithm that repeatedly splits sets of vertices V into two
subsets and aims to construct a partitioning of a hypergraph this way. A quantity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3137

that is useful when reasoning about load balance is

(5.3) ε =
max{|V0|, |V1|}
(|V0| + |V1|)/2

− 1.

When ε = 0 we have perfect load balance; we will denote ε as the load-imbalance
factor.

The demands of a perfect load balance and a minimized total connectivity cost
usually conflict with each other. In an attempt to construct a partitioning that is
acceptable in terms of both criteria, we may decide to allow a load imbalance not larger
than some predefined parameter ε. A software package implementing this approach
in sparse matrix partitioning is Mondriaan [38]. Mondriaan splits the matrix in both
dimensions, each time choosing the best from a split in the row direction and the
column direction. We use this partitioner in our experiments in section 8, although
not in its full 2D generality. We only need splits in the column direction, and hence
use Mondriaan in 1D mode.

When considering parallel sparse MV multiplication, parts correspond to proces-
sors. In a full 2D partitioning, a cut column in some partitioning indicates that the
required component of the vector x is shared among different processors. This results
in communication, since the components of x are distributed among the processors
to achieve scalability; processors that require components from x which they do not
locally store, have to request these values from other processors. This happens before
any computational work and is called the fan-out of the parallel SpMV multiplica-
tion. The same goes for components of y: some processors may have to add values
to components of y governed by other processors, thus also requiring communication.
This happens after the computational work and is called the fan-in.

The rationale for the cost function (5.1) is that if we attempt to minimize com-
munication, we try to avoid any cut nets; ideally, we have λi = 1 for all i. Even if we
do have to cut a net, we should cut it in as few parts as possible so that the number
of processors that have to communicate with each other is minimized.

5.2. Cache-oblivious approach. Now, consider the following bipartitioning
routine working on a row-net hypergraph H = (V ,N) representing a sparse matrix
A, where vertices represent columns and rows represent nets. We partition V into
parts V0,V1 while taking into account the load imbalance constraint and the cost
function. Note that the indices of the columns corresponding to the vertices in each
part do not have to be consecutive. In effect, we now have partitioned the matrix A
columnwise. We also induce a partitioning on the nets in N corresponding to this
partitioning. The set of nets with vertices only in V0 is denoted by N−. The set of
nets with vertices only in V1 is denoted by N+. The set of cut nets, i.e., nets which
have vertices in both parts, is denoted by N c.

Let the SpMV multiplication algorithm visit matrix elements in the following
order. First, the rows corresponding to nets in N− are processed, followed by those
in N c, and finally those in N+; see Figure 5.3. The matrix elements in consecutive
rows are furthermore processed in zig-zag order. Since such an algorithm, like ZZ-CRS
based SpMV multiplication, visits matrix rows in succession, no unnecessary cache
misses are incurred on the vector y.

To minimize the cache misses on x, we define

(5.4) p =
n

wL
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3138 A. N. YZELMAN AND ROB H. BISSELING

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 5 0 4 6 7

2

4

3

7

1

5

6

0

N +

V0 V1

N −

N c

Fig. 5.3. Original matrix (left) and permuted matrix (right) after one bipartitioning step.
Shaded and black squares denote nonzero elements. Black columns denote vertices in V0 whereas
shaded columns denote vertices in V1.

which can be interpreted as the number of caches that would be needed to store the
complete input vector x. (Note that wL equals the number of data words that can be
stored by the cache.) This value p defines a natural number of parts (or processors)
for storing a row of the matrix. If the matrix were dense, the number of cache misses
per row would be n/w − L = L(p − 1), provided the zig-zag ordering is used. This
would also be the number of misses for a sparse matrix that is relatively dense and
has its nonzeros well-spread, e.g., in a random sparsity pattern.

If the matrix row i is only nonzero in an interval j ∈ [li, ri), the number of cache
misses for that row is at most (ri − li)/w − L, provided the interval is the same as
for the previous or next row (this is needed for the zig-zag ordering to be beneficial).
Here, we replace the row length n in the right-hand side of (5.4) by the interval length
ri − li, giving a number of nonempty row parts (of the size of a complete cache) equal
to λi = (ri−li)/(wL), and the corresponding number of cache misses is then L(λi−1).
If the interval is dense, this upper bound is exact. If the interval is sufficiently dense,
with at least one out of every w matrix elements nonzero, the bound is still exact.
Another important case is where the row is uncut after partitioning the matrix into
p sets of columns. This happens very often for a good partitioner, as this is the main
aim. For such an uncut row no cache misses are incurred, again under the assumption
that the zig-zag ordering works, and this corresponds exactly to the bound L(λi − 1)
with λi = 1, which is just zero.

As a result, we can view the matrix as being partitioned into blocks of n/p
columns, and the corresponding communication volume of parallel SpMV multipli-
cation times L gives an upper bound on the number of cache misses. Thus, minimiz-
ing the communication volume in the λ − 1 metric using hypergraph partitioning is
expected to improve cache utilization. This is the main motivation for our approach.

In practice, we are oblivious of the values for w, L and we do not know the
appropriate value of p. It does not harm the cache behavior to partition beyond the
value of p given in (5.4). Hence, we partition infinitely, p → ∞, or as far as we can
go. If we perform the partitioning by recursive bipartitioning, and reorder the matrix
accordingly (see section 6), we create beneficial matrix structure at all values of p.
This way of reordering also minimizes cache misses on multilevel cache hierarchies
since for lower p we optimize for the larger (e.g., L2) caches while for higher p we
optimize for the smaller (L1) caches, without harming the upper-level optimizations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3139

Putting the collection of cut rows between those of N− and N+ ensures that
data loaded in by first visiting columns corresponding to V0 are still available when
processing N c. Since N c also contains data from V1, cache performance deteriorates
as data corresponding to V0 is swapped out in favor of those of V1. We then proceed
with N+, which deals only with data corresponding to V1, thus purging the remaining
data corresponding to V0 while taking advantage of the V1 data already brought into
cache. This procedure is preferred to, say, processing rows in N c strictly after those
in N− and N+, as is done in matrix reorderings for other purposes, e.g., in nested
dissection [15] for Cholesky factorization [19] or LU factorization; Aykanat et al. [1]
use hypergraphs to reorder rectangular matrices for sparse LU or QR factorization.
Recent work by Grigori et al. [17] also employs hypergraphs to reorder unsymmetric
matrices for sparse LU factorization. For factorization, it makes sense to place cut
rows or columns last, since this postpones and prevents fill-in, the creation of new
nonzeros. Another example where cut rows come last, is the work on the package
Monet [20], which tries to create a bordered block-diagonal form based on hypergraph
partitioning with the cut-net metric (i.e., (5.1) with λi − 1 replaced by 1 if λi ≥ 2,
and 0 otherwise).

Concluding, our method of placing cut rows in the middle ensures, with high
probability, that we have cache hits when moving from one net to another in the set
of cut nets. This allows for a gradual transition from one set of rows to the other.
This transition is expected to be smooth if the rows are sparse, and if the partitioner
manages to keep the number of cut rows small.

6. Matrix permutations. Consider now a single bipartition of A defined by
V0, V1, N−, N c, and N+. We can then define a permuted matrix A1 as illustrated
in Figure 5.3. The permutation of columns can be written in linear algebra form as
AQ, where A is the original matrix and Q a permutation matrix of corresponding
dimensions. Similarly, the permutation of rows to achieve the net-based ordering
N−,N c,N+ can be written as a left-sided multiplication with another permutation
matrix P .

Let us denote the n × n identity matrix by I = (e0|e1| . . . |en−1). Then we
have that the right-sided permutation matrix is given by Q = (eq0 |eq1 | . . . |eqn−1),
for some index permutation (qi)i∈[0,n−1] of the tuple (0, 1 . . . , n − 1). Similarly,
P = (ep0 |ep1 | . . . |epm−1)T , with index permutation (pi)i∈[0,m−1]. Recall that since
P, Q are permutation matrices, P−1 = PT and Q−1 = QT . Of course, the indices at
the start of (qi) correspond to the columns in V0 and the remaining indices to the
columns in V1; the order of (pi) is similarly induced by the net order. The permuted
matrix A1 after one bipartitioning step is then given by A1 = PAQ.

Subsequent recursive bipartitioning results in similar row and column permuta-
tions on disjoint submatrices of A. We can therefore still represent the matrix Ar

after r recursive steps by Ar = PAQ, for certain P and Q, and our modified SpMV
multiplication routine can be represented as follows:

(6.1) y = Ax = PT ArQ
T x, so ỹ = Arx̃ with ỹ = Py, x̃ = QT x.

One can see a clear similarity to general preconditioning techniques. Also by using this
notation, we can extend our partitioning mechanism to other related linear algebra
kernels besides SpMV multiplication:

• We can express y = Ax + βz as follows: y = PT (ArQ
T x + βPz), which can

be written as a standard SpMV multiplication ỹ = Arx̃ + βz̃ with ỹ = Py,
x̃ = QT x, and z̃ = Pz.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3140 A. N. YZELMAN AND ROB H. BISSELING

• Also, y = AT x can be expressed as a permutation: y = QAT
r Px, so that we

have ỹ = AT
r x̃ with ỹ = QT y and x̃ = Px.

• Finally, y = AAT x is also possible: y = PT ArA
T
r Px, so that ỹ = ArA

T
r x̃

with ỹ = Py and x̃ = Px.
This shows that one can apply our cache-oblivious matrix reordering scheme by

permuting only input matrices and vectors, and run the corresponding standard BLAS
kernels (or similar) on the permuted input data. The underlying BLAS software can
even be a cache-aware package, such as OSKI [39], thus perhaps increasing cache
efficiency even beyond what is possible with either OSKI alone or with our method
combined with a simple BLAS kernel.

We can also show that some linear algebra kernels cannot be executed directly
using our partitioning method. Notably this applies to the kernel used in power
method solvers, namely y = Asx, s ∈ N, and s > 1. When supplying a permuted
matrix, this kernel becomes y = (PAQ)(PAQ)s−1x; between instances of the original
matrix A, we thus find the matrix QP . Since generally QP 	= I, we cannot simply feed
the matrix to an arbitrary Asx kernel; we need a translating step between successive
multiplications, which would be quite inefficient. This is, for instance, the case for the
power method used in Google PageRank computations [4]. However, if we instead
consider an alternative page-ranking method based on hubs and authorities, called
the HITS method [25] (see also the book [28, p. 117]), the power method is applied to
the matrices AAT and AT A with A a link matrix. After reordering of A, the matrix
(AAT)s becomes (PAQQT AT PT)s = P (AAT)sPT , and similarly for AT A. In this
case, our reordering scheme can be used without penalty.

Determining the column permutation is straightforward: the recursive biparti-
tioning yields an implicit order of subsets of V . Indeed, if we recursively bipartition
an arbitrary number of times, we may denote the resulting subsets by describing the
path followed in their construction; that is, at each recursive step a vertex subset
either remains intact, is distributed left (0), or distributed right (1). A subset can
thus be denoted by (0110), meaning it was first distributed left, then right, right
again, and finally again on the left side. Interpreting this representation as a binary
number gives us a natural ordering on the vertex sets. Note that if we bipartition
infinitely (that is, continue until each subset contains exactly one vertex), we end up
with n subsets each containing a single column. Reordering those subsets according to
their binary representation and reading out the column indices of the corresponding
vertices yields the final column reordering.

Determining the row permutation is more difficult. To do this, we look at the
set of possible final locations Qi of each row i after permutation. At the start of
the reordering, we of course have that Qi = [0, m − 1], which is the full range of
matrix rows. After the first bipartitioning, we obtain three net subsets N {−,c,+}.
The rows corresponding to nets in N− can then map to [0, |N−| − 1], those in N c to
[|N−|, m− |N+|− 1], and those in N+ to [m− |N+|, m− 1]; see also Figure 5.3. This
procedure is repeated after each following bipartitioning; see Figure 6.1. There, each
horizontal straight line gives new row boundaries for the rows, with Qi the interval
defined by those boundaries. After infinite bipartitioning, we can then deduce a row
ordering from the Qi. Note that such an ordering need not be unique; for some i,
|Qi| > 1 is possible, even if m ≤ n.

Figure 6.2 shows the overall structure that is obtained by recursively bipartition-
ing a sparse matrix and placing the cut rows in the middle. In analogy with the
bordered block-diagonal (BBD) form [11], we call the matrix structure obtained after
a sequence of recursive bipartitionings the separated block-diagonal (SBD) form. At

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3141

2 3 1 5 0 4 6 7

2

4

6

0

3

7

5

1

2 3 1 5 0 7 4 6

2

4

6

5

0

1

7

3

Fig. 6.1. The reorderings after two (left) and three (right) bipartitionings of the original matrix
in Figure 5.3. Grey squares denote nonzeros not considered in the current bipartitioning step.

Fig. 6.2. Separated block-diagonal (SBD) structure of a sparse matrix obtained by recursively
partitioning in the column direction and moving the cut rows to the middle. The recursion has been
stopped after creating 16 diagonal blocks. The four colors indicate the block structure at p = 4.

each level of the recursion, the cut rows separate the two sets of uncut rows from each
other. Note that the cut rows may have internal structure, which is not depicted.
This structure is created by using the λ−1 metric, which tries to prevent further cuts
inside already cut rows. (The cut-net metric does not have this advantage.)

7. Cache simulation. The performance of sparse MV multiplication kernels
depends on the actual structure of the sparse matrix itself. This dependency on
matrix input makes it hard to analyze our method in terms of the cache model we
introduced; we therefore implemented a cache simulator library, which enables us to
simulate cache dynamics accurately within the theoretical model. Using this library,
we are able to analyze theoretical cache performance on any sparse input matrix and
correlate these results to actual wall-clock timings, as will be done in section 8.

Our cache simulator, implemented in C++, uses run-time memory allocation and
memory access wrapper functions to catch and process data access. Upon allocation,
a pointer to the allocated region x̃ is stored. This pointer is regarded as a physical
RAM address. The address x = x̃ − (x̃ mod LS) is then calculated. We use this
address instead of x̃ to account for the possibility that several variables share the
same cache line; we only store the start of the cache line brought into cache. Upon

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3142 A. N. YZELMAN AND ROB H. BISSELING

accessing s bytes from x̃, the simulator proceeds with calculating to which cache set
ID x maps, that is, i = x

LS
mod L

k . Let us first assume that x̃ − x + s ≤ LS, so that
one cache line suffices. The address x is then pushed onto the stack corresponding to
the set ID i.

The act of pushing an address onto the stack is where the simulator detects if
a cache hit or miss has occurred. For every set ID i, we have stored a stack of size
k. When pushing x onto such a stack, either x already is in cache, or it is not. If
it is present, we have a hit and x is removed from its current location in the stack
and reinserted at the top of the stack. If it is not present, we have a miss and x
is inserted at the top. If this would cause the stack size to overflow (i.e., become
larger than k items), the address at the bottom of the stack is evicted. This process
is repeated in case a single cache line does not suffice, with x̃new = xold + LS and
snew = sold−LS + x̃old−xold. These calculations are done on-the-fly, so that no trace
data needs to be stored.

For our purposes, we are interested only in cache effects caused by the matrix A
and its input and output vectors x and y. We therefore only apply cache simulations
to calls to memory corresponding to A, x, and y. Our cache simulator enables us to
obtain theoretical performance gains for caches with arbitrary parameters, that is, we
can simulate a variety of caches. Our simulator is limited to handling one level of
cache only. It is publicly available.1

8. Experimental results. Here, we present experimental results of our reorder-
ing scheme. We are interested in obtaining wall-clock timings for various p and ε to
measure the effectiveness of our method in practice. We also give the theoretical
number of cache misses by using our cache simulator, to check whether the model
indeed approaches realistic cache dynamics. Finally, we express the reordering time
in terms of SpMVs (on the original matrix).

Our experiments are set up as follows. We assume as input a matrix stored in
Matrix Market format. This is read into an adapted version of the recently released
Mondriaan 2.0 software package [38], which keeps track of the permutation matrices
P and Q while partitioning. The permuted matrix PAQ is then written in triplet
format to a binary file, and can be read in by specialized CRS, ICRS, and ZZ-ICRS
benchmark or cache simulation programs. To compare our results with established
methods, we also run experiments using OSKI (optimized sparse kernel interface) [39]
on the original matrix as well as on reordered versions thereof. We thus have obtained
results of the reordered matrix using two different SpMV routines, both based on
CRS or one of its variants. Our OSKI benchmarking program forces OSKI always to
attempt a full tuning of the input matrix before multiplication, assuming any tuning
can be amortized by sufficiently many SpMVs; however, this does not guarantee that
OSKI actually tunes every input matrix. It is possible to ask OSKI whether or not a
matrix has been tuned; we will do this to gain additional insights regarding the OSKI
timings. Furthermore, a user who has intimate knowledge of the input matrix can
provide hints to OSKI as to which structural properties may be exploited. We have
not given OSKI any such hints; if we had done so, better optimizations might have
been found. All benchmarking programs perform 1000 matrix–vector multiplications,
of which the normalized average execution time is reported.

The benchmark applications to obtain the wall-clock timings are performed on
two architectures. The first architecture is a quadcore 2.4 GHz Intel Core 2 (Q6600)

1The cache simulator can be obtained from http://www.math.uu.nl/people/yzelman/software/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3143

Table 8.1

Matrices used in our experiments, sorted by category first and number of nonzeros second. The
first category is that of the matrices we discuss in-depth in section 8. The second category contains
the remaining matrices of smaller size, where input and output vectors typically fit into L2 cache.
Finally, the third category contains larger matrices, causing more intensive use of the L2 cache.
The sixth column indicates whether the matrix is considered structured (S) or unstructured (U).

Name Rows Columns Nonzeros nz
row

Remarks

memplus 17758 17758 126150 7.1 S struct. symm., chip design
rhpentium 25187 25187 258265 10.3 U chip design
s3dkt3m2 90449 90449 1921955 21.2 S symm., FEM
rand10000 10000 10000 49987 5.0 U random pattern
fidap037 3565 3565 67591 19.0 S struct. symm., FEM
lhr34 35152 35152 764014 21.7 S chemical process
rand50000 50000 50000 1249641 25.0 U random pattern
nug30 52260 379350 1567800 30.0 S quadratic assignment
tbdlinux 112757 21067 2157675 19.1 U term-by-document
bmw7st1 141347 141347 3740507 26.5 U unstructured, FEM
stanford 281903 281903 2312497 8.2 U link matrix
stanford-berkeley 683446 683446 7583376 11.1 U link matrix
wikipedia-20051105 1634989 1634989 19753078 12.1 U link matrix
cage14 1505785 1505785 27130349 18.0 S struct. symm.,

DNA electrophoresis

machine with 8 GB of main memory. Each single core has a 32 kB 8-way L1 cache,
and each pair of cores shares a 4 MB 16-way L2 cache. The cache line size is LS = 64
bytes. The second architecture is the Dutch national supercomputer Huygens at
SARA in Amsterdam. This machine consists of 1664 dual-core 4.7 GHz IBM Power6+
processors divided over 104 nodes. Each core possesses its own 64 kB 8-way L1 data
cache (besides a 64 kB L1 instruction cache) and a 4 MB 8-way L2 cache which is
semi-shared among two cores. Furthermore, there is a 32 MB 16-way L3 cache which
is fully shared among the two cores. The cache line size is LS = 128 bytes. Each node
of 16 processors has 128 GB main memory.

Several test matrices were taken from the University of Florida Sparse Matrix
Collection [8]. We also include some test matrices used in [38]. Table 8.1 shows all
matrices and their properties. Generally, matrices can be divided into two classes:
those that already possess a structure beneficial in terms of cache reuse, and those
that do not. If we expect a matrix to fall in the first category, we call it structured,
otherwise we call it unstructured. Examples of the first category include matrices
occurring in finite element methods (FEM) on a regular grid. The matrix s3dkt3m2
is such a matrix, possessing relatively dense blocks along three diagonals.

Another structured matrix is memplus, obtained from memory circuit simulation;
see Figure 8.1 (left). For this matrix, the vector x is consecutively accessed in up to
four different areas, much like a four-diagonal matrix. The only exceptions occur on
the first few rows, and on those rows where a straight line of nonzeros expands into
a triangle-like area of nonzeros. Due to this structure, we expect our method not to
yield great improvements. On the other hand, we have unstructured matrices such
as rhpentium, which originates in circuit simulation of a part of the Intel Pentium
processor; see Figure 8.1 (right). Since the matrix is so unstructured, and the number
of nonzeros per row (nz/row) is rather small, column partitioning is expected to give
only a few cut rows, and thus we expect large performance gains. Note that the
matrix may seem very dense in Figure 8.1 (right), created by using the spy plotting
command from MatlabTM , but in fact nz/row ≈ 10.3. The seemingly high density

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3144 A. N. YZELMAN AND ROB H. BISSELING

Fig. 8.1. Plot of the original memplus (left) and rhpentium (right) matrices. Memplus has a
favorable structure, whereas rhpentium looks unstructured. Accidental zeros are removed from the
data structure in this plot; therefore, the given number of nonzeros can differ from that in Table 8.1.

Fig. 8.2. Plots of the memplus matrix for p = 2 (left) and p = 100 (right).

is an artefact due to the relative size of the markers representing the nonzeros. Still,
the plot shows very well that nonzeros are spread throughout the matrix. If nz/row is
large and the columns are difficult to partition, we may expect many cut rows resulting
in badly reordered matrices. Based on this, we can expect the unstructured matrices
rhpentium and rand10000 to perform well after reordering; both have relatively small
nz/row. A large nz/row does not necessarily mean partitioning will yield catastrophic
results: it is possible a matrix can be partitioned quite well even though nz/row is
relatively large, so our method may still work well.

Due to the large number of columns of our test matrices, taking the number of
parts to infinity (in fact, p = n) may take a very long time. We therefore limit the
number of parts to an initial maximum of 400, or even less in some experiments. One
should note that for a given p and a given matrix structure, the gain of reordering
will depend mainly on the cache size. Hence we start off with discussing the results
of cache simulation with different cache sizes for a fairly structured matrix (memplus)
as well as an unstructured matrix (rhpentium).

As mentioned earlier, we do not expect to gain much by reordering an already
favorably structured matrix. After a single bipartitioning, however, we do see a
structural improvement on the matrix memplus. In Figure 8.2 (left) the top half of the
permuted matrix shows straight lines exactly corresponding to the beneficial original
structure. The bottom half contains the less favorably structured parts, compressed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3145

Fig. 8.3. Plots of the rhpentium matrix for p = 100 (left) and p = 400 (right).

9 10 11 12 13 14 15 16
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Logarithm (base 2) of the cache size

R
at

io
 o

f c
ac

he
 m

is
se

s
w

ith
 r

es
pe

ct
 to

 o
rig

in
al

 m
at

rix

Cache use enhancement on memplus, p=2

CRS
ICRS
ZZ−ICRS

9 10 11 12 13 14 15 16
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Logarithm (base 2) of the cache size

R
at

io
 o

f c
ac

he
 m

is
se

s
w

ith
 r

es
pe

ct
 to

 o
rig

in
al

 m
at

rix
Cache use enhancement on memplus, p=100

CRS
ICRS
ZZ−ICRS

Fig. 8.4. Simulated cache effect of our reordering method for the memplus matrix, plotted
against different cache sizes. Given is the ratio between the number of cache misses for the reordered
matrix and the number for the original matrix, for three data structures, namely CRS, ICRS, and
ZZ-ICRS. On the left we have simulations with p = 2, while on the right we have p = 100. The
cache line size is LS = 64 bytes, so that w = 8. We assume an 8-way set-associative cache. Note
that a cache size S = 215 bytes corresponds to an Intel Core 2 L1 cache.

together. At p = 100 (right), things have become far less favorably structured as our
method tries to compress the nonzeros in smaller and smaller areas.

Examining the unstructured matrix rhpentium, shown in Figure 8.3, we see a
completely different behavior. At p = 100, a good structure has already surfaced,
which is improved at p = 400 as the thickness of the rows corresponding to N c has
been reduced.

The simulated cache use efficiency shown in Figures 8.4 and 8.5 reflects the be-
havior observed above. These figures show the reduction of cache misses, with respect
to the simulated cache size. For memplus, p = 2 gains of about 2 percent are recorded,
while for p = 100 losses of the order of 10 percent can be seen. For rhpentium, large
gains of up to 35 percent can be seen for all three data structures. It is interesting
to see that the gain curve for p = 400 improves for lower cache sizes when compared
to the curve for p = 100, regardless of which data structure is used. Refining further
beyond p = 100 is not worth the effort if the actual cache used already was large
enough, e.g., when using the L1 cache of an Intel Core 2 processor. In the figure, the
largest gain is about 37 percent. On the other hand, partitioning to infinity makes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3146 A. N. YZELMAN AND ROB H. BISSELING

9 10 11 12 13 14 15 16

0.65

0.7

0.75

0.8

0.85

0.9

Logarithm (base 2) of the cache size

R
at

io
 o

f c
ac

he
 m

is
se

s
w

ith
 r

es
pe

ct
 to

 o
rig

in
al

 m
at

rix

Cache use enhancement on rhpentium, p=100

CRS
ICRS
ZZ−ICRS

9 10 11 12 13 14 15 16

0.65

0.7

0.75

0.8

0.85

0.9

Logarithm (base 2) of the cache size

R
at

io
 o

f c
ac

he
 m

is
se

s
w

ith
 r

es
pe

ct
 to

 o
rig

in
al

 m
at

rix

Cache use enhancement on rhpentium, p=400

CRS
ICRS
ZZ−ICRS

Fig. 8.5. Simulated cache effect of our reordering method for the rhpentium matrix, plotted
against different cache sizes. On the left we have simulations with p = 100, while on the right we
have p = 400. We again are simulating an 8-way set-associative cache with LS = 64.

the ordering truly cache-oblivious since it works well irrespective of the actual cache
size. This also hints at good performance on multilevel cache architectures: the early
partitionings optimize for the larger caches, while subsequent refinements increase
performance on the smaller (L1) caches.

Figure 8.5 also shows that the gain of reordering eventually tends to decrease
as the cache size increases; this indicates that the more data fit into cache, the less
reordering can improve upon cache misses. One would expect that as S → ∞, the
ratio shown tends to one. The reverse also holds; as the cache size tends to a minimum,
the ratio tends to one as we cannot improve much when most misses are inevitable.

Table 8.2 presents the same simulations as Figures 8.4 and 8.5, but now with
a fixed cache size, a varying number of parts, and a complete test set of matrices.
Table 8.2 shows that for large matrices and larger p, the zig-zag variant of CRS is
superior, although we cannot say this for all test instances.

Comparing Tables 8.1 and 8.2, it can be seen that matrices with already favorable
structure indeed do not yield improved performance upon reordering in our single-level
cache simulation. Losses in miss ratio are at most 8 percent, namely for the structured
matrix memplus. The gain is largest at 37 percent for rhpentium, followed by 30
and 25 percent gain for rand10000 and stanford, respectively. We also note that
although reordering with large p is never found to be beneficial for structured matrices,
reordering with small p can still yield modest improvements; see memplus and more
notably nug30, which gains 11 percent with p = 2. For the highly structured matrix
s3dkt3m2, we did not expect any gains, and indeed we do not observe any change.

The miss ratios in Figures 8.4, 8.5, and Table 8.2 are calculated by dividing the
number of cache misses for the reordered matrix by the number of cache misses for the
original matrix. We expect that these gains correlate to the actual running time of a
single multiplication, but not in a directly proportional manner: incurring 37 percent
less cache misses will not mean running time improves with 37 percent. Rather, we
can say the CPU has shorter data access times in 37 percent of the data accesses. To
see what the insights obtained by simulation mean in practice, we need experiments
on actual machines.

Figures 8.6 and 8.7 show the gain in wall-clock timings of benchmark experiments
for the smaller test matrices. Here, we show the ratio between the SpMV multiplica-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3147

Table 8.2

Simulated cache effect of our reordering method for the complete matrix test set and for a
varying number of parts p. Given is the ratio between the number of cache misses for the reordered
matrix and the number for the original matrix, for the best of three data structures, namely CRS,
ICRS, and ZZ-ICRS. The best data structure is shown in parentheses. In the partitioning, the load
imbalance is chosen as ε = 0.1. The results are obtained by simulating an Intel Core 2 L1 cache;
that is, S = 215, LS = 64, and k = 8.

Name p = 2 p = 100 p = 400
memplus 0.99 (C) 1.05 (C) 1.08 (Z)
rhpentium 0.96 (Z) 0.66 (Z) 0.63 (I)
s3dkt3m2 1.00 (I) 1.00 (C) 1.00 (C)
rand10000 0.91 (C) 0.72 (C) 0.70 (I)
fidap037 0.98 (C) 1.00 (C) 1.01 (C)
lhr34 1.00 (C) 1.01 (Z) 1.02 (C)
rand50000 1.00 (I) 0.98 (I) 0.98 (I)
nug30 0.89 (Z) 1.05 (I) 1.06 (C)
tbdlinux 0.97 (Z) 0.90 (Z) 0.90 (Z)
bmw7st1 1.00 (I) 0.99 (I) 0.99 (I)

Name p = 2 p = 10 p = 20
stanford 0.98 (Z) 0.86 (Z) 0.75 (Z)
stanford berkeley 1.00 (Z) 1.00 (Z) 0.98 (Z)
wikipedia-20051105 0.98 (C) 0.94 (I) 0.92 (Z)
cage14 1.02 (I) 1.09 (Z) 1.10 (I)

tion time for the reordered matrix and that for the original matrix. The matrices used
in these benchmarks are relatively small: an Intel Core 2 L2 cache has size S = 222

bytes (4 MB), while a double requires 8 bytes of storage. Hence a vector of size
219 = 524288 can fit entirely in L2 cache. As seen in Table 8.1, these test matrices
have row and column dimensions much smaller than this size, causing our reordering
method to alter mostly the L1 (and not L2) cache behavior; hence cache effect en-
hancements translate to relatively small amounts of gain in execution time, especially
since the partitioning has been stopped at p = 400, with p still far from n. Carrying
the partitioning much further would probably show more gains from the L1 cache.

Figure 8.6 shows results for our own straightforward SpMV implementation. For
small matrices, our reordering method sometimes achieves modest gains; it almost
never leads to losses. The two small matrices that obtained large gains in simulations,
rhpentium and rand10000, also show significant gains here, of about 20 percent and
15 percent, respectively. These cases indeed display larger gains with increasing p,
indicating that partitioning with even higher p is desirable. As we expect from our
previous analysis, reordering performs poorly on the already well-structured matrix
memplus: with ε = 0.1 it breaks even, and with ε = 0.3 it shows losses of up to
10 percent. The gain in execution time in the case of fidap037 is surprising, since
cache simulation did not show any effect at all, indicating that reordering may affect
behavior not included in our cache simulation model.

OSKI results are shown in Figure 8.7. Note that OSKI uses its own optimized
SpMV multiplication implementation, and the ratios are given with respect to the
OSKI benchmark on the original matrix. It is surprising to see that OSKI achieves
some improvement on memplus, reporting larger gains as p increases; however, closer
inspection reveals that in this case, the OSKI SpMV routine performs worse than our
own standard implementation. These slow SpMVs are improved by reordering, but
even with p = 400, ε = 0.3 the OSKI SpMV routine is still slower (0.42 ms) than
a standard implementation (0.35 ms). Regarding most other matrices, the OSKI
routine is noticeably faster.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3148 A. N. YZELMAN AND ROB H. BISSELING

1 2 3 4 5
Matrix number

CRS
1
2/0.1
3
4
100
400
2/0.3
3
4
100
400

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Matrix number

CRS
1
2/0.1
3
4
100
400
2/0.3
3
4
100
400

Fig. 8.6. Wall-clock timings performed on an Intel Core 2 (Q6600) machine. The CRS bar de-
notes the timing of a straightforward CRS-based SpMV multiplication applied to the original matrix.
The bar p = 1 corresponds to the best timing of CRS, ICRS, and ZZ-ICRS on the original matrix.
The bars p = 2/0.1, 3, 4, 100, 400 show the results after reordering using p parts, with ε set to 0.1,
and similarly for the p from 2/0.3 with ε = 0.3. The best timing of the CRS, ICRS, and ZZ-ICRS
schemes is shown. The test matrices are as follows: 1. memplus; 2. rhpentium; 3. s3dkt3m2; 4.
rand10000; 5. fidap037; 6. lhr34; 7. rand50000; 8. nug30; 9. tbdlinux; 10. bmw7st1.

Figures 8.8 and 8.9 show results for much larger matrices. We feature several
link matrices, as well as the cage14 matrix. (A link matrix A is a matrix with
aij 	= 0 if and only if there is a link from web page i to j.) We stop partitioning at
p = 20, because partitioning is very time-consuming for these large matrices. Since
the input and output vector together do not fit in the L2 cache, and for the largest
three matrices even a single vector does not fit, the effects of reordering are expected
to become much clearer here. Judging by the results, this is indeed the case; for
p ≥ 2, reordering already leads to substantial gains, and increasing p gives even
better results, with a gain of over 50 percent for the stanford matrix.

The stanford_berkeley matrix breaks about even in run-time, which is very
different from the stanford matrix which shows much gain. Apparently, detecting a
favorable structure on the stanford_berkeley matrix is more difficult than for the
other link matrices. We do not know the reason for this, and can only speculate.
The stanford_berkeley matrix consists of two web subdomains, those of Stanford
University and of the University of California at Berkeley, which may pose a bigger
challenge for finding exploitable structure than the stanford matrix which represents
a single subdomain.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3149

1 2 3 4 5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Matrix number

Original

2/0.1

3

4

100

400

2/0.3

3

4

100

400

6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Matrix number

Original

2/0.1

3

4

100

400

2/0.3

3

4

100

400

Fig. 8.7. Wall-clock timings obtained by using the OSKI library for the SpMV multiplication,
instead of our own implementation. Note that OSKI sparse matrix storage is CRS-based. The cases
where OSKI automatically applied cache-aware tuning are marked.

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Matrix number

CRS
1
2
3
4
5
10
15
20

Fig. 8.8. Wall-clock timings for very large matrices, where the input and output vector do not
fit into the L2 cache. Interpretation is the same as for Figure 8.6, with ε = 0.1 when our matrix
reordering method is applied. The test matrices are as follows: 11. stanford; 12. stanford berkeley;
13. wikipedia-20051105; 14. cage14.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3150 A. N. YZELMAN AND ROB H. BISSELING

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Matrix number

Original
2
3
4
5
10
15
20

Fig. 8.9. Wall-clock timings for very large matrices, but using the OSKI library.

The matrix cage14, where losses of more than 10 percent are recorded, seems to
be a hard case for improvement. One can observe a structure in all the cage matrices,
which comes from the chosen numbering of states in the underlying Markov model
used to study DNA electrophoresis; see [37]. For cage14, the original state space had
613 states, which was reduced to 1505785 states (the value of m and n) by exploiting
various symmetries. Note that the losses reach their peak at p = 4, and that for p ≥ 4
the losses decrease monotonically with p, indicating that the finer-grain structure of
the matrix might eventually be exploited by reordering to improve the cache behavior.

It is difficult for a straightforward CRS-based SpMV multiplication algorithm to
compete with OSKI’s optimized implementation (OSKI is always faster, except for
the memplus matrix, as discussed earlier). When we compare the OSKI timings on the
original matrix to timings using our own implementation on reordered matrices, we see
that reordering was more efficient for three out of the nine smaller matrices (we exclude
the memplus timings). For the larger matrices, this is the case for two out of four:
stanford and wikipedia. In the case of stanford, we observe a decrease from 27.4
ms per SpMV multiplication (OSKI on the original matrix) to 15.4 ms (reordering with
p = 20, ε = 0.1, CRS without OSKI), a 44 percent speedup. As shown earlier, we can
join both methods and use OSKI on the reordered matrices. This yields improvements
with respect to OSKI on the original matrix in twelve out of the fourteen cases, the
only exceptions being s3dkt3m2 and cage14, both cases where reordering did not gain
anything or even caused performance loss compared to the original ordering.

Since our method is cache-oblivious, it should perform similarly on other ar-
chitectures. To check this, we also performed experiments on the Dutch national
supercomputer Huygens at SARA. We expect similar results as for the Intel Core 2
machine, but perhaps better performance due to the presence of an L3 cache on larger
problems. Figure 8.10 shows wall-clock time results for the larger matrices processed
on Huygens. We indeed see similar performance on the stanford and wikipedia ma-
trices, but note that already for p = 2 we have a 30 percent gain for the wikipedia
matrix. This may be caused by the L3 cache which can store 4194304 doubles and
hence can just fit the input and output vectors. The losses for the cage14 matrix are
now less severe, but we no longer monotonically get faster after p = 4; it may take a
larger p before the timings start to decrease on this architecture. We observed that
ICRS on Huygens is frequently the fastest implementation and that it is noticeably
faster than CRS. The stanford_berkeley matrix again shows similar results; the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3151

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Matrix number

CRS
1
2
3
4
5
10
15
20

Fig. 8.10. Experiments similar to Figure 8.8, but run on the Dutch national supercomputer
Huygens.

Table 8.3

Cost of reordering in terms of the number of matrix multiplications on the original matrix.
Here, ε = 0.1. Construction times were measured on an Intel Core 2 (Q6600) machine.

Name p = 2 p = 3 p = 4 p = 100 p = 400
memplus 1531 1914 1818 12793 101744
rhpentium 5090 6752 7303 17064 60251
s3dkt3m2 603 673 740 1934 5181
rand10000 1560 1411 1820 23179 103565
fidap037 1005 1068 1131 5657 12761
lhr34 635 708 730 1599 6513
rand50000 2868 4065 5135 34710 120070
nug30 1594 1950 2204 10961 54588
tbdlinux 2258 3219 3659 26233 137332
bmw7st1 642 725 758 1946 5059

Name p = 2 p = 3 p = 4 p = 10 p = 20
stanford 5139 7603 6828 7922 8332
stanford berkeley 11305 13208 15093 19138 21260
wikipedia20051105 2152 1992 2168 2570 7418
cage14 4238 3987 3635 4583 5611

Power6+ L2 cache has exactly the same size as the Intel Core 2 L2 cache, and hence
we do not gain additional information as to the lack of speedup.

A relevant question is whether the number of SpMVs is large enough to justify
reordering the matrix first. Of course, the time required for reordering increases with
p, as well as with the matrix size. Table 8.3 presents the reordering time expressed in
the number of SpMV multiplications. The SpMV multiplication time we compare with
is the time required for one SpMV without reordering. One sees that with increasing
p, the number of multiplications required increases rapidly. In conjunction with the
diminishing savings in SpMV multiplication time as p increases, we note that taking
p → ∞ may not be practical. Still, research towards decreasing the construction
time for reordering would be useful in the sense that the required number of SpMV
multiplications to justify reordering would decrease, so that we may obtain better
quality reorderings for the same number of SpMV multiplications.

9. Conclusions and future work. We have introduced a matrix reordering
method which permutes the matrix rows and columns to improve the cache efficiency

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3152 A. N. YZELMAN AND ROB H. BISSELING

of a sparse matrix–vector multiplication algorithm in a cache-oblivious manner. This
method is based on partitioning methods for load balancing from the area of parallel
matrix computations. By use of both a cache simulator as well as wall-clock tim-
ings on two different computer architectures, we have shown experimentally that this
method yields considerable savings in computation time for certain matrices during
sparse matrix–vector multiplication. For matrices that already have a cache-friendly
structure, the gains are modest or even a small loss is observed. This should not deter
us from using the reordering method on an unknown matrix, since the potential gains
are large, and the possible losses small. The time needed to determine the reorder-
ing permutations can be amortized if the multiplication is carried out repeatedly, as
happens in iterative linear system solvers and eigensolvers.

Although cache-oblivious matrix reordering may not seem to be as effective on
small matrices as cache-aware software such as OSKI [39], this is partly a consequence
of not carrying through the partitioning till the end. Further research on improving the
partitioning speed should take the number of parts p closer to the number of matrix
columns n. For larger matrices, we have observed cases where the time of sparse
matrix–vector multiplication was more than halved, e.g., for the large link matrix
stanford. Cache-aware methods can still be used after cache-oblivious reordering,
for fine-tuning to achieve the ultimate in cache use. We have seen that such a combined
method works well in practice.

The central ideas of our matrix reordering are as follows:
• using a zig-zag variant of the CRS data structure, thus avoiding unnecessary

cache misses at the end of rows;
• placing cut rows in the middle during the partitioning process, leading to a

gradual transition between a cache filled with data from one column set V0

to another set V1;
• hypergraph partitioning to reduce the number of cut rows;
• using the λ− 1 metric in the hypergraph partitioning, to prevent parts of cut

rows from being cut further.
For obtaining the matrix reorderings, we have adapted the hypergraph-based

sparse matrix partitioner Mondriaan [38], version 2.0, in 1D (column direction) mode;
that is, not in its full 2D generality. The adaptations we made for reordering will be
incorporated in a future version of Mondriaan. The reordering method does not
depend on Mondriaan, however. Instead, one can use other hypergraph partitioners,
such as PaToH [5], hMETIS [23], Zoltan [10], Monet [20], and Parkway [35]. Using
the parallel partitioner Zoltan, or Parkway, would enable a parallel reordering.

Mondriaan is, as of yet, not designed with taking the number of parts to infinity
in mind. This translates to high reordering times. These depend on p and the matrix
structure, but not directly on the number of nonzeros (nor the average number of
nonzeros per row). For this method to perform well in practice, further research is
required to decrease the reordering times. It is expected that additional speedups
can be obtained by removing time-consuming optimizations that mainly make sense
for smaller p. Also, our results show that the choice of imbalance parameter ε is less
critical than in the case of parallel computations (where it should reflect the ratio
between the computation rate and the communication rate of the hardware). It will
be interesting to study better strategies for choosing ε in a sequence of matrix splits.

Another way to improve this method is to use 2D partitioning instead of 1D only.
This can be done by either modeling the matrix by using the fine-grain method [6],
or by allowing a 1D method to bipartition recursively in either the column or row
direction, whichever yields the best results; the latter is Mondriaan’s default mode

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLY 3153

of operation. Depending on the choice of fine-grain, row, or column partitioning, we
end up with six possible sets R{−,c,+}, C{−,c,+} after every bipartition, where R, C
denote the row and column sets, respectively. It warrants further investigation how a
reordering based on these sets affects sparse matrix–vector multiplication when using
plain CRS and to see whether other data structures are more appropriate.

Acknowledgments. We thank Fatima Abu Salem for helpful discussions on
cache-oblivious algorithms. We thank Sarai Bisseling for creating Figure 6.2. We
are grateful to the anonymous referees who helped us a lot by their careful reading
and constructive remarks. We thank the Dutch supercomputing centre SARA in
Amsterdam and the Netherlands National Computing Facilities foundation NCF for
providing access to the Huygens supercomputer and for help in our experiments.

REFERENCES

[1] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[3] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari, Optimal sparse
matrix dense vector multiplication in the I/O-model, in Proceedings of the 19th Annual
ACM Symposium on Parallel Algorithms and Architectures, ACM Press, New York, 2007,
pp. 61–70.

[4] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, in Comput.
Networks ISDN Systems, 30 (1998), pp. 107–117.

[5] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for paral-
lel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Systems, 10 (1999),
pp. 673–693.

[6] Ü. V. Çatalyürek and C. Aykanat, A fine-grain hypergraph model for 2D decomposition of
sparse matrices, in Proceedings of the 8th International Workshop on Solving Irregularly
Structured Problems in Parallel, IEEE Press, Los Alamitos, CA, 2001, p. 118.

[7] R. Das, D. J. Mavripilis, J. Saltz, S. Gupta, and R. Ponnusamy, Design and implementa-
tion of a parallel unstructured Euler solver using software primitives, AIAA J., 32 (1994),
pp. 489–496.

[8] T. A. Davis, University of Florida sparse matrix collection, http://www.cise.ufl.edu/research/
sparse/matrices, Department of Computer and Information Science and Engineering, Uni-
versity of Florida, Gainesville, FL, 1994-2008.

[9] J. M. Dennis and E. R. Jessup, Applying automated memory analysis to improve iterative
algorithms, SIAM J. Sci. Comput., 29 (2007), pp. 2210–2223.

[10] K. D. Devine, E. G. Boman, R. Heaphy, R. H. Bisseling, and U. V. Catalyurek, Parallel
hypergraph partitioning for scientific computing, in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium 2006, IEEE Press, New York, 2006.

[11] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Monographs
on Numerical Analysis, Oxford University Press, Oxford, UK, 1986.

[12] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, in
Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing,
Vol. 3, IEEE Press, Los Alamitos, CA, 1998, pp. 1381–1384.

[13] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proc. IEEE, 93
(2005), pp. 216–231.

[14] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms,
in Proceedings of the 40th Annual Symposium on Foundations of Computer Science, IEEE
Press, Los Alamitos, CA, 1999, p. 285.

[15] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[16] K. Goto and R. van de Geijn, On reducing TLB misses in matrix multiplication, Technical
report TR-2002-55, Department of Computer Sciences, University of Texas at Austin,
Austin, TX, 2002, FLAME Working Note #9.

[17] L. Grigori, E. Boman, S. Donfack, and T. A. Davis, Hypergraph-based unsymmetric nested
dissection ordering for sparse LU factorization, Technical report 6520, INRIA Saclay, Or-
say, France, April 2008.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

3154 A. N. YZELMAN AND ROB H. BISSELING

[18] G. Haase, M. Liebmann, and G. Plank, A Hilbert-order multiplication scheme for unstruc-
tured sparse matrices, Int. J. Parallel Emergent Distrib. Syst., 22 (2007), pp. 213–220.

[19] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection
ordering, SIAM J. Sci. Comput., 20 (1998), pp. 468–489.

[20] Y. F. Hu, K. C. F. Maguire, and R. J. Blake, A multilevel unsymmetric matrix ordering
algorithm for parallel process simulation, Comput. Chem. Engrg, 23 (2000), pp. 1631–1647.

[21] E.-J. Im and K. A. Yelick, Optimizing sparse matrix–vector multiplication for register reuse
in SPARSITY, in Proceedings of the International Conference on Computational Science,
Part I, Lecture Notes in Computer Science 2073, 2001, pp. 127–136.

[22] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[23] G. Karypis and V. Kumar, Multilevel k-way hypergraph partitioning, in Proceedings of the
36th ACM/IEEE Conference on Design Automation, ACM Press, New York, 1999, pp. 343–
348.

[24] T. Katagiri, K. Kise, H. Honda, and T. Yuba, ABCLibScript: A directive to support spec-
ification of an auto-tuning facility for numerical software, Parallel Comput., 32 (2006),
pp. 92–112.

[25] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, 46 (1999),
pp. 604–632.

[26] J. Koster, Parallel templates for numerical linear algebra, a high-performance computation
library, Master’s Thesis, Department of Mathematics, Utrecht University, 2002.

[27] M. Kowarschik, U. Rüde, C. Weiß, and W. Karl, Cache-aware multigrid methods for
solving Poisson’s equation in two dimensions, Computing, 64 (2000), pp. 381–399.

[28] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The Science of Search
Engine Rankings, Princeton University Press, Princeton, NJ, 2006.

[29] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley and Sons,
Chichester, UK, 1990.

[30] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, When cache blocking of
sparse matrix vector multiply works and why, Appl. Algebra Engrg. Comm. Comput., 18
(2007), pp. 297–311.

[31] A. Pinar and M. T. Heath, Improving performance of sparse matrix-vector multiplication, in
Proceedings Supercomputing 1999, ACM Press, New York, 1999, p. 30.

[32] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck, Sparse tiling for stationary
iterative methods, Int. J. High Perf. Comput. Appl., 18 (2004), pp. 95–113.

[33] M. M. Strout and P. D. Hovland, Metrics and models for reordering transformations, in
Proceedings of the 2004 Workshop on Memory System Performance, ACM Press, New
York, 2004, pp. 23–34.

[34] S. Toledo, Improving the memory-system performance of sparse-matrix vector multiplication,
IBM J. Res. Dev., 41 (1997), pp. 711–725.

[35] A. Trifunovic and W. J. Knottenbelt, A parallel algorithm for multilevel k-way hypergraph
partitioning, in Proceedings of the 3rd International Symposium on Parallel and Distributed
Computing, IEEE Press, Los Alamitos, CA, 2004, pp. 114–121.

[36] R. van der Pas, Memory hierarchy in cache-based systems, Tech. Report 817-0742-10, Sun
Microsystems, Inc., Santa Clara, CA, 2002.

[37] A. van Heukelum, G. T. Barkema, and R. H. Bisseling, DNA electrophoresis studied with
the cage model, J. Comput. Phys., 180 (2002), pp. 313–326.

[38] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Rev., 47 (2005), pp. 67–95.

[39] R. Vuduc, J. W. Demmel, and K. A. Yelick, OSKI: A library of automatically tuned sparse
matrix kernels, J. Phys. Conf. Series, 16 (2005), pp. 521–530.

[40] R. W. Vuduc and H.-J. Moon, Fast sparse matrix-vector multiplication by exploiting variable
block structure, in High Performance Computing and Communications 2005, Lecture Notes
in Computer Science 3726, 2005, pp. 807–816.

[41] R. C. Whaley and A. Petitet, Minimizing development and maintenance costs in supporting
persistently optimized BLAS, Software Pract. Exper., 35 (2005), pp. 101–121.

[42] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical optimizations of
software and the ATLAS project, Parallel Comput., 27 (2001), pp. 3–35.

[43] J. B. White, III and P. Sadayappan, On improving the performance of sparse matrix-vector
multiplication, in Proceedings of the 4th International Conference on High-Performance
Computing, IEEE Press, Los Alamitos, CA, 1997, pp. 66–71.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

