
CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION BY
USING SPARSE MATRIX PARTITIONING METHODS

A.N. YZELMAN∗ AND ROB H. BISSELING†

Abstract. In this article, we introduce a cache-oblivious method for sparse matrix–vector multiplication. Our
method attempts to permute the rows and columns of the input matrix using a recursive hypergraph-based sparse
matrix partitioning scheme so that the resulting matrix induces cache-friendly behaviour during sparse matrix–
vector multiplication. Matrices are assumed to be stored in row-major format, by means of the compressed row
storage (CRS) or its variants incremental CRS and zig-zag CRS. The zig-zag CRS data structure is shown to fit
well with the hypergraph metric used in partitioning sparse matrices for the purpose of parallel computation. The
separated block-diagonal (SBD) form is shown to be the appropriate matrix structure for cache enhancement.

We have implemented a run-time cache simulation library enabling us to analyse cache behaviour for arbitrary
matrices and arbitrary cache properties during matrix–vector multiplication within a k-way set-associative idealised
cache model. The results of these simulations are then verified by actual experiments run on various cache archi-
tectures. In all these experiments, we use the Mondriaan sparse matrix partitioner in one-dimensional mode. The
savings in computation time achieved by our matrix reorderings reach up to 50 percent, in case of a large link
matrix.

Key words. matrix–vector multiplication, sparse matrix, parallel computing, recursive bipartitioning, cache-
oblivious.

AMS subject classifications. 65F10, 65F50, 65Y05, 65Y20

1. Introduction. Many important linear algebra kernels typically take a performance hit
on modern cache-based computer architectures [9, 21, 34] due to inefficient use of the system
cache. Cache use is best when data from main memory is stored contiguously and accessed in a
single straight pass. Each data item is preferably used many times, and is not needed in further
computation afterwards. Unfortunately, many non-trivial applications require to jump through
data in main memory, even if data is stored contiguously. A notorious example is sparse matrix–
vector (SpMV) multiplication. In these cases, we can try to minimise the number of jumps or
otherwise improve cache efficiency. As recent work in the field of the BLAS by Goto and van de
Geijn [16] has shown, tweaking algorithms to specific architectures results in large speedups.

Such cache-aware algorithms have as a disadvantage the need to adapt existing code to new
architectures, every time they become available. To resolve this, auto-tuning software libraries
have become a focus for much research [24, 41], most notably FFTW (for fast Fourier transforms)
[12, 13], OSKI (basic sparse BLAS) [39], and ATLAS (dense BLAS) [42]. These libraries may run
various benchmarks upon installation to help optimise algorithms for the hardware specifics of the
target machine, or may even attempt this during real-time execution.

Another approach is to design algorithms in such a way that optimal cache efficiency is achieved
on any (regular) machine architecture. These cache-oblivious algorithms have been researched to
some extent, and for some applications have been shown to obtain asymptotically optimal bounds
[3, 14].

In this article, we propose a cache-oblivious sparse matrix–vector multiplication algorithm. We
use techniques from load-balancing for parallelism to increase data locality for cache reuse. Before
introducing our method, we first describe our sparse matrix storage format in Section 2. We then
proceed in Section 3 with an analysis of cache efficiency. Related cache-aware and cache-oblivious
methods for the SpMV multiplication are discussed in Section 4. In Section 5, we connect the
SpMV multiplication problem to hypergraph partitioning theory, and formulate the basic idea of
our method. In Section 6, we formalise this idea in terms of matrix permutations.

Theoretical cache efficiency analysis depends very much on the exact matrix input; even when
this is known, analysis is still difficult due to algorithm complexity. Experimental results on actual

∗Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands
(A.N.Yzelman@uu.nl).

†Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands
(R.H.Bisseling@uu.nl).

1

2 A.N. YZELMAN AND ROB H. BISSELING

m× n matrix dimensions
A, x, y matrix and vectors

C the cache
S cache size in bytes
LS cache line size in bytes
L number of cache lines (L = S/LS)
w number of data words in a cache line
k number of subcaches

Table 1.1
List of parameters used throughout this paper.

machines, on the other hand, suffer from inflexibility in the cache parameters, such as cache size,
leading to observations with only a limited range of applicability. This motivated the development
of our run-time cache simulator, which we introduce in Section 7. We finish with experimental
results on this simulator and on actual hardware in Section 8 and general conclusions in Section 9.

The contributions of the present work can be summarised as follows: (i) we present a new
variant of the CRS data structure, zig-zag CRS, which reduces end-of-row cache misses; (ii) we
introduce the separated block-diagonal (SBD) form as a matrix reordering that achieves better
cache use; (iii) we present a new cache-oblivious approach to SpMV and demonstrate that it
can work well in practice; (iv) we establish a connection between matrix reordering for cache
enhancement and hypergraph partitioning, which can be used to detect and exploit beneficial
structure in a matrix.

Throughout the paper, we assume a k-way set-associative idealised cache model, with k sub-
caches, where the case k → ∞ corresponds to the ideal-cache model introduced in [14]. In our
model, we assume a total cache size equal to S bytes, and a line size of LS bytes. The total number
of cache lines is thus L = S/LS . A cache C can then be modelled as an (L/k)× k matrix, where
entries ci,j correspond to individual cache lines and each matrix column c∗,j to a subcache. A
matrix row ci,∗ is called a set. The number i is commonly called the Set ID, while j is called the
Line ID. Table 1.1 provides an easy reference of the parameters introduced here.

A further assumption we make regarding the cache model, is that data is modulo-mapped onto
Set IDs and that the Line ID is selected by the Least Recently Used (LRU) policy. This means
that the data in main memory (RAM) at the bytes in the range [rLS , (r + 1)LS), for any r ∈ N0,
is mapped to the Set ID i = r mod L

k . The Line ID j is determined by selecting the cache line
containing the least recently used data item, and the cache line we select thus becomes ci,j . Such
behaviour can be modelled by using a stack of size k; memory contents may be (re)inserted at the
top of the stack, while the least recently used data are evicted from the bottom. Each cache set
ci,∗ thus maps to a single LRU stack. See also Figure 1.1 for an illustration of this model. For a
further introduction to cache architecture, one may consult [36].

2. Incremental CRS. A standard storage scheme for sparse matrices is the Compressed
Row Storage (CRS) format [2]. This format utilises three arrays: one array for storing individual
nonzero matrix entry values (nzs), one for storing the column index of those nonzeros (col ind),
and one for indexing where in the previous two arrays individual rows start (row start).

The arrays nzs and col ind each require nz(A) space in memory, where nz(A) denotes the
number of nonzeros of the m× n sparse matrix A. The array row start requires only m words of
space, bringing the total up to 2nz(A) + m. An algorithm to perform the SpMV multiplication
y = Ax on a matrix stored in CRS format is given in Algorithm 1. Note that we index vector and
matrix elements starting from 0: the matrix elements are aij , 0 ≤ i < m and 0 ≤ j < n.

A drawback of standard CRS implementation is the use of the row start array for keeping
track which nonzeros belong to which row. Looking at Algorithm 1, a for-loop was started on
line 3 along indices k relevant to the row i being processed. Since there is no other way of
knowing when a row ends, optimised CRS multiplication code will always have to keep track of
k. Furthermore, although the array nzs is straightforwardly accessed according to k, x is accessed

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 3

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

Fig. 1.1. Schematic view of the k-way set-associative cache model with modulo mapping of main memory to
subcache.

Algorithm 1 Matrix–vector multiplication using CRS
Input: nzs, col ind, and row start corresponding to a sparse matrix A;

the dimensions m and n of A;
a dense input vector x.

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: for i = 0; i < m; i = i + 1 do
3: for k = row start [i]; k < row start [i + 1]; k = k + 1 do
4: j = col ind [k]
5: y[i] = y[i] + nzs[k]∗x[j]
6: end for
7: end for
8: return y

according to j =col ind[k] ; this kind of index translation also causes instruction overhead: if
we store the address (pointer) px of the currently used element from x, this is updated like
xp=x+col_ind[k]. Faster would be xp+=diff[k], with diff[x]=col_ind[k]-col_ind[k-1] and
diff[0]=col_ind[0]; this, combined with an alternative for the row start array, leads to the
incremental CRS (ICRS) scheme proposed by Koster in his master’s thesis [26]. A sparse matrix–
vector algorithm utilising this ICRS scheme is given in Algorithm 2. Note that an increment in
row index is signalled by causing j to overflow (i.e., j ≥ n) so that j − n corresponds to the
actual column index corresponding to the first nonzero in the new row. The increase in the row
index i after each column overflow is stored in the array row jump. Although the pseudocode of
Algorithm 2 is a few lines larger than that of Algorithm 1, we can implement it more efficiently
by using suitable pointer arithmetic. This causes the instruction overhead to drop dramatically
[26, Figure 2.5].

Changing CRS to handle data incrementally does not change its worst-case memory require-
ments; nzs and the new difference array diff both use nz(A) space while row jump is still of size
m in the worst case. The total memory requirement thus also equals 2nz(A) + m. If there are
some empty rows, however, memory requirements as well as memory accesses are reduced slightly
resulting in further speedup. If there are no empty rows, the array row jump need not be stored
since all its entries equal 1.

3. Cache performance for dense and sparse MV multiplication. Cache performance
is deemed optimal if an algorithm does not cause more cache misses than necessary. This is
most easily achieved when data is stored contiguously and accessed only once with stride one,

4 A.N. YZELMAN AND ROB H. BISSELING

Algorithm 2 Matrix–vector multiplication using ICRS
Input: nzs, diff, and row jump corresponding to a sparse matrix A;

the dimensions m and n of A;
a dense input vector x;
the number of nonzeros nz(A).

Output: a dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: i = row jump[0], j = diff [0], k = 0, r = 1
3: while k < nz(A) do
4: y[i] = y[i] + nzs[k]∗x[j]
5: k = k + 1
6: j = j + diff [k]
7: if j ≥ n then
8: j = j − n
9: i = i + row jump[r]

10: r = r + 1
11: end if
12: end while
13: return y

i.e., consecutively from front to back. Contiguous access is necessary since multiple data words
may fit into a single cache line. However, in most cases previously accessed data is reused which
complicates finding an optimal access pattern.

We consider the dense case first. For simplicity, we assume that one data word fits exactly
in one cache line, i.e., w = 1. Figure 3.1 shows a small example of cache effects in the context
of dense MV multiplication, where we assume the perfect cache idealisation k → ∞; that is, the
cache C is given by a 1 × L matrix and cache lines are solely selected by use of the LRU policy.
The algorithm starts off with y0 = y0 +a00x0, pushing the elements from x, A, and y onto the top
of the LRU stack. If the cache size S is such that the cache can contain exactly two data words,
i.e., L = 2, we see that x0 is pushed out of the cache at the end of this instruction.

The next instruction is y0 = y0 + a01x1, and again the variables x and A are brought in first,
pushing y0 out of the cache just before it was needed again. If the cache could contain exactly three
data words instead of two, y0 would still have been available. Note that when the MV algorithm
reaches the next row (i.e., executes y1 = y1 + a10x0), then, depending on the cache size S, there
are two possibilities: either x0 is still in cache and no cache miss occurs, or x0 was evicted and it
must be brought back in. This results in O(n) cache misses on x, on each row ; and hence O(mn)
cache misses during the whole algorithm.

A way to prevent those cache misses on x is to limit the number of subsequent accesses using
some blocking parameter q so that after processing xq−1, the MV algorithm proceeds with the
next row. Obviously, we choose q so that elements from x are not prematurely evicted. When the
last row has been processed, the algorithm jumps back to the first row and goes on to process xq

until it reaches xmax {2q−1,n−1}, et cetera.
At this point, y is repeatedly accessed from index 0 until m − 1, as each column block is

processed. Thus, it is possible that elements from y are prematurely evicted in the same way as
originally for x, causing O(m) cache misses each time a column block is processed. This already is
quite an improvement since we typically have far fewer column blocks than we have rows. Although
the problem is less severe, we still may want to limit access on y using some blocking variable p
(which need not be equal to q) and apply the same trick on the row indices. This method is
appropriately named cache blocking [30] since, in effect, we are subdividing A into blocks of size
p× q for which an MV algorithm does not incur unnecessary cache misses.

Let us now discuss the sparse case. With the dense case described above in mind, we observe

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 5

x0 =⇒ a00

x0
=⇒

y0

a00

x0

=⇒

x1

y0

a00

x0

=⇒

a01

x1

y0

a00

x0

=⇒

y0

a01

x1

a00

x0

Fig. 3.1. LRU stack progression during the first steps of dense MV multiplication. Whenever a new data
element is pushed onto the stack, it is displayed on top. Older elements thus appear lower in this figure, with the
least recently used element at the bottom. Note that if all memory lines below the bars are evicted, y0 is evicted at
step 4 (denoted by the fourth arrow), while it is immediately reused the step after.

xj1 =⇒ ai1,j1

xj1
=⇒

yi1

ai1,j1

xj1

=⇒

xj2

yi1

ai1,j1

xj1

=⇒

ai2,j2

xj2

yi1

ai1,j1

xj1

=⇒

yi2

ai2,j2

xj2

yi1

ai1,j1

xj1

Fig. 3.2. LRU stack progression during the first steps of sparse MV multiplication using CRS. The indices ir
and jr are the row and column index of the rth nonzero element from A. Note that for most r, jr 6= jr+1, while ir
only differs from ir+1 when the nonzeros at a given row are exhausted and the algorithm moves to the next row.

the following regarding general sparse MV multiplication algorithms:
• every matrix element is accessed exactly once during MV multiplication;
• the order of matrix element access determines the access patterns of the x and y vectors;
• the order of matrix element access is determined by its storage scheme.

From this last point, we expect that CRS and ICRS obtain the same performance in terms
of cache efficiency since the order of element access remains unchanged; thus for readability, by
discussing the CRS ordering we refer to both the CRS and ICRS datastructures. We may analyse
a sparse MV multiplication algorithm using the ordering induced by CRS in much the same way
as in the dense case; Figure 3.2 shows that the LRU stack during SpMV multiplication using CRS
behaves quite similarly to the stack of a dense MV multiplication. The major difference is that
most of the time, the column indices are not consecutive. This greatly increases the difficulty of
predicting when cache misses occur; it all depends on the relative column-wise positions of the
nonzeros in A. Hence the blocking parameters p and q cannot be determined solely from m,n,
and the cache size S; this also requires information on the structure of A. Cache-aware blocking
thus becomes much harder to apply, amongst others motivating the development of run-time
cache-aware auto-tuning kernels such as OSKI [39].

4. Related work on sparse matrix–vector multiplication. In this section, we present an
overview of earlier work dealing explicitly with improving cache efficiency in SpMV multiplication.
Kowarschik et al. [27] improve the speed of a multigrid method for Poisson’s equation on a two-
dimensional grid by exploiting knowledge of the cache characteristics. The multigrid example
they use is based on a red-black ordered Gauss–Seidel operation with a 5-point finite-difference
stencil. This operation can be viewed as multiplying the vector representing the grid points by a
certain Laplacian sparse matrix. Among the techniques applied are: loop blocking, i.e. combining
computations from different iterations of the main loop; reordering of the computations, obtained
by sliding a small window in which computations are carried out across the whole grid, instead of
performing the computations row by row. A speedup of a factor of 4.6 is obtained by the latter
technique for certain grid sizes. The authors note that cache effects will be even stronger in the
three-dimensional case.

Das et al. [7] use reordering techniques developed for reducing fill-in (i.e. new nonzeros) in
direct solvers, such as the Cuthill-McKee (CM) method and the reverse CM method, to reduce
the bandwidth of the matrix for the purpose of avoiding cache misses in SpMV multiplication.
Toledo [34] performs an extensive study of such ordering techniques, and other techniques such as

6 A.N. YZELMAN AND ROB H. BISSELING

finding small dense 1 × 2 and 2 × 2 blocks, and prefetching of data. He found that CM ordering
works well for his test matrices (all 3D finite-element matrices) when used in combination with
blocking into small dense blocks. He notes that CM is cheap to compute, requiring computing
time equivalent to a few SpMV multiplications. Reverse CM ordering is not as good, as it leads
to fewer dense blocks.

Pinar and Heath [31] try to create contiguous blocks of nonzeros in the matrix rows by re-
ordering the columns, formulating the problem as an instance of the Travelling Salesman Problem
(TSP). In their formulation, cities represent the matrix columns and distances the inner products
between columns (considering the sparsity pattern only, not the numerical values). This inner
product metric is the same as the column similarity metric used in many partitioners, including
Mondriaan [38] and PaToH [5]. Small dense 1×2 blocks are then used to halve the integer overhead
of the SpMV, and also to reduce the number of loads of a cache line: for w > 1, the two required
adjacent values xj and xj+1 will often be in the same cache line. In their experiments, Pinar and
Heath achieve on average 21 percent reduction in SpMV time by using the TSP ordering, and only
5 percent by using the reverse CM ordering. The largest gain observed for TSP is 33 percent.

Vuduc and Moon [40] write the sparse matrix A as the sum of several matrices, each of which
is stored in a blocked variant of the CRS format, with its own block size and alignment of the
starting nonzero. Here, each block is small and dense, e.g. 1× 2 or 1× 3. A matrix with block size
1×1 is also included to represent the remaining nonzeros in the standard CRS format. Blocks are
created by greedily grouping rows and columns based on a scaled inner product metric.

Nishtala et al. [30] investigate cache blocking for SpMV multiplication by splitting the matrix
into several smaller p × q sparse submatrices (blocks), using the CRS data structure for each
separate block. They present an analytic cache-aware model to determine the optimal block size
and demonstrate that this scheme works well in practice. The authors achieve speedups for over
half of their test matrices with a maximum speedup of 2.93. They note that gains are largest for
m×n matrices with m � n. Their algorithms and software are included in the OSKI package [39].

White and Sadayappan [43] use the Metis graph partitioner [22] to reorder the matrix for better
SpMV performance on machines with a single-level cache. They report no gains by this method,
which they attribute to the natural well-structured ordering of their test matrices. Nevertheless,
reordering by partitioning did show some speedup compared to a random ordering. The authors
propose to unroll loops and change the CRS data structure, e.g. by sorting the rows by length and
creating blocks of rows of the same length.

Strout and Hovland [32, 33] use (regular) graph partitioning to achieve a better data ordering
in memory. They use hypergraph partitioning to improve inter-iteration (temporal) locality, which
can be done in some iterative algorithms where it is not necessary to finish one iteration before
partially continuing with the next.

Haase, Liebmann, and Plank [18] use the Hilbert space-filling curve to order the elements of
the matrix A, storing the nonzero elements in the order they are encountered along the curve. Each
element aij is stored as a triple (i, j, aij). They call the resulting data structure fractal storage.
Experimental results on finite-element matrices show speedups of up to 50 percent in computing
rate compared to the common CRS format, for SpMV multiplication with eight simultaneous
input vectors. This approach has the advantage that it exploits naturally existing locality in the
matrix at all levels of detail simultaneously, without knowing about the characteristics of the cache;
the Hilbert space-filling approach thus is cache-oblivious. This approach is two-dimensional, in
contrast to our own approach, which is one-dimensional since it is based on storing matrix rows.
No attempt is made to enhance locality, in contrast to our own method. It may be possible to
combine the Hilbert method with ours, by first running the matrix reordering presented here and
then using fractal storage.

Summarising the related work, we can say that only a few approaches are explicitly cache-aware
or cache-oblivious. The approach incorporated in OSKI [30, 39] is cache-aware since it adapts to
the cache sizes and other characteristics; this also holds for the approach of [27]. The space-filling
curve approach [18], like ours, can be called cache-oblivious since by its recursive nature it exploits
locality at all levels. Most approaches, however, fall outside these two categories. They try to
enhance cache use by reordering or splitting the matrix, without knowing the cache size, but also

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 7

Fig. 5.1. The CRS (left) and ZZ-CRS (right) orderings. The dash-dotted lines show the order in which matrix
nonzeros are stored.

without tackling all levels simultaneously. Often, the approach is based on using small dense
blocks [7, 31, 34], sometimes called register blocking, and this will improve use of the registers and
the L1 cache, but not the L2 and L3 cache. In the next sections, we will present our own approach.

5. Zig-zag CRS data structure and its connection to hypergraphs. A first, cache-
oblivious way to reduce the number of cache misses in CRS, is to prevent jumping from the last
to the first column when a row increment occurs. Instead, we could just start at the last column
of that row, and then process nonzeros in reverse order until we arrive at the first column. At the
next row increment we repeat this recipe. Assuming all rows are non-empty, we thus process in
the standard increasing order on even-numbered rows, and in decreasing order on odd-numbered
rows. We call the resulting data structure zig-zag CRS (ZZ-CRS). Figure 5.1 illustrates both the
CRS and zig-zag CRS orderings.

When using the zig-zag scheme, a cache that is too small will not cause the full O(n) cache
misses on the vector x (assuming w = 1) for each row in the dense case. Instead, we incur only
O(n − L) cache misses per row, where L is the total number of cache lines. For the general case
w ≥ 1, where more than one data word may fit into a cache line, we have O(n

w −L) misses instead
of O(n

w). This improvement may seem small, but we do not advocate zig-zag ordering for this
reason alone. In fact, we shall now show that by using this particular storage scheme, we can
find similarities between established matrix partitioning schemes and the cache dynamics we have
observed earlier. To this end, we quickly review basic hypergraph-based partitioning methods for
sparse matrices.

5.1. Hypergraph partitioning. It is possible to represent a sparse matrix A as a hyper-
graph H = (V,N), as follows. We let a vertex vj ∈ V correspond to the jth column of A. The net
(or hyperedge) ni ∈ N is a subset of V that contains exactly those vertices vj for which aij 6= 0.
This is called the row-net model [5], since each matrix row is represented by a net. Figure 5.2
displays a small example sparse matrix and its row-net hypergraph. Other models to represent
sparse matrices include the column-net [5] and fine-grain model [6]. In the column-net model,
the roles of the row and column indices are interchanged as compared to the row-net model. The
fine-grain model differs from the previous models in that the vertices correspond to individual
nonzeros aij . A net then contains nonzeros sharing the same row or column.

We will use the row-net model because of the rowwise storage of CRS. Suppose we partition the
vertex set V into subsets V0,V1, . . . ,Vp−1, where the Vs ⊂ V are pairwise disjoint while ∪p−1

s=0Vs = V.
Given a specific partitioning, it can happen that the vertices in a net ni are distributed over several
subsets (or parts), resulting in a cut net. Let us denote the number of subsets over which the ith
net is cast, by λi; this is also called the connectivity of the ith net.

Given the net cost ci, which is a factor expressing the relative importance of each net, and the
net connectivity λi, a cost can be assigned to a given partitioning by means of a cost function:∑

i:ni∈N
ci(λi − 1). (5.1)

8 A.N. YZELMAN AND ROB H. BISSELING

2 3 5

4 67 1

0

���
���
���

���
���
���

���
���
���

���
���
��� ���

���
���
���
���
���

���
���
���

���
���
��� 	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�
�
�

���
���
���

���
���
���

���
���
���

0 1 2 3 4 5 6 7

Fig. 5.2. Example translation from a sparse matrix to a hypergraph using the row-net model. Vertices 0
through 7 represent the columns. A net is cast over those vertices that share nonzeros in a row. Hence, each net
represents a row.

This cost function is commonly called the λ−1 metric, or connectivity−1 metric and is used exten-
sively in parallel computing, see e.g. [5]. It originates in the field of electronic circuit simulation,
see [29]. Generally, in our matrix partitioning, we assume there is no preference of any kind as to
which matrix rows are cut, and thus take ci = 1 for all i. While partitioning a hypergraph in this
manner, we strive to minimise the function (5.1).

When applying hypergraph partitioning with parallel distribution of sparse matrices in mind,
we also want to maintain a good load balance; that is, the number of nonzeros in each part should
deviate only by a small factor from the average number. To achieve this, each vertex vj is weighted
with wj = nzj , the number of nonzeros in the jth column of the matrix. We then also minimise:

max
0≤s<p

∑
j:vj∈Vs

wj . (5.2)

Consider a recursive algorithm which repeatedly splits sets of vertices V into two subsets and
aims to construct a partitioning of a hypergraph this way. A quantity that is useful when reasoning
about load balance is

ε =
max{|V0|, |V1|}
(|V0|+ |V1|)/2

− 1. (5.3)

When ε = 0 we have perfect load balance; we will denote ε as the load-imbalance factor.
The demands of a perfect load balance and a minimised total connectivity cost usually conflict

with each other. In an attempt to construct a partitioning which is acceptable in terms of both
criteria, we may decide to allow a load imbalance not larger than some pre-defined parameter ε.
A software package implementing this approach in sparse matrix partitioning is Mondriaan [38].
Mondriaan splits the matrix in both dimensions, each time choosing the best from a split in the
row direction and the column direction. We use this partitioner in our experiments in Section 8,
although not in its full 2D generality. We only need splits in the column direction, and hence use
Mondriaan in 1D mode.

When considering parallel sparse MV multiplication, parts correspond to processors. In a
full 2D partitioning, a cut column in some partitioning indicates that the required component
of the vector x is shared among different processors. This results in communication, since the
components of x are distributed among the processors to achieve scalability; processors that require
components from x which they do not locally store, have to request these values from other
processors. This happens before any computational work, and is called the fan-out of the parallel
SpMV multiplication. The same goes for components of y: some processors may have to add
values to components of y governed by other processors, thus also requiring communication. This
happens after the computational work and is called the fan-in.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 9

���
���
���

���
���
���

���
���
���

���
���
��� ���

���
���
���
���
���

���
���
���

���
���
��� 	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�
�
�

���
���
���

���
���
���

���
���
���

1 2 3 4 5 6 70
0
1
2
3
4
5
6
7

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�
�
�

���
���
���

1 2 3 5 0 4 6 7
2
4

3
7

1
5
6
0

N+

V0 V1

N−

N c

Fig. 5.3. Original matrix (left) and permuted matrix (right) after one bipartitioning step. Shaded and black
squares denote nonzero elements. Black columns denote vertices in V0 whereas shaded columns denote vertices in
V1.

The rationale for the cost function (5.1) is that if we attempt to minimise communication,
we try to avoid any cut nets; ideally, we have λi = 1 for all i. Even if we do have to cut a
net, we should cut it in as few parts as possible so that the number of processors which have to
communicate with each other, is minimised.

5.2. Cache-oblivious approach. Now, consider the following bipartitioning routine work-
ing on a row-net hypergraph H = (V,N) representing a sparse matrix A, where vertices represent
columns and rows represent nets. We partition V into parts V0,V1 while taking into account the
load imbalance constraint and the cost function. Note that the indices of the columns correspond-
ing to the vertices in each part do not have to be consecutive. In effect, we now have partitioned
the matrix A columnwise. We also induce a partitioning on the nets in N corresponding to this
partitioning. The set of nets with vertices only in V0 is denoted by N−. The set of nets with
vertices only in V1 is denoted by N+. The set of cut nets, i.e., nets which have vertices in both
parts, is denoted by N c.

Let the SpMV multiplication algorithm visit matrix elements in the following order. First,
the rows corresponding to nets in N− are processed, followed by those in N c, and finally those in
N+; see Figure 5.3. The matrix elements in consecutive rows are furthermore processed in zig-zag
order. Since such an algorithm, like ZZ-CRS based SpMV multiplication, visits matrix rows in
succession, no unnecessary cache misses are incurred on the vector y.

To minimise the cache misses on x, we define

p =
n

wL
, (5.4)

which can be interpreted as the number of caches that would be needed to store the complete
input vector x. (Note that wL equals the number of data words that can be stored by the cache.)
This value p defines a natural number of parts (or processors) for storing a row of the matrix. If
the matrix were dense, the number of cache misses per row would be n/w−L = L(p−1), provided
the zig-zag ordering is used. This would also be the number of misses for a sparse matrix that is
relatively dense and has its nonzeros well-spread, e.g., in a random sparsity pattern.

If the matrix row i is only nonzero in an interval j ∈ [li, ri), the number of cache misses for
that row is at most (ri − li)/w − L, provided the interval is the same as for the previous or next
row (this is needed for the zig-zag ordering to be beneficial). Here, we replace the row length n in
the right-hand side of eqn (5.4) by the interval length ri − li, giving a number of nonempty row
parts (of the size of a complete cache) equal to λi = (ri− li)/(wL), and the corresponding number
of cache misses is then L(λi−1). If the interval is dense, this upper bound is exact. If the interval
is sufficiently dense, with at least one out of every w matrix elements nonzero, the bound is still
exact. Another important case is where the row is uncut after partitioning the matrix into p sets
of columns. This happens very often for a good partitioner, as this is the main aim. For such

10 A.N. YZELMAN AND ROB H. BISSELING

an uncut row no cache misses are incurred, again under the assumption that the zig-zag ordering
works, and this corresponds exactly to the bound L(λi − 1) with λi = 1, which is just zero.

As a result, we can view the matrix as being partitioned into blocks of n/p columns, and
the corresponding communication volume of parallel SpMV multiplication times L gives an upper
bound on the number of cache misses. Thus, minimising the communication volume in the λ− 1
metric using hypergraph partitioning is expected to improve cache utilisation. This is the main
motivation for our approach.

In practice, we are oblivious of the values for w,L and we do not know the appropriate value
of p. It does not harm the cache behaviour to partition beyond the value of p given in eqn (5.4).
Hence, we partition infinitely, p → ∞, or as far as we can go. If we perform the partitioning by
recursive bipartitioning, and reorder the matrix accordingly (see Section 6), we create beneficial
matrix structure at all values of p. This way of reordering also minimises cache misses on multi-
level cache hierarchies since for lower p we optimise for the larger (e.g., L2) caches while for higher
p we optimise for the smaller (L1) caches, without harming the upper-level optimisations.

Putting the collection of cut rows between those of N− and N+ ensures that data loaded in
by first visiting columns corresponding to V0 are still available when processing N c. Since N c also
contains data from V1, cache performance deteriorates as data corresponding to V0 is swapped out
in favour of those of V1. We then proceed with N+, which only deals with data corresponding to
V1, thus purging the remaining data corresponding to V0 while taking advantage of the V1 data
already brought into cache. This procedure is preferred to, say, processing rows in N c strictly
after those in N− and N+, as is done in matrix reorderings for other purposes, e.g. in nested
dissection [15] for Cholesky factorisation [19] or LU factorisation; Aykanat et al. [1] use hypergraphs
to reorder rectangular matrices for sparse LU or QR factorisation. Recent work by Grigori et
al. [17] also employs hypergraphs to reorder unsymmetric matrices for sparse LU factorisation.
For factorisation, it makes sense to place cut rows or columns last, since this postpones and
prevents fill-in, the creation of new nonzeros. Another example where cut rows come last, is the
work on the package Monet [20], which tries to create a bordered block-diagonal form based on
hypergraph partitioning with the cut-net metric (i.e., eqn (5.1) with λi−1 replaced by 1 if λi ≥ 2,
and 0 otherwise).

Concluding, our method of placing cut rows in the middle ensures, with high probability, that
we have cache hits when moving from one net to another in the set of cut nets. This allows for a
gradual transition from one set of rows to the other. This transition is expected to be smooth if
the rows are sparse, and if the partitioner manages to keep the number of cut rows small.

6. Matrix permutations. Consider now a single bipartition of A defined by V0, V1, N−, N c

and N+. We can then define a permuted matrix A1 as illustrated in Figure 5.3. The permutation
of columns can be written in linear algebra form as AQ, where A is the original matrix and Q a
permutation matrix of corresponding dimensions. Similarly, the permutation of rows to achieve
the net-based ordering N−,N c,N+ can be written as a left-side multiplication with another
permutation matrix P .

Let us denote the n × n identity matrix by I = (e0|e1| . . . |en−1). Then we have that the
right-sided permutation matrix is given by Q = (eq0 |eq1 | . . . |eqn−1), for some index permutation
(qi)i∈[0,n−1] of the tuple (0, 1 . . . , n−1). Similarly, P = (ep0 |ep1 | . . . |epm−1)

T , with index permuta-
tion (pi)i∈[0,m−1]. Recall that since P,Q are permutation matrices, P−1 = PT and Q−1 = QT . Of
course, the indices at the start of (qi) correspond to the columns in V0 and the remaining indices
to the columns in V1; the order of (pi) is similarly induced by the net order. The permuted matrix
A1 after one bipartitioning step is then given by A1 = PAQ.

Subsequent recursive bipartitioning results in similar row and column permutations on disjoint
submatrices of A. We can therefore still represent the matrix Ar after r recursive steps by Ar =
PAQ, for certain P and Q, and our modified SpMV multiplication routine can be represented as
follows:

y = Ax = PT ArQ
T x, so ỹ = Arx̃ with ỹ = Py, x̃ = QT x. (6.1)

One can see a clear similarity to general preconditioning techniques. Also by using this notation,

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 11

we can extend our partitioning mechanism to other related linear algebra kernels besides SpMV
multiplication:

• We can express y = Ax + βz as follows: y = PT (ArQ
T x + βPz), which can be written as

a standard SpMV multiplication ỹ = Arx̃ + βz̃ with ỹ = Py, x̃ = QT x, z̃ = Pz.
• Also, y = AT x can be expressed as a permutation: y = QAT

r Px, so that we have ỹ = AT
r x̃

with ỹ = QT y, x̃ = Px.
• Finally, y = AAT x is also possible: y = PT ArA

T
r Px, so that ỹ = ArA

T
r x̃ with ỹ = Py,

x̃ = Px.
This shows that one can apply our cache-oblivious matrix reordering scheme by only permuting

input matrices and vectors, and run the corresponding standard BLAS kernels (or similar) on the
permuted input data. The underlying BLAS software can even be a cache-aware package, such
as OSKI [39], thus perhaps increasing cache efficiency even beyond what is possible with either
OSKI alone or with our method combined with a simple BLAS kernel.

We can also show that some linear algebra kernels cannot be executed directly using our parti-
tioning method. Notably this applies to the kernel used in power method solvers, namely y = Asx,
s ∈ N, s > 1. When supplying a permuted matrix, this kernel becomes y = (PAQ)(PAQ)s−1x;
between instances of the original matrix A we thus find the matrix QP . Since generally QP 6= I,
we cannot simply feed the matrix to an arbitrary Asx kernel; we need a translating step between
successive multiplications, which would be quite inefficient. This is for instance the case for the
power method used in Google PageRank computations [4]. However, if we instead consider an
alternative page ranking method based on hubs and authorities, called the HITS method [25] (see
also the book [28, p. 117]), the power method is applied to the matrices AAT and AT A with A a
link matrix. After reordering of A, the matrix (AAT)s becomes (PAQQT AT PT)s = P (AAT)sPT ,
and similarly for AT A. In this case, our reordering scheme can be used without penalty.

Determining the column permutation is straightforward: the recursive bipartitioning yields
an implicit order of subsets of V. Indeed, if we recursively bipartition an arbitrary number of
times, we may denote the resulting subsets by describing the path followed in their construction;
that is, at each recursive step a vertex subset either remains intact, is distributed left (0), or
distributed right (1). A subset can thus be denoted by (0110), meaning it was first distributed
left, then right, right again, and finally again on the left side. Interpreting this representation as a
binary number gives us a natural ordering on the vertex sets. Note that if we bipartition infinitely
(that is, continue until each subset contains exactly one vertex), we end up with n subsets each
containing a single column. Reordering those subsets according to their binary representation and
reading out the column indices of the corresponding vertices yields the final column reordering.

Determining the row permutation is more difficult. To do this, we look at the set of possible
final locations Qi of each row i after permutation. At the start of the reordering, we of course
have that Qi = [0,m − 1], which is the full range of matrix rows. After the first bipartitioning,
we obtain three net subsets N {−,c,+}. The rows corresponding to nets in N− can then map to
[0, |N−| − 1], those in N c to [|N−|,m− |N+| − 1] and those in N+ to [m− |N+|,m− 1]; see also
Figure 5.3. This procedure is repeated after each following bipartitioning; see Figure 6.1. There,
each horizontal straight line gives new row boundaries for the rows, with Qi the interval defined
by those boundaries. After infinite bipartitioning, we can then deduce a row ordering from the Qi.
Note that such an ordering need not be unique; for some i, |Qi| > 1 is possible, even if m ≤ n.

Figure 6.2 shows the overall structure that is obtained by recursively bipartitioning a sparse
matrix and placing the cut rows in the middle. In analogy with the bordered block-diagonal (BBD)
form [11], we call the matrix structure obtained after a sequence of recursive bipartitionings the
separated block-diagonal (SBD) form. At each level of the recursion, the cut rows separate the two
sets of uncut rows from each other. Note that the cut rows may have internal structure, which is
not depicted. This structure is created by using the λ − 1 metric, which tries to prevent further
cuts inside already cut rows. (The cut-net metric does not have this advantage.)

7. Cache simulation. The performance of sparse MV multiplication kernels depends on the
actual structure of the sparse matrix itself. This dependency on matrix input makes it hard to
analyse our method in terms of the cache model we introduced; we therefore implemented a cache

12 A.N. YZELMAN AND ROB H. BISSELING

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

2 3 1 5 0 4 6 7
2
4
6

0
3
7

5
1

���
���
���
���

���
���
���
��� ���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

2 3 1 5 0 7 4 6
2
4
6

5
0

1

7
3

Fig. 6.1. The reorderings after two (left) and three (right) bipartitionings of the original matrix in Figure 5.3.
Grey squares denote nonzeros not considered in the current bipartitioning step.

Fig. 6.2. Separated block-diagonal (SBD) structure of a sparse matrix obtained by recursively partitioning in
the column direction and moving the cut rows to the middle. The recursion has been stopped after creating 16
diagonal blocks. The four colours indicate the block structure at p = 4.

simulator library, which enables us to simulate cache dynamics accurately within the theoretical
model. Using this library, we are able to analyse theoretical cache performance on any sparse input
matrix and correlate these results to actual wall-clock timings, as will be done in Section 8.

Our cache simulator, implemented in C++, uses run-time memory allocation and memory
access wrapper functions to catch and process data access. Upon allocation, a pointer to the
allocated region x̃ is stored. This pointer is regarded as a physical RAM address. The address
x = x̃ − (x̃ mod LS) is then calculated. We use this address instead of x̃ to account for the
possibility that several variables share the same cache line; we only store the start of the cache
line brought into cache. Upon accessing s bytes from x̃, the simulator proceeds with calculating
to which cache set ID x maps, that is, i = x

LS
mod L

k . Let us first assume that x̃− x + s ≤ LS ,
so that one cache line suffices. The address x is then pushed onto the stack corresponding to the
set ID i.

The act of pushing an address onto the stack is where the simulator detects if a cache hit or
miss has occurred. For every set ID i, we have stored a stack of size k. When pushing x onto such
a stack, either x already is in cache, or it is not. If it is present, we have a hit and x is removed
from its current location in the stack and reinserted at the top of the stack. If it is not present, we
have a miss and x is inserted at the top. If this would cause the stack size to overflow (i.e., become
larger than k items), the address at the bottom of the stack is evicted. This process is repeated in
case a single cache line does not suffice, with x̃new = xold + LS and snew = sold−LS + x̃old− xold.
These calculations are done on-the-fly, so that no trace data needs to be stored.

For our purposes, we are only interested in cache effects caused by the matrix A and its

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 13

input and output vectors x and y. We therefore only apply cache simulations to calls to memory
corresponding to A, x, and y. Our cache simulator enables us to obtain theoretical performance
gains for caches with arbitrary parameters, that is, we can simulate a variety of caches. Our
simulator is limited to handling one level of cache only. It is publicly available.1

8. Experimental results. Here, we present experimental results of our reordering scheme.
We are interested in obtaining wall-clock timings for various p and ε to measure the effectiveness
of our method in practice. We also give the theoretical number of cache misses by using our cache
simulator, to check whether the model indeed approaches realistic cache dynamics. Finally, we
express the reordering time in terms of SpMVs (on the original matrix).

Our experiments are set up as follows. We assume as input a matrix stored in Matrix Market
format. This is read into an adapted version of the recently released Mondriaan 2.0 software
package [38], which keeps track of the permutation matrices P and Q while partitioning. The
permuted matrix PAQ is then written in triplet format to a binary file, and can be read in by
specialised CRS, ICRS, and ZZ-ICRS benchmark or cache simulation programs. To compare our
results with established methods, we also run experiments using OSKI (Optimised Sparse Kernel
Interface) [39] on the original matrix as well as on reordered versions thereof. We thus have
obtained results of the reordered matrix using two different SpMV routines, both based on CRS or
one of its variants. Our OSKI benchmarking program forces OSKI always to attempt a full tuning
of the input matrix before multiplication, assuming any tuning can be amortised by sufficiently
many SpMVs; however, this does not guarantee that OSKI actually tunes every input matrix. It
is possible to ask OSKI whether or not a matrix has been tuned; we will do this to gain additional
insights regarding the OSKI timings. Furthermore, a user who has intimate knowledge of the input
matrix can provide hints to OSKI as to which structural properties may be exploited. We have
not given OSKI any such hints; if we had done so, better optimisations might have been found.
All benchmarking programs perform 1000 matrix–vector multiplications, of which the normalised
average execution time is reported.

The benchmark applications to obtain the wall-clock timings are performed on two architec-
tures. The first architecture is a quadcore 2.4 GHz Intel Core 2 (Q6600) machine with 8 GB of
main memory. Each single core has a 32 kB 8-way L1 cache, and each pair of cores shares a
4 MB 16-way L2 cache. The cache line size is LS = 64 bytes. The second architecture is the
Dutch national supercomputer Huygens at SARA in Amsterdam. This machine consists of 1664
dual-core 4.7 GHz IBM Power6+ processors divided over 104 nodes. Each core possesses its own
64 kB 8-way L1 data cache (besides a 64 kB L1 instruction cache) and a 4 MB 8-way L2 cache
which is semi-shared among two cores. Furthermore, there is a 32 MB 16-way L3 cache which
is fully shared among the two cores. The cache line size is LS = 128 bytes. Each node of 16
processors has 128 GB main memory.

Several test matrices were taken from the University of Florida Sparse Matrix Collection [8].
We also include some test matrices used in [38]. Table 8.1 shows all matrices and their properties.
Generally, matrices can be divided into two classes: those that already possess a structure beneficial
in terms of cache reuse, and those that do not. If we expect a matrix to fall in the first category,
we call it structured, otherwise we call it unstructured. Examples of the first category include
matrices occurring in finite element methods (FEM) on a regular grid. The matrix s3dkt3m2 is
such a matrix, possessing relatively dense blocks along three diagonals.

Another structured matrix is memplus, obtained from memory circuit simulation; see Figure 8.1
(left). For this matrix, the vector x is consecutively accessed in up to four different areas, much like
a four-diagonal matrix. The only exceptions occur on the first few rows, and on those rows where
a straight line of nonzeros expands into a triangle-like area of nonzeros. Due to this structure, we
expect our method not to yield great improvements. On the other hand, we have unstructured
matrices such as rhpentium, which originates in circuit simulation of a part of the Intel Pentium
processor; see Figure 8.1 (right). Since the matrix is so unstructured, and the number of nonzeros
per row (nz/row) is rather small, column partitioning is expected to give only few cut rows, and

1The cache simulator can be obtained from http://www.math.uu.nl/people/yzelman/software/

14 A.N. YZELMAN AND ROB H. BISSELING

Name rows columns nonzeros nz
row remarks

memplus 17758 17758 126150 7.1 S struct. symm., chip design
rhpentium 25187 25187 258265 10.3 U chip design
s3dkt3m2 90449 90449 1921955 21.2 S symm., FEM
rand10000 10000 10000 49987 5.0 U random pattern
fidap037 3565 3565 67591 19.0 S struct. symm., FEM
lhr34 35152 35152 764014 21.7 S chemical process
rand50000 50000 50000 1249641 25.0 U random pattern
nug30 52260 379350 1567800 30.0 S quadratic assignment
tbdlinux 112757 21067 2157675 19.1 U term-by-document
bmw7st1 141347 141347 3740507 26.5 U unstructured, FEM
stanford 281903 281903 2312497 8.2 U link matrix
stanford-berkeley 683446 683446 7583376 11.1 U link matrix
wikipedia-20051105 1634989 1634989 19753078 12.1 U link matrix
cage14 1505785 1505785 27130349 18.0 S struct. symm.,

DNA electrophoresis
Table 8.1

Matrices used in our experiments, sorted by category first and number of nonzeros second. The first category
is that of the matrices we discuss in-depth in Section 8. The second category contains the remaining matrices of
smaller size, where input and output vectors typically fit into L2 cache. Finally, the third category contains larger
matrices, causing more intensive use of the L2 cache. The sixth column indicates whether the matrix is considered
structured (S) or unstructured (U).

Fig. 8.1. Plot of the original memplus (left) and rhpentium (right) matrices. Memplus has a favourable
structure, whereas rhpentium looks unstructured. Accidental zeros are removed from the data structure in this plot;
therefore, the given number of nonzeros can differ from that in Table 8.1.

thus we expect large performance gains. Note that the matrix may seem very dense in Figure 8.1
(right), created by using the spy plotting command from MatlabTM , but in fact nz/row ≈ 10.3.
The seemingly high density is an artefact due to the relative size of the markers representing
the nonzeros. Still, the plot shows very well that nonzeros are spread throughout the matrix. If
nz/row is large and the columns are difficult to partition, we may expect many cut rows resulting
in badly reordered matrices. Based on this, we can expect the unstructured matrices rhpentium
and rand10000 to perform well after reordering; both have relatively small nz/row. A large nz/row
does not necessarily mean partitioning will yield catastrophic results: it is possible a matrix can
be partitioned quite well even though nz/row is relatively large, so our method may still work well.

Due to the large number of columns of our test matrices, taking the number of parts to infinity
(in fact p = n) may take a very long time. We therefore limit the number of parts to an initial
maximum of 400, or even less in some experiments. One should note that for a given p and a given
matrix structure, the gain of reordering will depend mainly on the cache size. Hence we start off

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 15

Fig. 8.2. Plots of the memplus matrix for p = 2 (left) and p = 100 (right).

Fig. 8.3. Plots of the rhpentium matrix for p = 100 (left) and p = 400 (right).

with discussing the results of cache simulation with different cache sizes for a fairly structured
matrix (memplus) as well as an unstructured matrix (rhpentium).

As mentioned earlier, we do not expect to gain much by reordering an already favourably
structured matrix. After a single bipartitioning, however, we do see a structural improvement
on the matrix memplus. In Figure 8.2 (left) the top half of the permuted matrix shows straight
lines exactly corresponding to the beneficial original structure. The bottom half contains the less
favourably structured parts, compressed together. At p = 100 (right), things have become far less
favourably structured as our method tries to compress the nonzeros in smaller and smaller areas.

Examining the unstructured matrix rhpentium, shown in Figure 8.3, we see a completely
different behaviour. At p = 100, a good structure has already surfaced, which is improved at
p = 400 as the thickness of the rows corresponding to N c has been reduced.

The simulated cache use efficiency shown in Figures 8.4 and 8.5 reflect the behaviour observed
above. These figures show the reduction of cache misses, with respect to the simulated cache size.
For memplus, p = 2 gains of about 2 percent are recorded, while for p = 100 losses of the order of
10 percent can be seen. For rhpentium, large gains of up to 35 percent can be seen for all three
data structures. It is interesting to see that the gain curve for p = 400 improves for lower cache
sizes when compared to the curve for p = 100, regardless of which data structure is used. Refining
further beyond p = 100 is not worth the effort if the actual cache used already was large enough,
e.g. when using the L1 cache of an Intel Core 2 processor. In the figure, the largest gain is about 37
percent. On the other hand, partitioning to infinity makes the ordering truly cache-oblivious since
it works well irrespective of the actual cache size. This also hints at good performance on multi-
level cache architectures: the early partitionings optimise for the larger caches, while subsequent

16 A.N. YZELMAN AND ROB H. BISSELING

9 10 11 12 13 14 15 160.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix
Cache use enhancement on memplus, p=2

CRS
ICRS
ZZ−ICRS

9 10 11 12 13 14 15 160.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on memplus, p=100

CRS
ICRS
ZZ−ICRS

Fig. 8.4. Simulated cache effect of our reordering method for the memplus matrix, plotted against different
cache sizes. Given is the ratio between the number of cache misses for the reordered matrix and the number for
the original matrix, for three data structures, namely CRS, ICRS, and ZZ-ICRS. On the left we have simulations
with p = 2, while on the right we have p = 100. The cache line size is LS = 64 bytes, so that w = 8. We assume
an 8-way set-associative cache. Note that a cache size S = 215 bytes corresponds to an Intel Core 2 L1 cache.

9 10 11 12 13 14 15 16

0.65

0.7

0.75

0.8

0.85

0.9

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on rhpentium, p=100

CRS
ICRS
ZZ−ICRS

9 10 11 12 13 14 15 16

0.65

0.7

0.75

0.8

0.85

0.9

Logarithm (base 2) of the cache size

Ra
tio

 o
f c

ac
he

 m
iss

es
 w

ith
 re

sp
ec

t t
o

or
ig

in
al

 m
at

rix

Cache use enhancement on rhpentium, p=400

CRS
ICRS
ZZ−ICRS

Fig. 8.5. Simulated cache effect of our reordering method for the rhpentium matrix, plotted against different
cache sizes. On the left we have simulations with p = 100, while on the right we have p = 400. We again are
simulating an 8-way set-associative cache with LS = 64.

refinements increase performance on the smaller (L1) caches.
Figure 8.5 also shows that the gain of reordering eventually tends to decrease as the cache size

increases; this indicates that the more data fit into cache, the less reordering can improve upon
cache misses. One would expect that as S → ∞, the ratio shown tends to one. The reverse also
holds; as the cache size tends to a minimum, the ratio tends to one as we cannot improve much
when most misses are inevitable.

Table 8.2 presents the same simulations as Figures 8.4 and 8.5, but now with a fixed cache
size, a varying number of partitions, and a complete test set of matrices. Table 8.2 shows that for
large matrices and larger p, the zig-zag variant of CRS is superior, although we cannot say this
for all test instances.

Comparing Table 8.1 and 8.2, it can be seen that matrices with already favourable structure
indeed do not yield improved performance upon reordering in our single-level cache simulation.
Losses in miss ratio are at most 8 percent, namely for the structured matrix memplus. The gain
is largest at 37 percent for rhpentium, followed by 30 and 25 percent gain for rand10000 and

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 17

Name p = 2 p = 100 p = 400
memplus 0.99 (C) 1.05 (C) 1.08 (Z)
rhpentium 0.96 (Z) 0.66 (Z) 0.63 (I)
s3dkt3m2 1.00 (I) 1.00 (C) 1.00 (C)
rand10000 0.91 (C) 0.72 (C) 0.70 (I)
fidap037 0.98 (C) 1.00 (C) 1.01 (C)
lhr34 1.00 (C) 1.01 (Z) 1.02 (C)
rand50000 1.00 (I) 0.98 (I) 0.98 (I)
nug30 0.89 (Z) 1.05 (I) 1.06 (C)
tbdlinux 0.97 (Z) 0.90 (Z) 0.90 (Z)
bmw7st1 1.00 (I) 0.99 (I) 0.99 (I)

Name p = 2 p = 10 p = 20
stanford 0.98 (Z) 0.86 (Z) 0.75 (Z)
stanford berkeley 1.00 (Z) 1.00 (Z) 0.98 (Z)
wikipedia-20051105 0.98 (C) 0.94 (I) 0.92 (Z)
cage14 1.02 (I) 1.09 (Z) 1.10 (I)

Table 8.2
Simulated cache effect of our reordering method for the complete matrix test set and for a varying number of

parts p. Given is the ratio between the number of cache misses for the reordered matrix and the number for the
original matrix, for the best of three data structures, namely CRS, ICRS, and ZZ-ICRS. The best data structure
is shown in parentheses. In the partitioning, the load imbalance is chosen as ε = 0.1. The results are obtained by
simulating an Intel Core 2 L1 cache; that is, S = 215, LS = 64, k = 8.

stanford, respectively. We also note that although reordering with large p is never found to be
beneficial for structured matrices, reordering with small p can still yield modest improvements; see
memplus and more notably nug30 which gains 11 percent with p = 2. For the highly structured
matrix s3dkt3m2, we did not expect any gains, and indeed we do not observe any change.

The miss ratios in Figures 8.4, 8.5 and Table 8.2 are calculated by dividing the number of
cache misses for the reordered matrix by the number of cache misses for the original matrix. We
expect that these gains correlate to the actual running time of a single multiplication, but not
in a directly proportional manner: incurring 37 percent less cache misses will not mean running
time improves with 37 percent. Rather, we can say the CPU has shorter data access times in 37
percent of the data accesses. To see what the insights obtained by simulation mean in practice,
we need experiments on actual machines.

Figures 8.6 and 8.7 show the gain in wall-clock timings of benchmark experiments for the
smaller test matrices. Here, we show the ratio between the SpMV multiplication time for the
reordered matrix and that for the original matrix. The matrices used in these benchmarks are
relatively small: an Intel Core 2 L2 cache has size S = 222 bytes (4 MB), while a double requires
8 bytes of storage. Hence a vector of size 219 = 524288 can fit entirely in L2 cache. As seen in
Table 8.1, these test matrices have row and column dimensions much smaller than this size, causing
our reordering method to alter mostly the L1 (and not L2) cache behaviour; hence cache effect
enhancements translate to relatively small amounts of gain in execution time, especially since the
partitioning has been stopped at p = 400, with p still far from n. Carrying the partitioning much
further would probably show more gains from the L1 cache.

Figure 8.6 shows results for our own straightforward SpMV implementation. For small matri-
ces, our reordering method sometimes achieves modest gains; it almost never leads to losses. The
two small matrices that obtained large gains in simulations, rhpentium and rand10000, also show
significant gains here, of about 20 percent and 15 percent, respectively. These cases indeed display
larger gains with increasing p, indicating that partitioning with even higher p is desirable. As
we expect from our previous analysis, reordering performs poorly on the already well-structured
matrix memplus: with ε = 0.1 it breaks even, and with ε = 0.3 it shows losses of up to 10 percent.
The gain in execution time in the case of fidap037 is surprising, since cache simulation did not

18 A.N. YZELMAN AND ROB H. BISSELING

1 2 3 4 5
Matrix number

CRS
1
2/0.1
3
4
100
400
2/0.3
3
4
100
400

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Matrix number

 CRS
1
2/0.1
3
4
100
400
2/0.3
3
4
100
400

Fig. 8.6. Wall-clock timings performed on an Intel Core 2 (Q6600) machine. The CRS bar denotes the timing
of a straightforward CRS-based SpMV multiplication applied to the original matrix. The bar p = 1 corresponds to
the best timing of CRS, ICRS, and ZZ-ICRS on the original matrix. The bars p = 2/0.1, 3, 4, 100, 400 show the
results after reordering using p parts, with ε set to 0.1, and similarly for the p from 2/0.3 with ε = 0.3. The best
timing of the CRS, ICRS, and ZZ-ICRS schemes is shown. The test matrices are: 1. memplus; 2. rhpentium; 3.
s3dkt3m2; 4. rand10000; 5. fidap037; 6. lhr34; 7. rand50000; 8. nug30; 9. tbdlinux; 10. bmw7st1.

show any effect at all, indicating that reordering may affect behaviour not included in our cache
simulation model.

OSKI results are shown in Figure 8.7. Note that OSKI uses its own optimised SpMV multi-
plication implementation, and the ratios are given with respect to the OSKI benchmark on the
original matrix. It is surprising to see that OSKI achieves some improvement on memplus, report-
ing larger gains as p increases; however, closer inspection reveals that in this case, the OSKI SpMV
routine performs worse than our own standard implementation. These slow SpMVs are improved
by reordering, but even with p = 400, ε = 0.3 the OSKI SpMV routine is still slower (0.42 ms)
than a standard implementation (0.35 ms). Regarding most other matrices, the OSKI routine is
noticeably faster.

Figures 8.8 and 8.9 show results for much larger matrices. We feature several link matrices,
as well as the cage14 matrix. (A link matrix A is a matrix with aij 6= 0 if and only if there
is a link from web page i to j.) We stop partitioning at p = 20, because partitioning is very
time-consuming for these large matrices. Since the input and output vector together do not fit
in the L2 cache, and for the largest three matrices even a single vector does not fit, the effects of
reordering are expected to become much clearer here. Judging by the results, this is indeed the
case; for p ≥ 2, reordering already leads to substantial gains, and increasing p gives even better
results, with a gain of over 50 percent for the stanford matrix.

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 19

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Matrix number

Original
2/0.1
3
4
100
400
2/0.3
3
4
100
400

6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Matrix number

Original
2/0.1
3
4
100
400
2/0.3
3
4
100
400

Fig. 8.7. Wall-clock timings obtained by using the OSKI library for the SpMV multiplication, instead of our
own implementation. Note that OSKI sparse matrix storage is CRS-based. The cases where OSKI automatically
applied cache-aware tuning are marked.

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Matrix number

 CRS
1
2
3
4
5
10
15
20

Fig. 8.8. Wall-clock timings for very large matrices, where the input and output vector do not fit into the L2
cache. Interpretation is the same as for Figure 8.6, with ε = 0.1 when our matrix reordering method is applied.
The test matrices are: 11. stanford; 12. stanford berkeley; 13. wikipedia-20051105; 14. cage14.

20 A.N. YZELMAN AND ROB H. BISSELING

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Matrix number

 Original
2
3
4
5
10
15
20

Fig. 8.9. Wall-clock timings for very large matrices, but using the OSKI library.

The stanford_berkeley matrix breaks about even in run-time, which is very different from
the stanford matrix which does show much gain. Apparently, detecting a favourable structure on
the stanford_berkeley matrix is more difficult than for the other link matrices. We do not know
the reason for this, and can only speculate. The stanford_berkeley matrix consists of two web
subdomains, those of Stanford University and of the University of California at Berkeley, which
may pose a bigger challenge for finding exploitable structure than the stanford matrix which
represents a single subdomain.

The matrix cage14, where losses of more than 10 percent are recorded, seems to be a hard
case for improvement. One can observe a structure in all the cage matrices, which comes from the
chosen numbering of states in the underlying Markov model used to study DNA electrophoresis,
see [37]. For cage14, the original state space had 613 states, which was reduced to 1505785 states
(the value of m and n) by exploiting various symmetries. Note that the losses reach their peak
at p = 4, and that for p ≥ 4 the losses decrease monotonically with p, indicating that the finer-
grain structure of the matrix might eventually be exploited by reordering to improve the cache
behaviour.

It is difficult for a straightforward CRS-based SpMV multiplication algorithm to compete
with OSKI’s optimised implementation (OSKI is always faster, except for the memplus matrix, as
discussed earlier). When we compare the OSKI timings on the original matrix to timings using
our own implementation on reordered matrices, we see that reordering was more efficient for three
out of the nine smaller matrices (we exclude the memplus timings). For the larger matrices, this
is the case for two out of four: stanford and wikipedia. In the case of stanford, we observe
a decrease from 27.4 ms per SpMV multiplication (OSKI on the original matrix) to 15.4 ms
(reordering with p = 20, ε = 0.1, CRS without OSKI), a 44 percent speedup. As shown earlier, we
can join both methods and use OSKI on the reordered matrices. This yields improvements with
respect to OSKI on the original matrix in twelve out of the fourteen cases, the only exceptions
being s3dkt3m2 and cage14, both cases where reordering did not gain anything or even caused
performance loss compared to the original ordering.

Since our method is cache-oblivious, it should perform similarly on other architectures. To
check this, we also performed experiments on the Dutch national supercomputer Huygens at
SARA. We expect similar results as for the Intel Core 2 machine, but perhaps better performance
due to the presence of an L3 cache on larger problems. Figure 8.10 shows wall-clock time results for
the larger matrices processed on Huygens. We indeed see similar performance on the stanford
and wikipedia matrices, but note that already for p = 2 we have a 30 percent gain for the
wikipedia matrix. This may be caused by the L3 cache which can store 4194304 doubles and
hence can just fit the input and output vectors. The losses for the cage14 matrix are now less
severe, but we no longer monotonically get faster after p = 4; it may take a larger p before the
timings start to decrease on this architecture. We observed that ICRS on Huygens is frequently

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 21

11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Matrix number

 CRS
1
2
3
4
5
10
15
20

Fig. 8.10. Experiments similar to Figure 8.8, but run on the Dutch national supercomputer Huygens.

Name p = 2 p = 3 p = 4 p = 100 p = 400
memplus 1531 1914 1818 12793 101744
rhpentium 5090 6752 7303 17064 60251
s3dkt3m2 603 673 740 1934 5181
rand10000 1560 1411 1820 23179 103565
fidap037 1005 1068 1131 5657 12761
lhr34 635 708 730 1599 6513
rand50000 2868 4065 5135 34710 120070
nug30 1594 1950 2204 10961 54588
tbdlinux 2258 3219 3659 26233 137332
bmw7st1 642 725 758 1946 5059

Name p = 2 p = 3 p = 4 p = 10 p = 20
stanford 5139 7603 6828 7922 8332
stanford berkeley 11305 13208 15093 19138 21260
wikipedia20051105 2152 1992 2168 2570 7418
cage14 4238 3987 3635 4583 5611

Table 8.3
Cost of reordering in terms of the number matrix multiplications on the original matrix. Here, ε = 0.1.

Construction times were measured on an Intel Core 2 (Q6600) machine.

the fastest implementation and that it is noticeably faster than CRS. The stanford_berkeley
matrix again shows similar results; the Power6+ L2 cache has exactly the same size as the Intel
Core 2 L2 cache and hence we do not gain additional information as to the lack of speedup.

A relevant question is whether the number of SpMVs is large enough to justify reordering the
matrix first. Of course, the time required for reordering increases with p, as well as with the matrix
size. Table 8.3 presents the reordering time expressed in the number of SpMV multiplications. The
SpMV multiplication time we compare with is the time required for one SpMV without reordering.
One sees that with increasing p, the number of multiplications required increases rapidly. In
conjunction with the diminishing savings in SpMV multiplication time as p increases, we note
that taking p →∞ may not be practical. Still, research towards decreasing the construction time
for reordering would be useful in the sense that the required number of SpMV multiplications to
justify reordering would decrease, so that we may obtain better quality reorderings for the same
number of SpMV multiplications.

9. Conclusions and future work. We have introduced a matrix reordering method which
permutes the matrix rows and columns to improve the cache efficiency of a sparse matrix–vector
multiplication algorithm in a cache-oblivious manner. This method is based on partitioning meth-

22 A.N. YZELMAN AND ROB H. BISSELING

ods for load balancing from the area of parallel matrix computations. By use of both a cache
simulator as well as wall-clock timings on two different computer architectures, we have shown
experimentally that this method yields considerable savings in computation time for certain ma-
trices during sparse matrix–vector multiplication. For matrices that already have a cache-friendly
structure, the gains are modest or even a small loss is observed. This should not deter us from
using the reordering method on an unknown matrix, since the potential gains are large, and the
possible losses small. The time needed to determine the reordering permutations can be amortised
if the multiplication is carried out repeatedly, as happens in iterative linear system solvers and
eigensolvers.

Although cache-oblivious matrix reordering may not seem to be as effective on small matrices
as cache-aware software such as OSKI [39], this is partly a consequence of not carrying through
the partitioning till the end. Further research on improving the partitioning speed should take
the number of parts p closer to the number of matrix columns n. For larger matrices, we have
observed cases where the time of sparse matrix–vector multiplication was more than halved, e.g.
for the large link matrix stanford. Cache-aware methods can still be used after cache-oblivious
reordering, for fine-tuning to achieve the ultimate in cache use. We have seen that such a combined
method works well in practice.

The central ideas of our matrix reordering are:
• using a zig-zag variant of the CRS data structure, thus avoiding unnecessary cache misses

at the end of rows;
• placing cut rows in the middle during the partitioning process, leading to a gradual tran-

sition between a cache filled with data from one column set V0 to another set V1;
• hypergraph partitioning to reduce the number of cut rows;
• using the λ− 1 metric in the hypergraph partitioning, to prevent parts of cut rows from

being cut further.
For obtaining the matrix reorderings, we have adapted the hypergraph-based sparse matrix

partitioner Mondriaan [38], version 2.0, in 1D (column direction) mode; that is, not in its full
2D generality. The adaptations we made for reordering will be incorporated in a future version
of Mondriaan. The reordering method does not depend on Mondriaan, however. Instead, one
can use other hypergraph partitioners, such as PaToH [5], hMETIS [23], Zoltan [10], Monet [20],
and Parkway [35]. Using the parallel partitioner Zoltan, or Parkway, would enable a parallel
reordering.

Mondriaan is, as of yet, not designed with taking the number of parts to infinity in mind. This
translates to high reordering times. These depend on p and the matrix structure, but not directly
on the number of nonzeros (nor the average number of nonzeros per row). For this method to
perform well in practice, further research is required to decrease the reordering times. It is expected
that additional speedups can be obtained by removing time-consuming optimisations that mainly
make sense for smaller p. Also, our results show that the choice of imbalance parameter ε is less
critical than in the case of parallel computations (where it should reflect the ratio between the
computation rate and the communication rate of the hardware). It will be interesting to study
better strategies for choosing ε in a sequence of matrix splits.

Another way to improve this method is to use 2D partitioning instead of 1D only. This can
be done by either modelling the matrix by using the fine-grain method [6], or by allowing a 1D
method to bipartition recursively in either the column or row direction, whichever yields the best
results; the latter is Mondriaan’s default mode of operation. Depending on the choice of fine-grain,
row, or column partitioning, we end up with six possible sets R−,c,+, C−,c,+ after every bipartition,
where R, C denote the row and column sets, respectively. It warrants further investigation how a
reordering based on these sets affects sparse matrix-vector multiplication when using plain CRS
and to see whether other data structures are more appropriate.

Acknowledgements. We thank Fatima Abu Salem for helpful discussions on cache-oblivious
algorithms. We thank Sarai Bisseling for creating Figure 6.2. We are grateful to the anonymous
referees who helped us a lot by their careful reading and constructive remarks. We thank the
Dutch supercomputing centre SARA in Amsterdam and the Netherlands National Computing

CACHE-OBLIVIOUS SPARSE MATRIX–VECTOR MULTIPLICATION 23

Facilities foundation NCF for providing access to the Huygens supercomputer and for help in our
experiments. We acknowledge the BSIK/BRICKS MSV1-2 program for financial support.

REFERENCES

[1] C. Aykanat, A. Pinar, and Ü. V. C↪atalyürek, Permuting sparse rectangular matrices into block-diagonal
form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, PA, 2000.

[3] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and E. Vicari, Optimal sparse matrix dense vector
multiplication in the I/O-model, in Proceedings 19th Annual ACM Symposium on Parallel Algorithms
and Architectures, ACM Press, New York, 2007, pp. 61–70.

[4] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, in Comput. Netw. ISDN
Systems, vol. 30, 1998, pp. 107–117.

[5] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix
vector multiplication, IEEE Trans. Parallel Distrib. Systems, 10 (1999), pp. 673–693.

[6] , A fine-grain hypergraph model for 2D decomposition of sparse matrices, in Proceedings 8th Interna-
tional Workshop on Solving Irregularly Structured Problems in Parallel, IEEE Press, Los Alamitos, CA,
2001, p. 118.

[7] R. Das, D. J. Mavripilis, J. Saltz, S. Gupta, and R. Ponnusamy, Design and implementation of a parallel
unstructured Euler solver using software primitives, AIAA J., 32 (1994), pp. 489–496.

[8] T. A. Davis, University of Florida sparse matrix collection, http://www.cise.ufl.edu/research/sparse/matrices,
University of Florida, Department of Computer and Information Science and Engineering, Gainesville,
FL, 1994-2008.

[9] J. M. Dennis and E. R. Jessup, Applying automated memory analysis to improve iterative algorithms, SIAM
J. Sci. Comput., 29 (2007), pp. 2210–2223.

[10] K. D. Devine, E. G. Boman, R.T. Heaphy, R. H. Bisseling, and U. V. Catalyurek, Parallel hyper-
graph partitioning for scientific computing, in Proceedings IEEE International Parallel and Distributed
Processing Symposium 2006, IEEE Press, 2006.

[11] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Monographs on Numerical
Analysis, Oxford University Press, Oxford, UK, 1986.

[12] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, in Proceedings IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 3, IEEE Press, Los Alamitos,
CA, 1998, pp. 1381–1384.

[13] , The design and implementation of FFTW3, Proc. IEEE, 93 (2005), pp. 216–231.
[14] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms, in Proceedings

40th Annual Symposium on Foundations of Computer Science, IEEE Press, Los Alamitos, CA, 1999,
p. 285.

[15] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345–363.
[16] K. Goto and R. van de Geijn, On reducing TLB misses in matrix multiplication, Tech. Report TR-2002-55,

University of Texas at Austin, Department of Computer Sciences, 2002. FLAME Working Note #9.
[17] L. Grigori, E. Boman, S. Donfack, and T. A. Davis, Hypergraph-based unsymmetric nested dissection

ordering for sparse LU factorization, Tech. Report 6520, INRIA Saclay, Orsay, France, April 2008.
[18] G. Haase, M. Liebmann, and G. Plank, A Hilbert-order multiplication scheme for unstructured sparse

matrices, Int. J. Parallel Emergent Distrib. Syst., 22 (2007), pp. 213–220.
[19] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection ordering, SIAM

J. Sci. Comput., 20 (1998), pp. 468–489.
[20] Y. F. Hu, K. C. F. Maguire, and R. J. Blake, A multilevel unsymmetric matrix ordering algorithm for

parallel process simulation, Comput. Chem. Engrg, 23 (2000), pp. 1631–1647.
[21] E.-J. Im and K. A. Yelick, Optimizing sparse matrix–vector multiplication for register reuse in SPARSITY,

in Proceedings International Conference on Computational Science, Part I, vol. 2073 of Lecture Notes in
Computer Science, 2001, pp. 127–136.

[22] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM
J. Sci. Comput., 20 (1998), pp. 359–392.

[23] , Multilevel k-way hypergraph partitioning, in Proceedings 36th ACM/IEEE Conference on Design Au-
tomation, ACM Press, New York, 1999, pp. 343–348.

[24] T. Katagiri, K. Kise, H. Honda, and T. Yuba, ABCLibScript: a directive to support specification of an
auto-tuning facility for numerical software, Parallel Comput., 32 (2006), pp. 92–112.

[25] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, 46 (1999), pp. 604–632.
[26] J. Koster, Parallel templates for numerical linear algebra, a high-performance computation library, master’s

thesis, Utrecht University, Department of Mathematics, July 2002.
[27] M. Kowarschik, U. Rüde, C. Weiß, and W. Karl, Cache-aware multigrid methods for solving Poisson’s

equation in two dimensions, Computing, 64 (2000), pp. 381–399.
[28] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings,

Princeton University Press, Princeton, NJ, 2006.
[29] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley and Sons, Chichester,

24 A.N. YZELMAN AND ROB H. BISSELING

UK, 1990.
[30] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, When cache blocking of sparse matrix vector

multiply works and why, Appl. Algebra Engrg. Comm. Comput., 18 (2007), pp. 297–311.
[31] A. Pinar and M. T. Heath, Improving performance of sparse matrix-vector multiplication, in Proceedings

Supercomputing 1999, ACM Press, New York, 1999, p. 30.
[32] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck, Sparse tiling for stationary iterative methods,

Int. J. High Perf. Comput. Appl., 18 (2004), pp. 95–113.
[33] M. M. Strout and P. D. Hovland, Metrics and models for reordering transformations, in Proceedings 2004

Workshop on Memory System Performance, ACM Press, New York, 2004, pp. 23–34.
[34] S. Toledo, Improving the memory-system performance of sparse-matrix vector multiplication, IBM J. Res.

Dev., 41 (1997), pp. 711–725.
[35] A. Trifunovic and W. J. Knottenbelt, A parallel algorithm for multilevel k-way hypergraph partitioning,

in Proceedings 3rd International Symposium on Parallel and Distributed Computing, IEEE Press, Los
Alamitos, CA, 2004, pp. 114–121.

[36] R. van der Pas, Memory hierarchy in cache-based systems, Tech. Report 817-0742-10, Sun Microsystems,
Inc., Santa Clara, CA, Nov. 2002.

[37] A. van Heukelum, G. T. Barkema, and R. H. Bisseling, DNA electrophoresis studied with the cage model,
J. Comput. Phys., 180 (2002), pp. 313–326.

[38] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel sparse matrix-
vector multiplication, SIAM Rev., 47 (2005), pp. 67–95.

[39] R. Vuduc, J. W. Demmel, and K. A. Yelick, OSKI: A library of automatically tuned sparse matrix kernels,
J. Phys. Conf. Series, 16 (2005), pp. 521–530.

[40] R. W. Vuduc and H.-J. Moon, Fast sparse matrix-vector multiplication by exploiting variable block structure,
in High Performance Computing and Communications 2005, vol. 3726 of Lecture Notes in Computer
Science, 2005, pp. 807–816.

[41] R. C. Whaley and A. Petitet, Minimizing development and maintenance costs in supporting persistently
optimized BLAS, Softw. Pract. Exper., 35 (2005), pp. 101–121.

[42] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical optimizations of software and the
ATLAS project, Parallel Comput., 27 (2001), pp. 3–35.

[43] J. B. White, III and P. Sadayappan, On improving the performance of sparse matrix-vector multiplication,
in Proceedings 4th International Conference on High-Performance Computing, IEEE Press, Los Alamitos,
CA, 1997, pp. 66–71.

