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CHAPTER

1
ONE

Introduction

In this thesis, we will investigate a particular family of datastructures used for storing and
efficient querying of multi-dimensional data objects, namely the so-called R-trees. We will theoreti-
cally and experimentally investigate a selection of R-tree variations, and attempt to find the best
R-tree for use in our application area.

This area is the efficient storage of and querying of three-dimensional rectangle-like grid
elements as used in an oil reservoir simulation software package called Dynamo, which is in use
by and developed by Shell.

Globally, we measure the quality of data structures by:

• Speed of construction of the data structure (Section 4.6).
• Speed of answering to (random) queries (Section 4.7),
• Memory allocation and usage (Section 4.8),

In all cases our objective is, of course, to minimise.
R-trees are data structures designed to store multi-dimensional objects. An essential problem

with multi-dimensional objects (or rather, any object with dimension two or larger), is that there
exists no good ordering on such objects. This makes the design of searchable multi-dimensional
data structures difficult.

R-trees have in common that they attempt to order data elements by using Minimum Bounding
Rectangles (MBRs). This can be done in many different ways, giving rise to just as many different
R-Tree variations. The R-tree data structure was introduced in 1984, by A. Guttman in [Gut84].

1.1. Searching ordered sets

We will first demonstrate why an ordering is advantageous when constructing a data struc-
ture. Assume we wish to efficiently store and query a finite set S of integers. For simplicity, we
will assume these integers are all positive, i.e., S = {s1, s2, . . . , sn} ⊂ Z. Also, we will assume the
only query we are interested in, is if a given number x is contained in S, i.e. if x ∈ S. If we simply
store all values in S in a simple, unordered array, searching for any x will (worst case) require n
comparisons, or rather n/2 comparisons on average. This is because we will have to check for
each element s ∈ S if x = s, until such an x is found.

Now we will make use of the natural ordering of integers. Assume we have now stored the
elements of S in a sorted array, in ascending order. Then, we may search for a given x by checking
if x falls in the range of the array, and if so, recursively check if this also holds for the appropriate

9
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FIGURE 1.1. Illustration of a bisection search method on a sorted array. We check
if 36 contained in the array.

half of that array1. See figure 1.1 for an illustration. Continually taking the half of the array will
eventually result in considering a subarray of size 2, for which we can easily check if it contains
x. If it does not, then certainly x /∈ S.

By only considering the values at the ’halves’ of the array, we have compared at most dlog2ne
(log2 n rounded up) elements of S with x, at the cost of pre-sorting the elements of S in an array.
The array still requires the storage of only the n elements of S, and as such the only loss incurred
when compared to the unsorted search described earlier, is presorting2, which only needs to be
executed once. Hence, when a lot of queries are performed on the same dataset, querying the
sorted list results in better efficiency.

1.2. MBRs

Sadly, we cannot unambiguously sort multi-dimensional data; there is no unambiguous way
we can state a given cube is ”less than” a given other cube, for example. However, in an appli-
cation using a very finely discretised grid, having queries run with a complexity proportional to
the number of grid elements or worse, is simply unacceptable. One can furthermore imagine that
such linear complexity is at the very least undesirable in any other application as well. An added
problem is that we would like R-trees to handle multi-dimensional data of arbitrary shape, which
increases the difficulty of defining a sane ordering even more.

To tackle these problems, R-trees employ minimum bounding rectangles3. An MBR of a
given multi-dimensional object o, with non-zero volume, is defined to be the (hyper)rectangle R
containing o with the volume of R as small as possible.

On these MBRs we then define some ordering, which we will use to construct the data struc-
ture. Note that since MBRs still are multi-dimensional objects, any ordering imposed on it still
is ambiguous. However, orderings based on containment, volume and/or (Hilbert) coordinates
(Section 2.5.2) of the MBR centres produce reasonable datasets, as will be seen later on.

1.3. R-Trees

The way R-trees work with MBRs is as follows. Consider a simple tree as in figure 1.2. Each
tree node is linked to the MBR which contains the MBRs of the children nodes, while the MBRs

1This method is also generally known as the bisection method. This method can also be generalised to higher dimen-
sions, and is used in the Dynamo (Section 1.4) package at the time of writing.

2One can also opt to sort the array while initially constructing it, by means of sorted injection.
3Since R-trees were firstly introduced to handle two-dimensional objects, the terminology refers to rectangles here;

in larger dimensions these are of course easily extended to hyperrectangles. For brevity however, we will keep referring
to rectangles in this context.
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FIGURE 1.2. A schematic view of a simple tree data structure.

of the leaf nodes (the nodes which do not have children) contain the data elements stored there.
Typically, the nodes in an R-tree contain between m ≤ M children or elements, with m and M
fixed beforehand. Also, all data elements are stored in the leaf nodes and all leaf nodes are on the
same tree level.

One can intuitively understand that when MBRs do not overlap, searching a given data ele-
ment will cause a search algorithm to follow a single path from the tree root (the top node) to a
leaf node; hence taking only logarithmic time. One also can immediately see that the MBR struc-
ture is solely determined by which data elements are stored in which leaf nodes. Hence the true
difficulty with R-trees is finding a method which constructs the most favourable structure with
respect to the MBR overlap and other MBR properties.

We will see that many different R-tree variations exists. We shall investigate some of them,
and attempt to find an R-tree which has excellent query efficiency for problems of the type we
will introduce in the next section. At this point it seems prudent to conclude with this intuitive
introduction of R-trees and leave the details and more exact definitions for Chapter 2. We will
first proceed with explaining more about the context in which we wish to apply these R-trees.

1.4. Context

We will now give a small introduction to the context in which Shell looks to apply the R-tree
data structures.

1.4.1. Oil Reservoirs. Consider an oil field, and assume one wants to extract oil from them.
This is usually done by drilling wells, which of course must be put at strategic locations so that
extracting oil can be done as efficiently as possible. Two things are needed for this to succeed;
firstly, a rather good ”map” of the oil field must be available, and secondly, one has to be able to
predict the effect of drilling somewhere, before actually doing so. The latter because drilling a
well is not an endeavour without cost; these are multi-million euro operations. Also, drilled wells
may influence the oil reservoir; possibly in such a way making it harder to efficiently extract oil.

1.4.2. Simulation. The above is one of the reasons why oil companies such as Shell are will-
ing to invest in developing simulation software to predict what would happen to an oil reservoir
given various scenarios; indeed, even if such a simulation would prevent only a single unneces-
sary test drill from happening, millions would be saved already.

The area of fluid dynamics provides us with a set of differential equations which enables us
to model fluid flows through porous media. Obviously, in our case we are interested in only the
fluid oil which flows through the many different ground layers which make up the oil reservoir.
For the model to work accurately, the properties of oil and those of the different ground layers
in the oil reservoir have to be determined as precisely as possible. After a model has been set up
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for the oil reservoir in question, artificial changes can be made and the model can be solved
accordingly; thus enabling us to predict the oil flow in both the original situation and other
hypothetical situations.

At the core of simulation software, mathematical models such as the Finite Differences Method
(FDM), the Finite Element Method (FEM) or the Finite Volumes Method (FVM) are being used to
solve these models. The software package used at Shell makes use of the latter, the FV method.
Since this is only meant as an introductory section about the simulation software, we will not
discuss this method in detail; see for example [BO] for details on this method.

FVM is known to work well for problems which obey some law of conservation; in our case,
the flow of oil entering a cube of oil reservoir ground is equal to the flow exiting from an adjacent
cube. Also, FVM can be easily applied to unstructured grids; why this is a good advantage in our
case will become apparent later on.

1.4.3. Current Software Structure. For the purpose of simulating oil reservoirs, Shell has
developed a package called Dynamo. Dynamo is a highly modular package capable of reading in
external reservoir field data and obtaining a discretisation of it, upscaling (or coarsening) this grid
and finally performing a wide range of simulations. During each step, the user is able to modify
a great amount of settings to fine-tune the resulting oil reservoir model and perform the precise
simulations they are interested in. These three steps are examined in greater depth below.

• Discretisation; Voxel Grid extraction
• Upscaling; Reduce++
• Simulation; Modular Reservoir Simulator (MoReS)

Voxel Grid extraction. In oil reservoir simulation, we discretise a certain volume; this vol-
ume consists of porous rock, containing water, gases and oil. Generally, the reservoir area is
divided into beam-like subareas to which we will refer to as grid elements. For each grid element,
ground properties such as porosity, saturation, permeability4, overall ground type (or facies) clas-
sification5, are determined. The procedure of obtaining a suitable discretisation and getting the
required data from the reservoir field data, is the first phase in preparation for the actual simula-
tion. We will refer to this as the voxel grid extraction phase.

Consider a cross-section of an oil reservoir field as in figure 1.3(a). The different colours
denote different kinds of ground layers the ground is built up from. These different ground
layers have different ground properties, which directly influences the flow of liquids such as oil,
water or gas. To determine a discretisation, virtual pillars are inserted at strategic positions in the
virtual representation of the oil reservoir. Along the edge of these pillars, we set ticks at least at
the places where two ground layers come together. A pillar is modelled using splines, and can
either be straight (linear) or be bended (quadratic, or listric).

Assume that our cross-section has pillars inserted at regular intervals, as in figure 1.3(b).
Now, according to the ticks on these pillars, we can define a two-dimensional discretisation in
a rectangular-like grid based upon ground layer similarity; we create rectangular grid elements
of which the area shares as much ground layer similarity as can be expected. This is illustrated
in figure 1.3(c). Note that in reality, this all happens in three dimensions and thus we obtain
beam-like (three-dimensional hyperrectangular) grid elements; see figure 1.1.4.

As can be seen in the figures, some pillars have less ticks on them than others, thus resulting
into non-existent grid elements, also called void blocks. This happens frequently around places
where ground layers are fractured due to planar movement; they are also called fault lines. Void

4A permeability coefficient is stored for each direction along any of the three (x-, y-, or z-) axis. Axis alignment is
derived from the input data.

5I.e.; sand, clay, rock, et cetera.
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blocks can also be manually defined on otherwise normal grid elements, when we are not inter-
ested in calculating the solution for that block.

As a consequence of this method of voxel grid extraction, the grid elements and their prop-
erties are stored in an three-dimensional matrix (when working on three-dimensional problems),
with corresponding grid blocks that are generally not localised in space. Let us clarify this again
using the two-dimensional example. In the discretisation figure 1.3(c), we may denote the upper-
left rectangle with the coordinates (0, 0). The rectangle on the right of that one will be denoted
by (1, 0) et cetera, such that the bottom-right rectangle is denoted by (6, 3). Let us assume we can
store all relevant grid element data such as their location and ground properties in a single data
element Eij, with i, j corresponding to the rectangle coordinates as introduced above. We thus
have defined a matrix E containing all grid-element data, or in other words, E contains the voxel
grid.

This three-dimensional matrix E is also referred to as the ijk-grid. Hence, although there is
some logic in the order at which the rectangular grid elements are indexed in this ijk-grid, there
is no guarantee that elements at neighbouring indexes are neighbours in the spatial sense as well;
see figure 1.3(c) around the fault lines, for example. The spatial representation of an ijk-grid is
also called the Paleo domain.

This lack of ordering initially results in an O(n) complexity6 when searching for a grid ele-
ment with specific spatial properties, with n is the total number of grid elements. Therefore, it is
desirable that the individual grid elements are pre-processed and stored in a memory and query
efficient datastructure to speed up the many queries that must be executed during the actual
simulation run.

Note that the procedure of determining a discretisation is not done by Shell itself; external
companies are responsible for supplying grid data. For example, via the software application
Petrel7.

Reduce++. Reduce++ is software package part of Dynamo developed at Shell which reads
in the fine voxel grid, described above. Those grid elements are coarsened and conditioned in
preparation of being passed on to the finite volume (FV) solver.

Coarsening, put simply, is the practise of combining several small beam-like grid elements
into a single beam-like element. Of course, the properties of the individual grid elements need to
somehow be combined to form the properties of the resulting beam element.

Several areas of the discretisation of an oil reservoir can be coarsened when one is not in-
terested in oil flow details there. This is for instance useful when considering to drill a well
somewhere; one would be interested primarily in what happens to the oil flow around that well,
and not particularly in what happens to the oil a few kilometres farther away, for example.

MoReS. MoReS is software, also part of Dynamo, which does the actual oil reservoir simu-
lation. It uses the grid element output of Reduce++ on which specialised FV is applied. This FV
application is repeated for each time step for which a simulation is required.

Note that the precision of the solution this solver returns depends primarily on the discretisa-
tion quality; apart from the initial grid measurement uncertainties from the first phase, the second
phase may very well amplify those uncertainties to too large levels when one is not careful. The
point is these few steps are sensitive and errors may easily spoil the end result.

1.4.4. Queries. The extraction phase comes up with an initial grid, and both the upscaling
and simulation phase need to extract information (by querying) from that grid, and possibly mod-
ify that grid.

6On complexity and the O-symbol, refer to section 3.1.
7See http://www.slb.com/petrel .

http://www.slb.com/petrel
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(a) An example cross-section of an oil-reservoir. (b) An example cross-section of an oil-reservoir with
measurement pillars inserted.

(1,0)

(5,3)

(0,2)
(6,3)

(6,0)
(0,0)

(c) Example of discretisation according to ground
layer data.

FIGURE 1.3. Simplified illustrations regarding voxel grid extraction.

If we extract grid elements with certain properties from the data structure, we say we have
performed a certain query on the data structure. The queries that certainly will be applied in
simulation are the following.

• Point containment
• Line intersection
• Box intersection

Point query. Point queries take a single point in 3D and finds and returns all grid elements
containing this point. Such a query would be useful for determining the ground properties at a
given point, for example.

Line query. A line query finds and returns all grid elements which intersect a line segment
given by two points in space. This query is for example useful when one is interested which grid
elements a certain well would intersect. Actually, a well may be curved, so instead of doing a
single line query for a well, one approximates the well path by a polyline consisting of multiple
line segments and executes a query for each line segment.

Box query. A box is defined by two points which denote two opposite cornerpoints of a box.
All grid elements falling within, or intersecting with this box will be returned by this query. This
is for instance useful when one wants to visualise only part of the entire grid.

Some more exotic queries which are not the queries we are primarily interested in, but which
will be investigated later on, are the following.
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FIGURE 1.4. A visualisation of a grid used in simulation at Shell.

• Nearest neighbours
• Plane intersection

Nearest neighbours. The nearest neighbourhood query takes as input a single point, and firstly
finds a grid element containing that point. Alternatively, one could also supply this query with an
initial grid element. The query than proceeds with finding and returning the k nearest neighbours
of this grid element, where k is variable. This query can be useful for the FVM solver; the method
employed calculates solutions by calculating the flow of oil from one adjacent grid element to
another. Adjacency of two elements implies they are neighbours, hence justifying a need for this
type of query. Note that alternatively, one could use a MBR slightly larger than the grid element
to query on to find its neighbours.

Plane intersection. As an extension to the line query, we could also implement a plane query
which finds and returns all grid elements intersecting with a given plane. This type of query is
useful when visualising only a slice of the entire grid, for example.

We assume there is no pre-defined systematic way of querying; i.e., the queries to-be done
are more or less random. If there was a systematic way of querying, it would have been possible
to design a highly efficient tailored data structure. Since this is not the case, we will end up
with more general data strucures which can be used in many other applications. When doing
experiments however (Chapter 4), we only consider Shell’s context described above.





CHAPTER

2
TWO

R-tree data structures

To solve the problem of achieving a good query time on the grid elements, we will research
the so-called R-tree data structure and compare it to the performance of a tree built using a bisection
algorithm1. The latter structure is used by Shell at the time of this project initiation. Since both
solutions make use of the concept of a tree, we will start our theoretical review there.

2.1. Definition of a Tree

Many data structures on which searching is an important operation, are based on trees. Be-
fore going into detail about specific (R-)trees, we will first properly define the notion of a general
tree.2 Since a tree can easily be defined by using graphs, we will define those first.

2.1.1. Graphs. We will start with defining the notion of an (undirected) graph. An example of
such a graph is given in figure 2.1(a).

DEFINITION 2.1 (Graph). An graph G is given by a pair (V, E), where the set V consists of vertexes
and the set E ⊂ V ×V consists of edges. A single edge e ∈ E defines an connection between two vertexes
v, w ∈ V; hence e = (v, w) = (w, v).

DEFINITION 2.2 (Path). For some undirected graph G = (V, E), a path p of length k ∈ Z, k ≥ 1
from a vertex v1 ∈ V to a vertex vk ∈ V is given by a sequence of vertexes as follows:

p =< v1, v2, . . . , vk+1 >, vi ∈ V

such that for all i ∈ [1, k] ⊂ Z we have that (vi, vi+1) ∈ E.

Note that as such, < v1, v2 >, v1 = v2 actually could denote a path of length 1 as long as
(v1, v2) ∈ E.

When for each pair of vertexes v, w ∈ V there exists a path which starts at v and ends at w,
we say the graph G is connected. When there exists a path p =< v1, v2, . . . , vk, vk+1 > such that
v1 = vk+1 and v2 6= vk if k > 2, we say that p forms a cycle and as such G is a cyclic graph. If no
such path exists, we say G is acyclic. Figure 2.1(b) shows an undirected, connected, cyclic graph.

1See section 2.2.
2The following line of definitions is adapted from [CLRS03, Appendix B.4 and B.5].

17



18 2. R-TREE DATA STRUCTURES

2.1.2. Free Tree. An undirected, connected, acyclic graph is also called a free tree. This is
called this way because such graphs consists of many edges which branch into more edges at
given vertexes; just like branches in a tree. A free tree is shown in figure 2.1(c).

THEOREM 2.3 (Unique Paths in a Free Tree). Let F = (V, E) be a free tree. Then, for each pair
v, w ∈ V there exists an unique path p starting at v and ending at w.

PROOF. Firstly note that a free tree is a connected tree; therefore, there is at least one path
connecting v to w. We will assume two such paths exist and show a contradiction.

Let p1 =< v, v1
1, v1

2, . . . , v1
k , w > be the first path connecting v to w, and let

p2 =< v, v2
1, v2

2, . . . , v2
k , w > be the second path. Let there exist at least one i such that v1

i 6= v2
i so

that the paths are not equal (i.e., p1 6= p2). As such, there exists an index j such that:

j = arg min 1≤i≤kv1
i 6= v2

i

Then the vertex d = vj is the vertex at which both paths diverge.
Since both p1 and p2 define a path between a common start and ending point, similarly, there

also exists a vertex c at which the two paths converge again. Note that we thus have found two
completely different paths p̂1 and p̂2 connecting vertexes c and d. If we connect those two paths,
the resulting path defines a cycle, while a free tree contains no cycle; contradiction.

Hence there cannot exist two different paths in a free tree connecting the same vertexes v and
w, and thus there exists precisely one such path. �

2.1.3. Rooted Trees. There is one dissimilarity between a free tree and a tree ”in the real
world”; a free tree has no root from which the rest of the tree grows. Given this, we now define a
rooted tree.

DEFINITION 2.4 (Rooted Tree). A rooted tree R is a free tree (V, E) from which one of the vertexes
in V is distinguished from all other vertexes; i.e., R = (r, V, E) for some r ∈ V. r is called the root of R.

Note that as such, any free tree can be made a rooted tree. Vertexes in a rooted tree R are
commonly called nodes; hence, the root is a special node. Also, since a rooted tree is a special case
of a free tree, Theorem 2.3 applies and we may state that there exists exactly one path from the
root node to each other node in V.

Each node on the path from an arbitrary node v in V to r is called a ancestor of v, and on the
other hand, if some node v is an ancestor of w, then w is a descendant of v. The first vertex p on
the path from a vertex v ∈ V to r (for which p 6= v) is called the parent of v. Then also, we may
define v to be a child of p. When two nodes v, w ∈ V have the same parent p, then v and w are
siblings.

A node which does not have children is called a leaf or external node, while others are non-leaf
or simply internal nodes. For some v ∈ V, the number of nodes - excluding v - which lie on a path
from v to r is called the depth of v. The depth of the deepest node v (v = arg max w∈Vdepth(w)) is
called the height of the tree. If all leaf nodes have the same depth, we say the tree is height-balanced.

Following the definition of a rooted tree, we may also define the notion of a subtree as fol-
lows.

DEFINITION 2.5 (Subtree). Let R = (r, V, E) be some rooted tree, and v be an arbitrary node
contained in that tree. Let V ′ contain all descendants of v, including v itself. E′ is a subset of E containing
only the edges between nodes in V ′. Then the tree S = (v, V ′, E′) is a subtree of R with root v.

NOTATION 2.6 (Subtree). When R = (r, V, E) is a rooted tree and v ∈ V, v 6= r a non-root node in
R, then we denote the subtree of R with root v by Rv.
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(a) An undi-
rected, uncon-
nected, acyclic
graph.

(b) An
undirected,
connected,
cyclic graph.

(c) An undi-
rected,
connected,
acyclic graph.
Also called a
free tree.

FIGURE 2.1. Various graph illustrations.

2.1.4. Searching through a tree. We can store data objects throughout a tree structure, at
every node or only at the leaf nodes. If furthermore we can add a kind of indexing to each node,
we may be able to search for a specific object in the tree without having to inspect all nodes. This
is the main reason to implement data storage using a tree-like structure.

If we assume that the indexing mechanism can indicate exactly at which child of a given node
the requested element should be, then the searching algorithm only has to construct a single path
from the root to the node which contains the requested element. Searching time then is of an
order equal to the depth of the node storing the element.

This already indicates an important aspect in data structures based on trees; we wish to keep
the height of a tree as small as possible, to improve searching time. Now that we have this basic
knowledge about trees, we will review some possible tree-based data structures which we can
use within the reservoir simulation software.

2.2. Bisection Tree

Suppose we have some collection of polygons we wish to efficiently store in a tree. Efficient,
in this case, means searching times should be as short as possible while memory usage remains
low. Let us then first investigate how we should search a tree which stores spatial data. We first
make some assumptions about such a spatial tree.

2.2.1. Spatial Tree.

DEFINITION 2.7 (d-dimensional Spatial Tree). S = (r, V, E, F) is a d-dimensional spatial tree if
R = (r, V, E) is a rooted tree (as in Definition 2.4) and when for each node v ∈ V there exists some set vO
containing d-dimensional objects. Also, for each such node, we have a function fv : Rd → {0, 1}, which
indicates if the subtree Sv = (v, V ′, E′) may store3 objects containing some given point x ∈ Rd;

fv(x) =

{
0, if ∀µ ∈ V ′ we surely have that @X ∈ µO such that x ∈ X

1, otherwise

Hence, for each v ∈ V we have an fv ∈ F.

Now, a generic search algorithm may look like Algorithm 2.1. Analysing this algorithm gives
us an upper bound for the time required to execute it (see Section 3.4.1):

3It could be that there does not exist any object in the data structure satisfying the query. The point is we do not
know for certain until the leaf nodes are reached.
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Algorithm 2.1 Generic Search Algorithm on a Spatial Tree.

A Generic Search Algorithm which attempts returns all objects in the (sub)tree with a given root
node v containing some given point x ∈ Rd, where d is the dimension of the spatial tree.

GSA(v, x):

1: Let S be an empty set of objects.
2: for each object o ∈ vO do
3: if o contains x then
4: Add o to S.
5: end if
6: end for
7: for each child node c of v do
8: if fc(x) == 1 then
9: Let S = S ∪GSA(c, x).

10: end if
11: end for
12: return S.

T(r) = O(a + b + ∑
v∈rC

fv(x)T(v)),(2.1)

where a is the maximum number of elements stored at each node, b the maximum number of
children, r the root node and rC the children of the root. Thus, we see that the best results are
achieved when the number of recursions is limited. This can be achieved by any of the following:

(1) ∩u∈vC{x ∈ Rd| fu(x) = 1} = ∅, for any v ∈ V (as mentioned earlier in Section 2.1.4).
(2) The tree height is small (also see Section 2.1.4) (thus limiting recursion depth).
(3) The maximum number of children (b) is small (thus limiting recursion breadth).

(1) is the case when there is no point overlap between sibling nodes; hence, when all objects
containing a point x are stored within the same node. With regards to (2), the tree height h is
smallest (under constant b) when h = log n

log b , where n is the total number of elements stored. Note
that this requires that each node (possibly excluding a single node) would have exactly b children;
the tree should be fully packed. Furthermore, a larger b may directly result in a smaller tree (in
terms of height) when it is packed.

If there is point overlap between sibling nodes, item (3) quickly becomes a large issue. How-
ever, note that a small b conflicts with demand (2); having many children would indeed reduce
tree height, but in case of bad overlap properties, the GSA may recurse over too many children
and again spoil the searching time. In conclusion, when building a spatial tree, one has to care-
fully take into account these three basic properties. In practise, b is chosen so that algorithms like
the GSA can perform their operations as much as possible in cache memory.

2.2.2. Bisection. The bisection algorithm is inspired by the following Ham sandwich theo-
rem4. The following representation of this theorem is adapted from [CMed].

THEOREM 2.8 (Ham sandwich theorem). Let there be given any d finite measures, µ1, µ2, . . . , µd
defined on the Borel subsetsRd. If each µi is absolutely continuous with respect to Lebesgue measure, there
exists a hyperplane which simultaneously bisects each measure.

PROOF. For an outline, see [CMed, p. 74]. For the original proof, see [ST42]. �

4or also called the Stone-Tukey theorem, [ST42].
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This theorem only works for continuous measures. However, [CMed] proves a following
similar theorem for general measures. We adapt the following theorem from that text:

THEOREM 2.9 (Generalised ham sandwich theorem). Given any d finite measures µ1, µ2, . . . , µd
on the Borel sets of Rd. Then, there exists a hyperplane h = {x ∈ Rd|x · v = c} with v ∈ Sd−1, with
Sd−1 a d − 1-dimensional unit sphere, such that for all 1 ≤ i ≤ d:

µi(h−) ≤ µi(Rd)
2

, µi(h+) ≤ µi(Rd)
2

(2.2)

with h− = {x ∈ Rd|x · v < c} and h+ = {x ∈ Rd|x · v > c}.

PROOF. See [CMed]. �

Now suppose we have some finite subset W ⊂ R2, which contains n 2-dimensional points
oi ∈ R2, 1 ≤ i ≤ n. Let us define µ(X) : X ⊂ W → R : #{X ∩W}. We easily see that µ(∅) = 0.
Also, for any two disjoint subsets A and B from W, we have that ∀oi ∈ W, if oi ∈ A, then oi /∈ B
and vice versa. Thus µ(A∪ B) = µ(A) + µ(B); µ is countably additive for any countable sequence
of disjoint subsets from W. Hence µ is a valid (non-continuous) measure on W, and we may apply
Theorem 2.9 with only the single measure µ.

Therefore, we can bisect any object W containing n points into two smaller objects containing
at most dn/2e points by using a straight line (in case of an odd number n, the hyperplane must
cut precisely through a single point). Note that while Theorem 2.9 gives us proof of the existence
of a splitting hyperplane which achieves this result, it does not provide us with an algorithm to
actually find the desired split. Ham sandwich algorithms which split point clouds in W exist and
work in O(n) worst case time [LMS94].

The idea of using this bisection concept with respect to building a spatial tree is as follows.
Let W correspond to the root of a spatial tree, and let the two halves of W after bisection corre-
spond to children of that root. If the number of points was odd, we also add a third child for
storing the cut-through point; this point then is excluded from the other two children. Hence, the
constructed tree has two or three children corresponding to non-overlapping subsets of W; see
figure 2.2. This principle can be recursively applied on the individual children nodes, with the
exception of the third child, if it exists (figure 2.3). In our application of course, instead of using
d-dimensional points, we would like to use d-dimensional objects.

Note however that we cannot use Theorem 2.8 to claim that we can bisect some d-dimensional
subset W containing n d-dimensional smaller objects into two areas containing dn/2e objects. This
is because µ(X) : X ⊂ W → R : #{oi ∈ W|oi ∈ X} no longer defines a measure; an object oi may
be contained two disjoint areas of W and as such, µ no longer is additive. See figure 2.4.

To elude this problem, we can try and represent objects by a single point, like the centre co-
ordinate of a rectangle, or the left-bottom cornerpoint. This may however lead to bad results
in some cases. Consider what would happen if the objects to-be added were stretched to irreg-
ular lengths, for example; see figure 2.5. Notice how the rectangles seem to randomly intersect
through the four areas resulting from the bisected method. The objects do not restrain themselves
to a single area at all, which makes searching less efficient.

We can however try to define a different measure, such as µ(X) = ∑o∈X Volume(o ∩ W).
Applying the ham-sandwich theorem with respect to this measure, we see it is possible to get
two disjoint areas of W containing an equal amount of object volume. This allows for the bisection
plane to cut through multiple objects, in effect causing the ’third child’ discussed earlier to contain
an amount of objects ranging from 0 to n.

In any case, the basic principle has been set and we generalise for a bisection-based tree data
structure for d-dimensional objects in the pseudo-Algorithm A.2.1. Bisection based, in the sense
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FIGURE 2.2. A bisection tree with height one on a subset containing a finite num-
ber of points.

LU

LD boxRD

RM

LM

RU RDRMLU LM

box

middle rightleft

LD

middle

RU

FIGURE 2.3. A bisection tree with height two on a subset containing a finite
number of points.
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FIGURE 2.4. Taking the number of objects as measure, we see that the upper
subregion of the figure counts 3 objects, and the lower one also 3. This sums to 6
while the total number of objects is 4; the measure is not additive.

that we use a hyperline of dimension d− 1 to split the object sets. See figure 2.6 for an illustration.
The Shell bisection method does not necessarily demand that space be bisected in such a way that
the number of object in each subspace is halved; it simply halves the space on a single dimension.
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FIGURE 2.5. Bisection method applied to rectangles while only considering their
bottom-left cornerpoint.
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FIGURE 2.6. A bisection tree on a subset containing a finite number of two-
dimensional objects.

Since the number of iterations done in the bisection algorithm A.2.1 directly controls the
resulting tree height, we can explicitly choose the resulting tree height h. Typically, one chooses
h = log n and we achieve a O(nlog n) running time for both construction of and worst case
GSA-querying of a Bisection tree (Theorem 3.5 and 3.8, section 3.4.1).

The bisection software developed at Shell constructs hyperplanes which are always perpen-
dicular to some axis; for example, in the two dimensional case, the first hyperplane would be
chosen perpendicular to the x-axis, the second along the y-axis, the third yet again along the x-
axis, et cetera; it thus does not guarantee a well-structured bisection tree, since the number of
objects at each side of the line may not be distributed evenly.

2.3. R-Tree

Datastructures which may give better results are the so called R-trees. In general, the con-
struction of these trees uses the spatial information of the objects which we want to store; this in
contrast to blindly partitioning the space as the bisection tree does. Also, we have a potential of
using more than three children at each node, which may or may not further improve potential
performance.

2.3.1. Minimum Bounding Rectangle (MBR). The idea of R-trees is to impose ordering on
higher dimensional objects by using an ordering on minimum bounding rectangles. MBRs can
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easily be defined on any d-dimensional object o using intervals. For readability, this text assumes
the following non-standard notation of an interval.

NOTATION 2.10 (Interval). An interval [a, b], a, b ∈ R is defined as:

[a, b] = {a + t(b − a)|∀t ∈ R, 0 ≤ t ≤ 1}.(2.3)

DEFINITION 2.11 (Minimum Bounding (Hyper-)Rectangle). Let b−i and b+
i denote the infimum

and supremum values of o ∈ Rd on the ith dimension (i ∈ [1, d]). Then the MBR of o, denoted MBR(o),
is given by:

MBR(o) = [b−1 , b+
1 ]× [b−2 , b+

2 ]× · · · × [b−d , b+
d ]

= Πd
i=1[b

−
i , b+

i ](2.4)

2.3.1.1. Operations on MBRs. Several operations on minimum bounding rectangles will be
used throughout this text. We will define them explicitly here.

DEFINITION 2.12 (Union of MBRs). Let x and y be two MBRs as in Definition 2.11, and let their
infimum and supremum values be given by bX−, bY− and bX+, bY+ respectively. Then:

x ∪ y = Πd
i=1[b

X−
i , bX+

i ] ∪ [bY−, bY+](2.5)

DEFINITION 2.13 (Intersection of MBRs). Similarly to Definition 2.12, we define the intersection:

x ∩ y = Πd
i=1[b

X−
i , bX+

i ] ∩ [bY−, bY+](2.6)

Note that if there exists an i ∈ N so that [bX−
i , bX+

i ] ∩ [bY−, bY+] = ∅, then x ∩ y = ∅. We say
that a bounding box x does not intersect another bounding box y when x ∩ y = ∅.

2.3.2. R-tree Definition. The R-tree has the following six defining properties [Gut84, p. 48].
• Every leaf node contains between m and M objects.
• At each leaf node, for each object stored there, an MBR containing that object is stored.
• Every non-leaf node has between m and M children unless it is the root5.
• At each non-leaf node, for each of its children, an MBR which contains all MBRs of that

child is stored.
• The root node has at least two children unless it is a leaf node6.
• All leaves have the same depth.

It is clear from these properties that the R-tree is a height-balanced tree. An R-tree of maxi-
mum height is achieved when all nodes contain their minimum amount of children m, hence

h ≤ dlogmne − 1,(2.7)

where n is the number of objects stored in the tree. An R-tree of minimum height is somewhat
less interesting, but is attained when all nodes contain the maximum amount of children

h ≥ dlogMne − 1.(2.8)

5We still wish to be able to let the tree store less than m objects in total.
6Having only one child would indicate that child could have been the root node as well; hence the root node would

be unnecessary, in all respects.
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Note that all objects are stored in the leaf nodes; hence search queries are expected to take
O(h) = O(log Mn) time, when the MBR at sibling nodes have sufficiently low overlap. In the line
of previous definitions, the R-tree is more precisely defined as follows.

DEFINITION 2.14 (R-tree). Let S = (r, V, E, F) be a spatial tree as in Definition 2.7. For a node
v ∈ V, let vC be the set of children of v, and we denote the number of children of v by |vC|. The set of
d-dimensional objects stored at v is denoted by vO, the number of objects stored is denoted |vO|. S is a
R-tree if:

(1) For each leaf node v ∈ V, unless v = r, the set vO is non-empty; m ≤ |vO| ≤ M.
(2) If the root r is non-leaf, 2 ≤ |rC| ≤ M.
(3) For each leaf node v ∈ V, there is stored vMBR ≡ MBR(v) ≡ ∪o∈vO MBR(o).
(4) For each non-leaf node v ∈ V, v 6= r, m ≤ |vC| ≤ M.
(5) For each non-leaf node v ∈ V, there exists a vMBR ≡ MBR(v) ≡ MBR(∪v∈vC ).
(6) For each non-leaf node v ∈ V, the set vO is empty.
(7) For all leaf nodes v, w ∈ V, the depth dv of v equals the depth dw of w.
(8) For each node fv ∈ F, fv(x) = 1 iff x is contained in vMBR, and fv(x) = 0 otherwise.

We will now describe the object insertion, deletion and query algorithms in greater detail.
The algorithms are given in pseudocode in Appendix A.

2.3.3. Insertion. Let us firstly consider insertion operations. Suppose we have an object o
which is to be added to a R-tree R. We first construct oMBR = MBR(o). We next find a leaf v in R
for which its MBR vMBR has the greatest overlap with oMBR, in comparison to all other leaf nodes
in R. This leaf v is the leaf at which o will be stored.

When the number of children |vC| at v is below M − 1, then simply adding o to v poses no
problem. If |vC| = M however, there is no more room to add o. Common practise then is to
somehow split v into two nodes, and insert o into one of them.

Note that splitting one node into two may cause the parent node to become overflowed as
well; in this case, splitting is recursively applied on the parent. If the root node overflows, it
is splitted as usual and a new root node containing the newly splitted nodes is created. Also
note that although parent nodes may be recursively visited by the splitting algorithm, no sibling
nodes may be called. Hence the splitting recursion only ’bubbles upward’, and does not cause a
complete reconstruction. In pseudocode, the insertion procedure is as in Algorithm A.3.1.

2.3.4. Splitting. Adding objects one-at-a-time in a given R-tree using the insertion algorithm
is the common way of building dynamic R-trees. When adding objects, the insertion algorithm
enforces the R-tree characteristics by splitting when necessary. Splitting has to be done with
optimising expected query performance in mind; this can be done in various ways.

In the paper [Gut84] introducing the R-trees, three node-splitting variations were proposed,
named exponential, quadratic, and linear split. The algorithms for splitting are given in detail in
Algorithms A.3.4, A.3.5, and A.3.6. Each splitting strategy is explained below.

2.3.4.1. Exponential split. Splitting causes one node v to split in two nodes v1 and v2. These
two nodes will have their own two MBRs v1MBR and v2MBR which will of course differ from the
MBR of the original node.

Suppose |vC| = k and as such, |v1C|+ |v2C| = k + 1, after insertion. The k + 1 objects or child
nodes can be distributed over the two children in what would seem like 2k+1 different ways,
ignoring the fact that each child should have between m and M entries. The exponential split
algorithm considers each different partition and selects the partition resulting in the least amount
of total MBR volume. Since there are an exponential number of splits, this splitting strategy is
expected to run in exponential time. In [GRLL98b] however, it is shown that the running time



26 2. R-TREE DATA STRUCTURES

V−W

W

V

V−W
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o2

V = MBR(o1) ∪MBR(o2)

FIGURE 2.7. Illustration of dead space (V − W) when constructing a MBR con-
taining two smaller objects o1 and o2.

can be brought back to polynomial time due to effects like symmetry. As such, they introduced a
polynomial algorithm which is able to find the optimal split.

With respect to searching the R-tree, we would want the MBR to remain as small as possible,
with respect to volume; this would minimise the probability that a query would intersect with the
current MBR [Gut84, p. 51]. The exponential (or rather, polynomial) split variation chooses the
build-up of v1 and v2 which results in the smallest total MBR volume of v1 and v2. In the current
experimentation code, neither the explicit exponential nor polynomial algorithm is implemented.

Note that we considered all splits and came up with a global minimum with respect to the cost
function fC(v1MBR, v2MBRv2MBR) = Volume(v1MBR) + Volume(v2MBR). The rationale here is that
we minimise the probability a random query will intersect any of these bounding boxes. Other
cost functions could be designed and tested, see Section 2.4.2. As an alternative to an exhaustive
search as presented here, one could also opt for local search algorithms; this is, however, not the
way Guttman proceeded as we will see now.

2.3.4.2. Quadratic split. A polynomial running time for dealing with node splitting likely is
much too costly. We will now consider a quadratic cost splitting strategy. We firstly introduce a
new concept.

DEFINITION 2.15 (Dead space of a MBR). Let x be a MBR containing n objects or other MBRs
o1, o2, . . . , on. Let V denote the volume of x and let W = ∑n

i=1 volume(oi). The dead space D is then
defined as:

D = V −W

Figure 2.7 shows a simple illustration of dead space, in two dimensions using two MBRs o1 and o2.

We see that this notion of dead space gives us a measure of how wasteful a given MBR is. The
smaller the dead space of a MBR, the better the chance that an intersecting query indeed finds
useful results. The quadratic split algorithm which we will describe now, aims to minimise dead
space.

The algorithm starts out with finding the two objects o1, o2 for which MBR(o1) ∪ MBR(o2)
results in the highest amount of dead space. o1 is then added to v1 and o2 to v2. For all remaining
objects oi, we will consider the effect of adding a single object to either v1 or v2 as follows.

Let w1 denote the area increase of MBR(v1) if a oi was added to v1, and let w2 denote the area
increase when it was added to v2 instead. The difference between them is denoted w = |w1 −w2|.
When w is large, adding oi to the ’wrong’ node would have bad consequences.
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Hence we will add the oi for which w had the largest value. That object will of course be
added to the node for which its area increase was smallest. This entire process is repeated until
all objects are assigned to either v1 or v2.

Since this splitting strategy requires to compare all possible parings of two objects to each
other in order to determine the combination which results in the largest dead space, this algo-
rithm will take quadratic (O(n2), see Section 3.1) time, asymptotically. Also, after finding the pair
with the largest dead space, we actively search for the object not yet assigned to v1 or v2 which
could cause the largest dead space; this also takes O(n2) time.

2.3.4.3. Linear split. To reduce the O(n2) complexity of the Quadratic cost algorithm, we will
now modify the selection procedure to run in O(n) time. With respect to finding an initial pair by
searching for the pair resulting in the largest dead space, we instead find a pair o1, o2 for which
their MBRs are as far away from each other as possible. With ’far away’ we mean the relative
distance of the MBR extreme coordinates in a single dimension. This only requires recording
extreme values on each dimension for each object (which are readily available since this is how
MBRs are defined), and thus runs in linear asymptotic time for both the number of objects to
be split and the number of dimensions. The algorithm then proceeds by randomly selecting a
not-added object and adds it to the set which would require the least overall MBR enlargement.
Because we only check for a randomly selected object its effect on two MBRs, this part also runs
in linear time.

Guttman concluded [Gut84, Section 5] that while the linear split algorithm resulted in slightly
slower query times, the reduction in efficiency was acceptable with respect to the gain in con-
struction time over the other algorithms. He also noted that the exponential split method was
too slow for large datasets. Also worth noting is that the linear split method resulted in the R-tree
taking up more memory when compared to the quadratic split method [Gut84, Figure 4.10].

2.3.5. Deletion. A method for object deletion is given in Algorithm A.3.3. When an object
with a given ID is to be deleted, we assume its MBR is also available. The deletion algorithm
then executes a simple search using that MBR information to locate in which leaf node the object
is stored. When found, the object is simply deleted from the set of objects stored at the thereby
belonging leaf node.

Such a deletion is not trivial however; underflows may arise. When the number of children
or objects stored drops below the minimum value, we must define some way of underflow han-
dling. In the case of basic R-trees, underflows are handled by simply re-inserting the objects
stored at the underflowed leaf. This is done instead of, for example, merging two sibling nodes,
because we cannot determine if the objects stored at two siblings should be grouped together;
merging blindly may lead to a poor R-tree structure, and thus would result in bad average query
times.

Note that this is another manifestation of the non-existent ordering of spatial data; merging is
implementable for one-dimensional data [MNPT06, p. 12]. This has been done for, for example,
B-trees [CLRS03] from which R-trees are derived.

2.3.6. Searching. An algorithm for each of the queries presented in Section 1.4.4 is given;
for the point-search query, see algorithm A.1.1. The box-containment query can, like the point-
containment query, be straightforwardly implemented as in Algorithm A.1.2. An algorithm for
the line query is less straightforward. This algorithm requires that we are able to efficiently check
whether a line crosses a given MBR; this may be easily checked by use of projection.

PROPOSITION 2.16 ((Finite) Line-Rectangle intersection). A finite line, or rather, line segment l
in d dimensions defined by its starting point s ∈ Rd and ending point e ∈ Rd does not intersect with an
MBR as in Definition 2.11, if ∃i ∈ [1, 2, . . . , d] so that:
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[si, ei] ∩ [b−i , b+
i ] = ∅(2.9)

with b−i and b+
i as in Definition 2.11.

PROOF. By contradiction. Suppose equation 2.9 holds for a given j ∈ Z([1, d]), while the line
l does intersect the MBR. Remember that the MBR is defined to hold all points x ∈ Rd such that
b−i ≤ xi ≤ b+

i , ∀i ∈ Z([1, d]), and thus also for i = j. Assuming the MBR is non-empty, there must
be at least one such point xi. This is in direct contradiction with equation 2.9.

Hence if a line intersects the MBR, equation 2.9 cannot hold, for any i. �

Note that while this theorem gives us a way to quickly check when a line does not intersect
a MBR, it cannot conclusively state when a line does intersect. Consider for example Figure 8(a).
We therefore also present the following theorem:

THEOREM 2.17 ((Infinite) Line-Rectangle Intersection). Given a line l (of infinite length) defined
as l : {x ∈ Rd|x = s + t · d, t ∈ R}, where d ∈ Rd is the line direction and s ∈ Rd is the line origin.
Let j ∈ [1, 2, . . . , d]. We define a function gj : R→ Rd as follows:

gj(x) = s +
x − sj

dj
d(2.10)

Then, there exists a j such that either y1 = gj(b−j ) or y2 = gj(b+
j ) is on a surface of the MBR, iff l

intersects a MBR given by b− and b+.

PROOF. Suppose there exists a j such that y1 or y2 is on an edge of the MBR. Note that this
implies that the line defined by gj(x) intersect the MBR. Since the starting point of this line is the
same as that of l, and since the slopes are identical (d in both cases), gj and l denote the same line;
l intersects the MBR.

Now suppose we have a line l intersecting the MBR. Then there exists an ’entry point’ ỹ1 of
the line into the MBR, and an ’exit point’ ỹ2. These points certainly lie on two different edges
e1, e2 of the MBR. Each edge of the MBR is a d − 1 dimensional surface, fixed at a coordinate b−i
or b+

i on the ith dimension, for some i ∈ [1, 2, . . . , d]; hence there exist j, k such that ỹ1
j = b−j or b+

j

and ỹ2
k = b−k or b+

k . Now let us reparametrise the line l(t) = s + t · d to gj,k(φ(t)) = s +
t−sj,k

dj,k
· d.

Then gj,k(b−j ) = ỹ1,2 or gj,k(b+
j ) = ỹ1,2. �

Note that this theorem indeed does not work for line segments; consider for example Fig-
ure 8(b). However, Theorem 2.17 and Proposition 2.16 together do give a correct algorithm for
full line - hyperrectangle intersection detection as follows. Remember that we query using line
pieces of finite length. Therefore, we first use proposition 2.16 for quick contradiction detection.
If all intervals are covered by the line piece, we consider that line to be of infinite length and check
if such a line intersects the MBR using Theorem 2.17. If it does, then the intersection must have
happened within the bounds of the finite length piece (since that covered the complete MBR in-
tervals, by the first theorem). Given this, a valid line-MBR detection algorithm can be constructed
as in Algorithm A.1.3.

Now suppose we wish to find all objects in d-dimensional space which intersect a given
d − 1-dimensional hyperplane H. Let this hyperplane be given by the following expression:

H : {x ∈ Rd|n · x = b}, for given n ∈ Rd, b ∈ R.(2.11)

We will present here a naive algorithm for hyperplane-MBR intersection. It rests on the ob-
servation that any intersecting hyperplane should also intersect at least one edge of the MBR.
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(a) A line which does not intersect
but does have interval overlap on
each dimension.

(b) A line piece which would inter-
sect the MBR if it were but a tiny bit
longer.

FIGURE 2.8. Some figures illustrating line-box intersection.

Therefore, it is sufficient to simply check for all edges if they intersect with the hyperplane. If
they do not, then there is certainly no intersection between the hyperplane and MBR. On the
other hand, if any edge does intersect, then trivially the hyperplane also does intersect with the
MBR. A single edge e of the MBR may be given by:

ej = {(v1, . . . , vj−1, x, vj+1, . . . , vd) ∈ Rd| where vi ∈ {b−i , b+
i }, and x ∈ R, b−j ≤ x ≤ b+

j }(2.12)

and hence e intersects H iff for x =
b−∑

j−1
i=1 nivi−∑d

i=j+1 nivi
nj

= b−−n·v
nj

+ vj, then x ∈ [b−j , b+
j ]. Al-

gorithm A.1.6 is based on this result. Note that since this approach requires us to check each
edge (worst case), this algorithm has exponential running time with respect to the number of
dimensions d.

This leaves us with only the k-nearest-neighbours query. This query tries to find all objects
with its MBR closest to a given point p ∈ Rd, so obviously this query has a lot in common to the
simpler point-query algorithm. The difference lies therein that when we found an object from a
point query on p, we have to extend our search to find k − 1 other closest objects; or if no object
is found, we still somehow have to find the k objects closest to that point.

Note that from any given point we can derive the distance to an MBR; that is, the minimum
distance to all objects contained in that MBR. A simple algorithm which achieves this is given in
Algorithm A.1.11. Now, a valid knn query algorithm would be to first follow Algorithm A.3.2 for
the point p. The node returned by that algorithm is the node v whose MBR either contains p or
is closest to p. We will now find the k neighbours, starting at the current node by following these
two phases:

(1) (Fill) Let S = {MBR(o)|o ∈ vO}. If |S| > k, sort S according to the distances of the MBRs
to p. Then drop the |S| − k MBRs with the greatest distance. If |S| < k, sort the unvisited
sibling nodes wi of v according to distance of MBR(wi) from p. Then recursively visit the
sibling nodes in that order, and keep adding the object MBRs with the shortest distance
to p to S. Stop if |S| = k and remember the last node v visited during filling.

(2) (Extend) Find the maximum distance r of an object MBR in S. From node v, start to visit
all other unvisited nodes wi in the tree for which the distance MBR(wi) to p is less than r.
If any object with its MBR distance to p lower than r is encountered, let this MBR replace
the object corresponding to the distance r and update r accordingly and continue this
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loop. Stop when there are no other unvisited nodes with their MBR distance to p lower
than r.

This algorithm is detailed in Algorithm A.1.8. Note that this algorithm surely finds the k clos-
est objects to a point p, with regards to their MBR. Since this query was not one of the three ’basic
queries’ introduced in the first chapter, we do not provide theoretical analysis of this particular
query due to time limitations. The algorithm however was implemented in the experimentation
software, and as such, the knn query is included in the experiments section of this thesis.

2.3.7. Expectation. The basic R-tree as introduced in [Gut84] with linear, quadratic or expo-
nential (or rather polynomial) split methods may be regarded sub-optimal with respect to the
variations on R-trees proposed later. For example, R∗-trees (1990) have been reported to perform
almost always better [KSS90, p. 331] in terms of query performance, at the cost of a relatively
small increase in construction time.

In current literature, many R-tree variants have been proposed7. These include:

• R+-tree ([SRF87], 1987)
• R∗-tree ([KSS90], 1990)
• Hilbert R-tree ([KF94], 1994)
• Priority R-tree ([AdBHY04], 2004).

Also, various methods for generating static R-trees have been proposed. These methods
differ from the usual dynamic approach in that they process an entire set of input objects, instead
of adding objects one-by-one into a dynamic R-tree. This new method is called bulk-loading. After
a static R-tree is constructed, one may still apply tree update methods as used in dynamic R-trees;
hence bulk-loading can be viewed as a pre-processing step. Bulk-loading algorithms include:

• Packed R-tree ([RK85], 1985)
• Hilbert Packed R-tree ([MNPT06, p. 36], 1993)
• Sort-Tile Recursive R-tree ([LEL97], 1997)
• Top-down Greedy Split ([GRLL98a], 1998).

Bulk-update algorithms (methods for inserting sets of objects into an existing R-tree) have
also been proposed, as well as methods for merging (grafting) two somewhat equally sized al-
ready existing R-trees [MNPT06].

The R-tree variants mentioned here are but a small subset of all variants proposed. We will
only concentrate on an even smaller subset of the variants mentioned above; this is because not
all R-tree variants are expected to be useful in our current context, and due to time limitations.
The variants chosen for further research and experimentation were selected by considering the
aforementioned papers with our current context in mind.

2.4. Bulk-Loading: Top-down Greedy Split (TGS)

The basic R-tree adds objects one-at-a-time to the R-tree. In cases when all objects to be
added are known in advance, which is true for us, we may want to think about using the extra
information this gives us. This is the main idea of the Packed R-tree variant.

2.4.1. Packed R-tree. This R-tree variation was introduced in 1985, one year after the first ap-
pearance of R-trees in 1984. Inventors Roussopoulos and Leifker [RK85], proposed the following
method to build a so-called packed R-tree.

DEFINITION 2.18 (Packed R-tree). Let S = {o1, o2, . . . , on} be a set of objects to be stored in an
R-tree structure. Also assume that we can impose some kind of ordering to the MBRs MBR(oi), so that
we can cut the object set S into m smaller subsets Si, each containing neighbouring objects with respect to

7for a small overview, see [MNPT06]
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the imposed order. These subsets are stored at the leaf nodes of the R-tree to be built. If we now proceed
with calculating the MBRs of the leaf nodes and then recursively execute the procedure described just now
to build the internal nodes higher up, we have constructed a packed R-tree.

In [RK85], the imposed order is based on the coordinate centre of a MBR; each MBR is or-
dered by the ith dimension of the centre coordinate. Which coordinate dimension is used, is
selected cyclically at each recursive step. See figure 2.4.9(a) for an illustration as to how packed
bulk loading proceeds. Note that this is quite similar to the bisection tree described earlier. In-
stead of dividing the object space in two by means of a hyperplane, we now directly split the
set of objects according to their position on a single dimension. Another difference is that the
bisection tree partitions the input set in three subsets, while the packed R-tree splits it in ME sub-
sets. In retrospect, the packed R-tree mechanism may be viewed as another generalisation of the
bisection method.

Note that a result of this construction method, is that each child contains precisely m children
or objects where possible; it may contain less if there were not enough data elements to store in
the tree. A tree which has the maximum number of children at each node is called a packed tree,
hence this variation name. As a results of this, when the number of input elements n is known,
the memory requirements for a packed R-tree are also known.

The imposed order used in this definition obviously does not always yield good results. Con-
sider for example the situation in figure 2.4.9(a); drawing the MBRs of the internal nodes of the
resulting tree at depth three yields a great amount of overlap and dead space. See Figure 9(b).
Also, any case in which data elements are closely packed in a few dimensions, and greatly sepa-
rated from each other in other dimensions would result in similar badly constructed trees when
using an imposed ordering on based on a single dimension.

The reason why things go wrong in these cases, is because the imposed ordering had bad
localisation properties; object which are close in such orderings, generally do not lie close in
space, even more so when the number of dimensions gets larger than two. Other orderings
have been proposed to work with this packing strategy, one of which uses the Hilbert curve; see
Section 2.6.

A packed R-tree is a bulk-loading algorithm in the sense that it attempts to load lots of data
into the R-tree, in one strike. As we have seen, this packed strategy builds a tree bottom-up.
However, when we query a R-tree, we work top-down; therefore, is it not better to try to make
query times as efficient as possible by bulk-loading top-down as well? This is what the Top-down
Greedy Split (TGS) algorithm is based on.

2.4.2. TGS. In the original TGS paper [GRLL98a], Garcı́a, López and Leutenegger sum-
marise the underlying principles as the following two basic ideas.

(1) ”Minimise first the top levels since the potential for cost reduction is higher.”
(2) ”Consider all partitions induced by guillotine cuts such that resulting sub-trees are fully packed.”

The first item refers to the fact that if we build the R-tree top-down, we can better control MBR
properties like overlap and dead space; these are no longer defined by the leaf nodes constructed
at first as is the case with packed R-trees. Remember also that as with packed R-trees, each node
in the R-tree should have the maximum of M children or elements stored.

The second item refers to exactly how we are going to achieve this, namely by applying axis-
orthogonal cuts which partitions any set S of n objects into M subsets S1, S2, . . . , SM which are
fully packed; i.e., contain enough elements to completely fill an R-tree. Almost surely, there exist
multiple sets S1, S2, . . . , SM satisfying this. Therefore, a greedy partitioning method is proposed.

This method considers all possible binary splits S̃1, S̃2 resulting from axis-orthogonal cuts
and selects the best pair with respect to some function fC(S̃1, S̃2). This process then is applied to
firstly, each of the best subsets, and secondly recursively on the resulting subsets. This is done
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(a) Overview of where the rectangles 7 to 14 are stored in the packed R-tree.
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(b) Overview at one tree level higher. The thicker rectangles denote the MBRs of
the internal nodes at tree height 2. Notice that the Packed R-tree algorithm does not
always result in a good R-tree; a large amount of overlap can be observed here.

FIGURE 2.9. Illustrations of the construction of a packed R-tree. The ordering
used is the maximum y-value of each rectangular object. The packed R-tree has
a maximum number of children or elements of 2.
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until a total of M subsets are created. This partitioning method is detailed in Algorithm A.4.3
and A.4.4.

This partitioning is first done on the total amount of n input objects. The M subsets returned
then denote the objects which are to be stored at each child of the resulting R-tree root. This
process of splitting is then repeated for each of these children, until the number of elements to be
stored at a single child becomes less than M. The final algorithms are given in Algorithm A.4.1
and A.4.2.

In the experiments done in [GRLL98a], the cost function has been chosen to be the volume
(or area, in the two-dimensional case) of MBR(∪s∈S̃1

) and MBR(∪s∈S̃2
); in effect, we let TGS

minimise the MBR volumes. Minimising the MBR volumes results in a smaller probability that
a random query is contained in resulting MBR. Other cost functions are possible and may work
better in our application; one alternative researched is minimising the intersection volume of the
MBRs. The rationale of this cost function is that we wish to recurse in as few children of a node as
possible when doing a query. Minimising the area that multiple MBRs have in common should
help achieve this.

Algorithm A.4.1 deviates from the one in [GRLL98a] since the algorithm description given
there was not detailed enough for our purposes. Instead, our algorithm is derived from the one
presented in [AS07, p. 8-10].

2.4.3. Random TGS. As explained above, the TGS algorithm recursively calls the BestBina-
rySplit algorithm to obtain p ≤ M partitions of some input set I at level l. These partitions each
contain no more than Ml elements, where l ≤ h is the current tree level under construction. The
BestBinarySplit considers q = d|I|/Mle − 1 different splits for each available ordering in S and
tries to find the one resulting in the lowest cost, as explained above. Hence, we may say the
algorithm considers the following matrix, where the cij denote the outcome of the cost function
for each combination of q splits and ordering in S.


c11 c21 · · · c|S|1
c12 c22 · · · c|S|2
...

...
. . .

...
c1q c2q · · · c|S|q

 .(2.13)

At each matrix entry, the cost function as evaluated by use of fC for the specific split number
and the specific ordering is stored. Only one of those entries is the optimal minimum split, but
what if we would settle for some sort of local minimum as well? Local, in the sense that we only
consider a subset of entries of the matrix in (2.13) and determine the minimum thereof.

Let f ∈ R, 0 ≤ f < 1. When the BestBinarySplit algorithm is about to start processing some
entry cij, we generate some random number g ∈ [0, 1). If g < f , we indeed calculate cij. If it is
not, we skip calculating cij. This results in a matrix in which f · d|S| elements are evaluated, on
average. Taking the minimum of only those evaluated entries results instead of the true optimal
minimum value, results in the new ’Random’ TGS method. We will denote the factor f as the
sampling rate.

2.4.4. Expectation. Due to the many evaluations of the cost functions required for executing
the TGS bulk-loading algorithm, we expect a construction time significantly slower than that of
the basic R-tree. The data in [AdBHY04, Figure 12] supports this expectation; the TGS bulk-
loading algorithm is by far the slowest variation experimented with, in terms of construction
time.

This construction time however still seems to scale linearly, like the other variants. In the
same experiment, on real-life application datasets, the TGS method obtains the best query times
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[AdBHY04, p. 23-24]; but this advantage seems to deteriorate on more extreme (synthetic)
datasets [AdBHY04, Figure 16].

The Random TGS method (or simply RTGS) is expected to have the same complexity with
regards to construction time, but depending on the sampling rate, it should be a factor faster than
the standard TGS method. With respect to query efficiency, it is expected that RTGS performs
worse than TGS. How much worse however, should be determined experimentally.

2.5. HilbertTGS

The drawback of the normal TGS method is that it needs to consider multiple orderings
resulting in, typically, d quicksort calls at each recursive call of the bulk-loading algorithm. The
number of calls directly influences the running time, and as such, in the most optimal case, we
would like to sort only one time. The HilbertTGS bulk-loading scheme tries to achieve this by
considering only a single ordering, namely the so-called Hilbert-ordering, which we will explain
now.

2.5.1. The Hilbert curve. The Hilbert curve is one of the most fair space-filling curves, at
least when the number of dimensions is not too large [MAK02, p. 19]. In line with this article,
”fair” denotes that the curve ”behaves similarly towards all dimensions”. This attributes to the
localisation property of the Hilbert curve; points close to each other on the Hilbert curve also lie
close to each other in the Euclidean sense. This will become more clear later on.

DEFINITION 2.19. First order Hilbert curve
The first order Hilbert-curve is defined inRd as follows. Let U denote the [0, 1]× [0, 1] unit cube. Let

us split U in four subsquares U1
1 , . . . , U1

4 of equal size (in terms of area). Let p1
1, . . . , p1

4 denote the centre
coordinates of U1

1 , . . . , U1
4 . Then, a first order Hilbert curve is a Hamiltonian walk H1 = {h1

1, . . . , h1
4},

where points are visited in the same order as the set H1, with H1 = P1 = {p1
1, . . . , p1

4} (thus the set H1 is
the same as P1 but the order of their elements may differ).

Note that the order of H1 may differ and as such, multiple possible first order Hilbert curves
exist. We will denote U1

1 , . . . , U1
4 as the subcells of the first order Hilbert curve. Using this, we may

define the nth order Hilbert curve as follows.

DEFINITION 2.20. nth order Hilbert curve
Let Un−1

1 , Un−1
2 , . . . , Un−1

4n−1 be the subcells of the (n− 1)th order Hilbert curve Hn−1 = {hn−1
1 , . . . , hn−1

4n−1}.
Let us split each Un−1

i again in four equally sized subsquares to obtain a series Un
j , 1 ≤ j ≤ 4n. Also let

Un
j be a subsquare of Un−1

bj/4c. Denote with pn
1 , . . . , pn

4n the centre coordinates of the squares Un
j . The nth

order Hilbert curve is a Hamiltonian walk Hn on the points in Pn = {pn
1 , . . . , pn

4n}, again not necessarily
in that order. The order of the elements in Hn is restrained as follows:

(1) For each group Gi = {Hn
j |bj/4c = i}, 1 ≤ i ≤ 4n−1, there is a k ∈ [1, 4n−1] such that

Gi = {pn
j |bj/4c = k}.

(2) Let i ∈ [1, 4n−1]. Let Un−1
k be the subcell of the (n − 1)th order Hilbert curve for which hn−1

i ∈
Un−1

k . Then, for each group Gi = {Hn
j |bj/4c = i}, each point x ∈ Gi also must be contained in

Un−1
k .

(3) For each successive pair of points v, w ∈ Hn, v − w is nonzero at precisely one dimension only.

Restraint (1) makes sure the Hilbert curve always sequentially visits the points contained in
a single subcell of the (n − 1)th order Hilbert curve. Restraint (2) furthermore demands that the
order in which the subcells of the lower order Hilbert curve are visited, correspond to the lower
order Hilbert curve itself. The third restraint enforces that the Hilbert curve always consists of
straight lines between centre points of subcells. Example first, second and third order Hilbert
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(a) First-order. (b) Second-order.

FIGURE 2.10. Two basic Hilbert curves.

curves are drawn in figures 2.4.10(a), 2.4.10(b) and 2.11; the bold lines denote the classical Hilbert
curve defined here.

Note that in essence, we simply cut an unit square in 4n subsquares and define a curve which
visits all the centres of these subsquares. Following this notion, a Hilbert curve can also be de-
fined by a spline-like curve visiting only the cornerpoints of subsquares, with the requirement
that each subsquare, excluding their cornerpoints, contains exactly one curve. A single curve can
then be refined recursively by dividing the containing square in four, and drawing four splines
along those new subsquares such that the start and ending cornerpoints remain the same. These
spline-like representation of the Hilbert curve is also drawn in the figures 2.10(a), 2.10(b) and
2.11.

Considering the fact that this spline-like representation visits the cornerpoints of subsquares,
one can easily see that for each point x ∈ U, there is a cornerpoint arbitrarily close to x as the
order n of the Hilbert curve tends to infinity. We hence say the Hilbert curve is space filling. Since
the Hilbert curve also is defined as a series of uninterrupted connections between points, it is
also a continuous curve. The Hilbert curve is easily extended to multiple dimensions; we then use
(hyper)cubes to bisect the unit hypercube.

2.5.2. Hilbert coordinates. The Hilbert curve can be used to obtain a mapping fromRd → R

as follows. Consider some d-dimensional hypercubic domain in which we have an nth order
Hilbert curve. Let us decide on a start pS and ending point pE of the Hilbert curve and using this
convention, we may define for each point x ∈ Rd on the Hilbert curve the relative distance d(x) to
pS, where d(pE) = 1 and d(pS) = 0. This is the general idea of using the Hilbert coordinate to
map multi-dimensional coordinates to a number in [0, 1] ⊂ R.

Mathematically we define the Hilbert coordinate as follows. Let Pn be the collection of points
a d-dimensional nth order Hilbert curve visits, and let x ∈ Rd be the spatial coordinate we wish
to transform to a Hilbert coordinate. Let p ∈ P be the point for which p = arg miny∈Pn |x − y|.
Now suppose the point p is the ith point the Hilbert curve visits. Then the nth order Hilbert
coordinate c is given by:

cn = i/|P| =
i

2dn .(2.14)

Following this, we can define the Hilbert coordinate as follows.

DEFINITION 2.21. Hilbert coordinate
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FIGURE 2.11. A third-order Hilbert cure.

Let cn be as in equation 2.14. Then the Hilbert coordinate c is given by:

c = lim
n→∞

cn.(2.15)

Note that calculating the exact Hilbert coordinate as in equation 2.15 numerically is ineffi-
cient and often not even possible; we therefore opt to approximate the Hilbert coordinate by
calculating cn for a prefixed n.

Straightforward application of formula 2.14 requires we know exactly how the Hilbert curve
is drawn. In implementation, this means we either need to store the Hilbert curve in memory, or
that we need to recalculate it every time a Hilbert coordinate transform is performed; for large
n, this might prove to be too costly. Luckily [BG01], proposed a method which does not need
information on the whole Hilbert curve to calculate the Hilbert transformation. We will prepare
some terminology needed to explain this method in more detail.

Consider figure 2.13. We now have systematically numbered each cell. Note that each cell
contains the same Hilbert curve segment length and also that each centre of a cell always is on
the Hilbert curve. Without loss of generalisation, assume the cube in the figure is the unit cube
U = [0, 1] × [0, 1]. For each coordinate x ∈ U, we can determine to which cell it belongs to. We
will map such a point to the Hilbert coordinate belonging to the centre point of that cell.

We can easily determine the Hilbert coordinate by using the cell numberings introduced in
figure 2.13. We can interpret the grid numbers as being in base 4, and as such, the cell number
we wish to know the Hilbert coordinate of divided by the maximum number of cells minus one,
returns a Hilbert coordinate in [0, 1]; we are actually mapping cells to Hilbert coordinates. So,
d(c) = c · 1

3 exactly describes the Hilbert coordinate value in cell c for the first order Hilbert
curve. For the nth order we have8:

d(c) = toDec(c) · 1
4n − 1

,(2.16)

8for three dimensions only
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FIGURE 2.12. A three dimensional first order Hilbert curve drawn in a unit box
subdivided in 8 cells.

where toDec converts the base-4 number c to a decimal number. We can however calculate the
Hilbert coordinates more efficiently by first subdividing c by 4n in base 4. We then have cell num-
bers ranging from 0 to 0.33 . . . 3, the number of digits being dependent on the order of the Hilbert
curve used. Hence all cells now map to numbers in [0, toDec(0.33 . . . 3)]. We could multiply the
number by a constant to obtain values exactly in [0, 1], but this does not matter for the resulting
ordering so we skip such a step. Conversion to decimal numbers is however necessary, because
in implementation, comparison functions work natively in base 10 and not 4.9 In any case, we
propose to use the following formula for cell-to-Hilbert coordinate transformation using a nth
order Hilbert curve:

d(c) = toDec(c/4n), where the division is carried out in base 4.(2.17)

In three dimensions, we have that the first-order Hilbert curve is as in figure 2.12. The domain
of this Hilbert curve is now subdivided into 8 cells instead of 4. This leads to a cell-Hilbert
coordinate formula similar to equation 2.17, but with the division carried out in base 8.

The idea of using the cell codes for fast Hilbert coordinate mapping comes from [BG01],
as already mentioned. In this article, a recursive method is described for determining the cell
number corresponding to a given coordinate. We will now briefly describe this procedure. For
more details, we refer to the article.

For brevity, we stick with the two-dimensional case. Suppose we have the unit rectangle U
and some point x ∈ U and we want to determine in which cell x is contained. Assume we are
using an nth-order Hilbert curve with n fixed. Consider for example figure 2.14. We see that x is
closest to the point d which corresponds to the fourth cell. We thus remember the Hilbert code
0.3 and ’zoom in’ on that cell; see figure 2.15.

9Simply interpreting a base 4 number as a base 10 number is not advisable. There would be a ’hole’ between 0.3 and
1 which, for example, may cause distance-based operations to behave unexpectedly.
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FIGURE 2.13. The first- and second-order Hilbert curves with a systematic grid indexing.
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FIGURE 2.14. Searching for a Hilbert coordinate belonging to x, using a second-
order Hilbert curve.

We first note that the new a, b, c, and d coordinates in figure 2.15 can be derived from those
in figure 2.14 as follows:

anew =
c + d

2
, bnew =

a + c
2

,

cnew =
a + d

2
, dnew = d.(2.18)

We now see that point b is closest to x, which corresponds to the second cell. Our Hilbert
coordinate then becomes 0.31 in base 4. We of course do not need to stop at only 2 recursions; we
can apply the described method until we have reached the required precision. We do need dif-
ferent tables for each cell 1 . . . 4 we may recurse in; see [BG01, p.7-8]. Also note that this method
does not require the explicit evaluation of the Hilbert curve whatsoever; it only recursively ap-
plies the tables corresponding to the closest cell to x to obtain the Hilbert coordinates in base 4.
Pseudocode for this process is given in Algorithm A.6.1.
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FIGURE 2.15. Searching for a Hilbert coordinate belonging to x, using a second-
order Hilbert curve. Zoomed in on the fourth cell.

2.5.3. TGS using Hilbert coordinate ordering. We can sort any set of bounding boxes by
sorting on the Hilbert coordinates of their centre coordinate points. We may use solely this or-
dering instead of the orderings based on the lowest coordinate on each dimension as in the basic
TGS algorithm. In this case, we then only have to sort over a single ordering instead of three.
Thus we can pre-sort the input set according their Hilbert coordinates instead of calling a sort-
method at each recursive call of Algorithm A.4.4. This results in an adaptation of the original
TGS algorithms outlined in A.4.1 and A.4.4 to those in A.5.1 and A.5.2.

In [KF93], a packed R-tree variant using Hilbert coordinates was introduced. While generally
faster with respect to datastructure construction compared to other R-tree variants, our initial
experiments showed the query times were slower than those of the bisection method. Therefore,
this variants was not researched in detail. The paper introducing this variant, also did research
to different ways to obtain Hilbert coordinates. On basis of this, we decided to use the bounding
box centre as the coordinate to transform to a Hilbert coordinate.

Another possibility for using the Hilbert ordering is a Hilbert mapping from R2d to [0, 1] as
follows. In the case of hypercubic bounding boxes defined by a minimum and maximum coordi-
nates b−, b+ ∈ Rd, we now map the coordinate (b−1 , b−2 , . . . , b−d , b+

1 , . . . , b+
d ) ∈ R2d to its Hilbert co-

ordinate. A third researched alternative uses the centre coordinate c ∈ Rd of (any type of) bound-
ing box, and a diameter bounding box d ∈ Rd denoting the range of the bounding box on each
dimension10. The coordinate transformed is then also 2d-dimensional: (c1, c2, . . . , cd, d1, . . . , dd) ∈
R2d.

The experiments done in [KF93] show that the best results were achieved when taking the
Hilbert value of the centre coordinate of the bounding box. Note that the experiments have been
performed solely for d = 2 and for rectangular bounding boxes only; we have assumed the result
would hold for d > 2, or at least for d = 3. Of course, more research on this particular aspect may
be warranted.

2.5.4. Expectation. The HilbertTGS bulk-loading mechanism differs from the original TGS
algorithm only in the fact that it uses a single Hilbert-coordinate ordering instead of d low-
coordinate orderings. This should result in faster construction times, but may result in a less
efficient R-tree with respect to query times. No previous works presenting this variation has
been found, so we cannot give more substantial expectations beforehand. Note however that this

10For cubic bounding boxes, d = b+ − b−.
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particular bulk-loading strategy has been implemented and used in our own experiments, see
Chapter 4.

2.6. Hilbert R-Tree

The previously defined HilbertTGS method builds a static R-tree using the Hilbert coor-
dinate. In [KF94], a dynamic Hilbert R-tree is proposed. Here, the one-dimensional order-
ing inferred by the Hilbert transformation is used to apply merging and deferred splitting on
under- and over-flows, respectively. This results in a datastructure essentially similar to B+-trees
[MNPT06, p.20].

Each leaf node of an Hilbert R-tree stores the Hilbert coordinate of the MBR of each object
stored. Also, each node11 stores the maximum Hilbert value of each of its children or objects
locally stored. This latter maximum Hilbert value is commonly denoted the LHV-value.

2.6.1. Hilbert R-tree object insertion. Suppose we want to insert an object o into the tree.
Let h denote the Hilbert coordinate of the centre of MBR(o). Then we select the leaf node v for
insertion to be the one with the smallest LHV-value greater than h. When v has less than the
maximum number of objects stored, we insert o in v and are done. When the leaf node is full, we
proceed with overflow handling. The pseudocode for this algorithm is given in Algorithm A.7.1.

Note that this way of insertion does not guarantee the MBRs at each nodes are still correct;
no MBR updates whatsoever are performed. Therefore, we need to call a specialised update
algorithm which is called after each insert operation. See Algorithm A.7.3.

2.6.2. Overflows – deferred splitting. The Hilbert R-tree uses so-called s-to-s + 1 splitting.
Assume the set of siblings of v is denoted by S. The subset S̃ ⊂ S contains at most s elements
which have its LHV-value closest to that of v.12 We denote with the set C all children or objects
stored at all nodes w ∈ S̃.

If all nodes in S̃ are full, we create a new sibling node ṽ and redistribute C ∪ o among the
nodes S̃ ∪ ṽ. If the nodes in S̃ were not full, the objects C ∪ o were redistributed among S̃ alone.

Redistribution of a set P among a set of nodes Q in this case means that we simply split P
into |Q| subsets according to the LHV- or Hilbert values of the items in P. Hence each node Q
will contain at most d|P|/|Q|e nodes, which is always less than the maximum number of nodes
allowed, since certainly d |P|−1

|Q| e < M, because not all nodes in Q were full.
The pseudocode for handling overflows is given in Algorithm A.7.4.

2.6.3. Hilbert R-tree object deletion. Suppose we wish to delete an object o. We can perform
a standard MBR search to find the leaf node v which stores o. We proceed by simply deleting o
from v, after which we check for underflows. The pseudocode is in Algorithm A.7.5.

2.6.4. Underflows – merging. We again construct the sets S̃ and C as with overflow han-
dling. If all nodes in S̃ are underflowing, we simply delete one node from S̃ (while retaining the
objects or children it stored in C) and redistribute C over the remaining nodes. If not all nodes
were underflowing, we simply redistribute C over the complete set S̃. This algorithm is given in
depth in Algorithm A.7.6.

11Note that this also includes leaf nodes.
12Note that implicitly, S̃ thus always contains v.
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FIGURE 2.16. Visualisation of the classification of all trees introduced so far.

2.6.5. Expectation. The Hilbert R-tree explained here is expected to be superior to more con-
ventional dynamic R-tree variants, such as the R∗-tree [KF94, Section 4.1]. The best value for s is
expected to be 2 [KF94, Section 5]. On the other hand, this variant is reported to be (negatively)
sensitive to large objects [MNPT06, p. 22] (which is logical, since the size is not preserved in
the Hilbert coordinate mapping). Also, higher dimensionality causes the Hilbert curve to be less
localised, reducing the Hilbert R-tree performance [MNPT06, p. 22].

2.7. Summary

In this chapter, several tree datastructures for efficient spatial storage and querying were
presented. We will now give a brief concluding summary of all variants presented. We start with
an overall classification of all tree concepts introduced so far.

We have introduced a general tree, from which all other datastructures were derived. Search-
able trees were defined using the spatial tree; the R-trees and the bisection tree both are spatial
trees. The introduced R-tree variants can be subdivided into normal (dynamic) R-trees on one
hand, and the bulk-loaded R-trees on the other hand. This classification is visualised in fig-
ure 2.16. For the exact generalisation structure, we refer to the class diagram in figure B.1. Note
that these diagrams closely resemble each other.





CHAPTER

3
THREE

Theoretical Performance

3.1. Algorithm Analysis

The R-trees we propose here to solve the introduced problem can be built in different ways,
which lead to different R-tree variants. Of course, different R-tree variants take more time to
construct than others; therefore, we would like determine how fast given construction algorithms
are. Not only do we want to compare the algorithms of various R-tree variants, we also wish to
compare construction times, memory usage and query times to the bisection method currently in
use at Shell.

To be able to analyse memory usage or algorithms, be it construction or query algorithms,
we will introduce some basic tools and notations here.

DEFINITION 3.1. ”big-Oh”-notation
Suppose we have two functions f , g : V ⊂ R → W, for some W for which for any x ∈ W, we can

determine the absolute value |x| ∈ R([0, ∞)). f is O(g) if and only if:

∃x0, ∃c > 0 such that

| f (x)| ≤ c|g(x)|, ∀x ∈ V, x ≥ x0

In this thesis, we will commonly write that f = O(g) or f (x) = O(g(x)) or f is of asymptotic
order O(g) when f is O(g) as in the above definition. Intuitively, f being of asymptotic order O(g)
means that the function g(x) grows faster than or equally fast as the function f (x) as x tends to
infinity, in terms of orders of growth. For example, linear functions such as fa(x) = ax, a ∈ R,
a > 0 are all of the same order; the grow linearly with respect to x. Hence fa = O( f1(x)) = O(x),
for all a.

In computing sciences, we generally consider the orders of magnitude as in table 3.1. Next to
the big-Oh notation, we also have big-Theta and big-Omega which denote if two functions grow
equally fast, or if a function certainly grows faster than another, respectively.

DEFINITION 3.2. ”big-Theta”-notation
Let the functions f , g be as in definition 3.1. f is Θ(g) if and only if:

43
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Big-Oh notation Order
O(1) constant

O(log x) logarithmic
O(logc x), c > 1 poly-logarithmic
O(xc), 0 < c < 1 fractional power

O(x) linear
O(x log x) linearithmic

O(x2) quadratic
O(xc), c > 2 polynomial
O(cx), c > 1 exponential

O(x!) factorial
TABLE 3.1. Common orders of growth in big-Oh notation, in ascending order.
Adapted from [Wik07].

∃x0, ∃c1 > 0, ∃c2 > 0 such that

c1|g(x) ≤ | f (x)| ≤ c2|g(x)|, ∀x ∈ V, x ≥ x0

DEFINITION 3.3. ”big-Omega”-notation
Let the functions f , g be as in definition 3.1. f is Ω(g) if and only if:

∃x0, ∃c > 0 such that

| f (x)| ≥ c|g(x)|, ∀x ∈ V, x ≥ x0

For analysis of general divide-and-conquer algorithms, the Master Theorem is a very useful
tool. Whilst algorithms on tree data structures at first may seem to have very little to do with
conventional divide-and-conquer algorithms such as quicksort, we will show the opposite is true
in this chapter. The master theorem, as given in [CLRS03, p. 73], may be formulated as follows:

THEOREM 3.4. Master Theorem
Let a, b ∈ R, f : Z → R and let T : Z → R denote the running time of an algorithm applied on a

problem of size n:

T(n) = aT(dn
b
e) + f (n)(3.1)

Then, the asymptotic behaviour of T(n) may be bounded differently for each of the following cases.
Write

t =
log a
log b

.
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(1) If

f (n) = O(nt−ε), for some ε > 0,

then

T(n) = Θ(nt)

(2) If

f (n) = Θ(nt),

then

T(n) = Θ(nt log n) = Θ( f (n) log(n))

(3) If

f (n) = Ω(nt+ε), for some ε > 0

and

a f (dn
b
e) ≤ c f (n), for all n ≥ n0 ∈ Z

with c < 1 constant, then

T(n) = Θ( f (n))

PROOF. See [CLRS03, Chapter 4.4]. �

Note that we can rewrite the conditions f (n) = O(nt−ε) and f (n) = Ω(nt+ε) to f (n) = O(ns)
and f (n) = Ω(ns) for s < t or s > t, respectively.

3.2. Construction

When construction times may vary due to the specifics of input elements or other aspects,
we will only review the worst-case running times. We will derive the construction times for the
bisection method and the basic R-tree method quite detailed, while for other R-tree variants we
derive only asymptotic bounds.

3.2.1. Bisection tree. Here we consider Algorithm A.2.1 and subsequently use the notations
as introduced there. Let us assume a subset W ⊂ Rd is always rectangular and stored by means
of two (minimum and maximum) coordinates. Then, in implementation, selecting a bisection
hyperplane can be done in 3 flops when we simply bisect on the middle coordinate of a cyclically
selected dimension1; let w−, w+ ∈ Rd represent W and let i be the selected dimension. Then the

bisection plane is given by p = {x ∈ W|ei · x = w−
i +w+

i
2 }.

Constructing Wl and Wr thus boils down to copying 2(d − 1) values from w− and w+ and

setting w−
i +w+

i
2 on the remaining two ith coordinates;

W−
l = w−, W+

r = w+(3.2)

and

1This is how the Shell bisection method currently works.
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W+
l =



w+
1

w+
2
...

w+
i−1

w−
i +w+

i
2

w+
i
...

w+
d


, W−

r =



w−
1

w−
2
...

w−
i−1

w−
i +w+

i
2

w−
i+1
...

w−
d


(3.3)

This is followed by sorting the elements into three groups Om, Ol and Or. This can be done by
iterating over all objects o in O and comparing the ith dimension coordinate range of MBR(o) to
w−

i +w+
i

2 . There are three different cases;

(1) The interval on the ith dimension of MBR(o) contains only values lower than w−
i +w+

i
2 .

(2) The interval on the ith dimension of MBR(o) contains only values larger than w−
i +w+

i
2 .

(3) The interval on the ith dimension of MBR(o) contains w−
i +w+

i
2 .

All three cases can be distinguished from by doing two comparisons between the extreme

coordinates of MBR(o) and w−
i +w+

i
2 , hence splitting O in Om, Ol and Or takes 2|O| flops. Calling

the construction algorithm recursively requires c = O(1) time.
If we also assume that set operations like those in lines 2− 7 in Algorithm A.2.1 can be done

in a maximum of O(z) time, where z is the number of elements in the set involved, we can present
the following theorem on the construction time of the bisection tree.

THEOREM 3.5. The construction time of the bisection tree is tbisection = h(3 + 2d + 2n + c). This is
of asymptotic order O(hn).

PROOF. Note that at each recursion level 0 ≤ l ≤ h, the construction algorithm has to sort the
full amount of n objects, resulting at a running time of 3 + 2d + 2n + c per level. Since the number
of recursion levels h is supplied to the algorithm, a running time of h(3 + 2d + 2n + c) = O(hn)
is achieved, since d is typically much smaller than n. �

3.2.2. Basic R-tree. We will assume here we have an input set O consisting of n elements
to be added into a basic R-tree. This will be done by calling the Insert-algorithm A.3.1 for each
element in O. The worst-case running time of the insertion algorithm for a single element is
2 + tchoose + tS + tupdate, where tchoose denotes the maximum time required for the ChooseLeaf
subalgorithm (A.3.2), tS the maximum time for the appropriate split algorithm (A.3.4, A.3.5,
A.3.6), and tupdate the maximum time required for updating the modified leaf node(s) and their
ancestors.

The leaf selection algorithm follows a single path from the tree root to a leaf node. For each
node visited, an instance of the algorithm is run. A single run of the ChooseLeaf algorithm
requires 3 + ñ(10d + 4) flops (See Algorithm A.3.2), where ñ is the number of child nodes. Since
the number of visited nodes equals the tree height, the total running time of Algorithm A.3.2 is
bounded as follows.

tchoose =
h

∑
i=1

(3 + ñi(10d + 4)) < logm n [3 + M(10d + 4)] ,(3.4)

We assume adding an element to a leaf node requires O(1) time. After insertion, the chosen
leaf node may overflow and the split algorithm may be called.
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THEOREM 3.6 (Split-on-insertion worst-case running time). The worst case running time for the
splitting algorithm called when a leaf node overflows, is tS = c · h = O(c logm n), where n is the number
of data elements stored, and c is the worst case running time of the splitting algorithm applied to only a
single node.

PROOF. As mentioned in the text, a splitting algorithm may only call itself on the parent of
the node it is currently splitting. Let the worst case running time of the splitting algorithm on a
single node (that is, without considering a possible overflow of its parent node) be given by c.

Since the splitting algorithm can only be called on the parent of a given node, the worst
situation occurs when the splitting algorithm is called on a leaf node and continues to create
overflows all the way up to the root node; then the splitting algorithm is called a number of
times equal to the height h of the tree.

As such the complete splitting algorithm takes ch = O(c(dlogmE
ne − 1)) = O(logm n) (equa-

tion 2.7). �

Updating the MBR of an internal node involves finding the extreme coordinates of the MBRs
of its child nodes. This can be most efficiently done in 3d time. Updating a single leaf node and
all of its ancestors therefore takes 3dh time. Hence the total time required for a single insertion is
now certainly less than:

tbasic-insert < 2 + logm n(3 + M(10d + 4)) + 3dh + c logm n − 1

or, rather:

tbasic-insert < 1 + logm n(3 + 3d + M(10d + 4) + c).(3.5)

with c unknown. Depending on which split algorithm we use, the asymptotic order of c is known
to be O(M), O(M2) or O(gM), for some g ∈ R. We can however already give an worst-case basic
R-tree construction time.

THEOREM 3.7. The worst case construction time for a basic R-tree is as follows:

tbasic = 2n + (3 + 3d + M(10d + 4) + c) logm n!,(3.6)

This running time is of order O(n log n).

PROOF. A single insertion takes time dependent on the number of elements currently stored
in the tree, according to equation 3.5, worst case. Hence the worst case tree construction time
when continuously adding n elements is as follows.

n

∑
i=1

tbasic-insert(i)(3.7)

which is equal to

n

∑
i=1

[2] + (3 + 3d + M(10d + 4) + c)
n

∑
i=1

logm i.

This can furthermore be simplified to

2n + (3 + 3d + M(10d + 4) + c) logm n!

Also note that logm n! ≤ logm nn = n logm n, completing the proof. �
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FIGURE 3.1. Illustration of the graph y = 2x+(3+3d+M(10d+4)+c) logm x!
(3+2d+2x) log3 x (equa-

tion 3.8) for m = 2, M = 4 and c = 10m2 = 40. x represents the number of grid
elements to be added in the trees, and y the construction time factor between the
basic R-tree and the bisection tree.

Compared to the bisection tree construction method, the R-tree construction algorithm is at
most tbasic

tbisection
times slower, worst case. Let us assume that h = log3n for the bisection tree. Then

this ratio becomes:

f (n) =
tbasic

tbisection
=

2n + (3 + 3d + M(10d + 4) + c) logm n!
(3 + 2d + 2n) log3 n

.(3.8)

See figure 3.1 for the asymptotic behaviour of this factor. Note that this factor is always larger
than 1; the basic R-tree construction time is always slower than that of the bisection tree. With
respect to the number of elements to be stored, however, the factor by which the basic R-tree
construction time is slower, is asymptotically bounded. For this, we calculate:

lim
n→∞

f (n) =
2n + (3 + 3d + M(10d + 4) + c) logm n!

(3 + 2d + 2n) log3 n

= O(
n log n
n log n

)

= O(1),

and indeed see that f (n) converges to a constant for large n.

3.2.3. TGS Bulk-Loading. We will start our analysis with Algorithm A.4.4, TGSBestBina-
rySplit. Let us use the notations defined there. This algorithm cuts the input set O into p =
dn/me − 1 equally large subsets Oi, with the size of Oi equal to m. Then, all sets Oi

l = ∪i
k=1Oi and

Oi
r = ∪p

k=i+1Oi for all i ∈ [1, p] ⊂ Z are considered and the best split, with respect to a given cost
function, is remembered. This is done for all different orderings in S, after the input set O has
been sorted according to such an ordering in S.

At all times, we of course have that Ol ∪Or contains ñ = |O| elements; thus we have that this
algorithm at least sorts all elements in O, |S| times. We will assume the cost for this is of order
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O(|S|(ñ log ñ), based on the expected2 running time of a quicksort algorithm. Processing the
different subsets Oi

l and Oi
r require O(t fC

) time per pair, with t fC
the time required for evaluating

the cost function. Note that this is true only if we make a single pass over all elements in O
while storing the bounding boxes of both Oi

l and Oi
r for all i; this requires a pre-processing step

of O(n) at each call of this algorithm. Failure to implement this will result in a quadratic-order
construction time, instead of the construction time derived here. The total execution time for
Algorithm A.4.4 is of order:

tTGSBestBinarySplit = O(|S|(ñ log ñ + pt fC
)) = O(|S|(ñ(log ñ +

t fC

m
))).(3.9)

We now move to Algorithm A.4.3, TGSPartition. This algorithm cuts an input set O into
p ≤ M smaller subsets each containing no more than m elements. This is done by recursively
calling Algorithm A.4.4. Worst-case, the binary split algorithm keeps cutting its input in half,
which results in a total of 2ñ/m − 1 calls to the binary split algorithm; see figure 3.2. Note that the
tree height equals log2 ñ/m and the total number of recursion calls equals 2ñ/m − 1. Also note that
the number of recursion calls at the ith recursion level equals 2i. Combined with equation 3.9,
this results in the following expression for the worst-case running time of Algorithm A.4.3:

tTGSPartition =
log2 ñ/m−1

∑
i=0

[
2i

∑
j=0

O(|S|( ñ
2i (log

ñ
2i +

t fC

m
)))]

which can be rewritten to

tTGSPartition =
log2 ñ/m−1

∑
i=0

O(|S|ñ(log
ñ
2i +

t fC

m
))

=
log2 ñ/m−1

∑
i=0

O(|S|ñ(log ñ − log 2i +
t fC

m
))

= O(|S| log2 (ñ/m − 1)ñ(log ñ +
t fC

m
)− |S|ñ

log2 ñ/m−1

∑
i=0

log 2i)

= O(|S| log2 (ñ/m)ñ(log ñ +
t fC

m
)− |S|ñ

log2 ñ/m−1

∑
i=0

i log 2)

= O(|S| log2 (ñ/m)ñ(log ñ +
t fC

m
)− |S|ñ log 2 ·

(log2 (ñ/m)− 1) log2 ñ/m
2

)

= O(|S| log2 (ñ/m)ñ(log ñ +
t fC

m
−

(log2 (ñ/m)− 1) log 2
2

))

= O(ñ|S| log ñ(log ñ +
t fC

m
))

= O(|S|(ñ log2 ñ
t fC

m
)).(3.10)

We now move up to Algorithm A.4.2, TGSBulkLoadChunk. This algorithm partitions an input
set O into no more than M smaller subsets, each of size no larger than n/Mh, and recurses on
each such subset with h − 1 until h = 0. The thereby belonging call tree is shown in figure 3.3.
Using equation 3.10 we obtain the following worst-case running time for Algorithm A.4.2.

2the quadratic worst-case running time is rarely attained in practical use of the quick-sort algorithm, although care
must be taken to not attempt to sort an already ordered set; this would result in a O(n2) running time.
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tTGSBulkLoadChunk = M +
h

∑
i=1

Mi(O(|S|( n
Mi log2 (

n
Mi )

t fC

m
)) + M)

which can be rewritten as

tTGSBulkLoadChunk = O(M +
h

∑
i=1

[
|S|(n log2 (

n
Mi )

t fC
n

Mi+1

) + M

]
)

= O((h + 1)M + |S|
h

∑
i=1

[
log2 (

n
Mi )Mi+1t fC

]
)

= O(|S|t fC
(

h

∑
i=0

Mi(log (n)− log Mi)2))

= O(|S|t fC
(

h

∑
i=0

Mi(log2 (n)− 2 log (n) log (Mi) + log2 (Mi))))

= O(|S|t fC
(log2 (n)

h

∑
i=0

Mi − 2 log (n)
h

∑
i=0

Mi log (Mi) +
h

∑
i=0

Mi log2 (Mi)))

= O(|S|t fC
(log2 (n)

Mh − 1
M − 1

− 2 log (n) log (M)
h

∑
i=0

iMi + log2 (M)
h

∑
i=0

i2Mi))

= O(|S|t fC
(log2 (n)

Mh − 1
M − 1

−2 log (n) log (M)
(h + 2)Mh+2 − (h + 1)Mh+1 + 2M2 + M

(M − 1)2

+ log2 (M)
h

∑
i=0

i2Mi))

= O(|S|t fC
(log2 (n)Mh − 2 log (n)Mh + h2Mh))(3.11)

which may be simplified to

tTGSBulkLoadChunk = O(|S|t fC
(log2 (n)Mh + h2Mh))(3.12)

Now for the main TGSBulkLoad algorithm, A.4.1, we see that h is initially set to max (0, d log n
log M e).

Note that as such, h = O(logM n). Based on equation 3.10, the worst-case construction time for
TGS bulk-loading is of the following asymptotic order:

tTGSBulkLoad = O(|S|t fC
n log2 (n)).(3.13)

3.2.3.1. HilbertTGS. HilbertTGS is a special application of the basic TGS bulk-loading algo-
rithm in the sense that we use only one ordering, the Hilbert ordering, to initially sort the array.
Hence |S| = 1 and the worst-case construction time of the HilbertTGS algorithm seems to be of
order O(n log2 n). However, due to the modifications introduced in Algorithm A.5.1 and A.5.2,
this order may not be as sharp as possible. We therefore analyse the entire HilbertTGS bulk-
loading algorithm again, using results from the previous section when needed.

In order for the quicksort algorithm to perform accurately, we first have to calculate the
Hilbert values of the MBR of each object we wish to insert. This takes n · ttoHilbert time, where
n is the total number of elements to add in the tree, and ttoHilbert is time required for transforming
a coordinate in Rd to its Hilbert value. We assume here tables are known for any dimension d,



3.2. CONSTRUCTION 51

Size of input set at each recursion level

n
2h

n
4

n
1

n
2

|R| < m|L| < m

|R| > m|L| > m|R| > m|L| > m

|R| > m|L| > m

|O| = n

FIGURE 3.2. A call tree denoting the recursion of the TGSPartition algorithm
and the progression of the number of input elements at each recursive step.

Number of recursions at current level
|O| = n 1

M2

Mh

n/M n/M n/M

n/M2n/M2

n/Mh

M

FIGURE 3.3. A call tree denoting the recursion of the TGSBulkLoadChunk algo-
rithm, in much the same way as figure 3.2 did for the TGSPartition subalgorithm.

to obtain an dimension-independent analysis; in the experimentation program however, we only
implemented methods for d = 2 and d = 3.

It is easy to see that the running time of the actions taken in line 3 and 7 of Algorithm A.6.1
take O(2d · d) time (d > 1); this is because we loop over each cell (of which there are 2d) and
apply Algorithm A.6.2, which takes O(d) time. Algorithm A.6.3 which is called on line 6 takes
O(d) time as well3.

Algorithm A.6.4 converts a base 8 fractional number to base 10. This algorithm loops over the
number of digits in the input number. This is equal to the order of the Hilbert curve used, which
we will denote by l. Hence Algorithm A.6.4 takes O(l) time, and the entire Hilbert coordinate
transformation thus takes O(d + l(2d − 1 + d) + l). Or, simplified:

ttoHilbert = O(d(1 + 3l)) = O(3dl)(3.14)

Hence the initial sort in Algorithm A.5.1 takes

tHilbertInitialSort = O(n(3dl + log n))(3.15)

time4. Another difference with the original TGS algorithm occurs in Algorithm A.5.2, which is
the replacement function of the original TGSBestBinarySplit algorithm. The only difference is
that the algorithm does not sort on-the-fly any more. Thus, judging from equation 3.9, we have:

3Assuming the operations on line 1 and 2 of take O(1) Algorithm A.6.3 time, which is the case when optimised
correctly.

4Assuming applying the quicksort algorithm will take O(n log n) time.
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tHilbertBestBinarySplit = O(t−fC
)(3.16)

This affects the expected running time of Algorithm A.4.3 when used for HilbertTGS as well:

tHilbertTGSPartition =
log2 ñ/m−1

∑
i=0

[
2i

∑
j=0

O(
t fC

2i m)

]

=
log2 ñ/m−1

∑
i=0

O(m · t fC
)

= O(log
ñ

m − 1
m · t fC

)

= O(mt fC
log ñ).(3.17)

Hence the running time for the BulkLoadChunk algorithm also differs from the original TGS
running time:

tHilbertTGSBulkLoadChunk = M +
h

∑
i=1

Mi(O(
n

Mi+1 t fC
log n/Mi) + M)

= O((h + 1)M +
n
M

t fC
(h log n −

h

∑
i=1

log Mi))

= O((h + 1)M +
n
M

t fC
(h log n −

h

∑
i=1

i log M))

= O((h + 1)M +
n
M

t fC
(h log n − h(1 + h)

2
log M))

= O(nt fC
h log n)(3.18)

Now, the main HilbertTGS bulk-loading algorithm A.5.1 sets h = max (0, d log n
log M e) and thus:

tHilbertTGS = tHilbertInitialSort + tHilbertTGSBulkLoadChunk

= O(ndl + log n + t fC
nh log n)

= O(ndl + log n + t fC
nh log n)

= O(ndl + t fC
n log2 n),(3.19)

which is of the expected order given at the start of this section, assuming dl is far less than log2 n.

3.2.4. Hilbert R-tree. Since we now have calculated ttoHilbert, we can easily calculate the or-
der of Hilbert R-tree construction. For convenience, we repeat equation 3.14:

ttoHilbert = O(3dl).

The Hilbert R-tree behaviour differs with the basic R-tree in that it handles under- and over-
flows using Hilbert coordinates by merging and applying s to s + 1-splitting respectively; see
section 2.6.2. Let us start with analysing the overflow algorithm A.7.4.

A costly operation there is found on line 16; it requires visiting each object stored in the
current node, and this has to be done for all nodes in S̃. The total number of elements is sM, worst
case; when each node involved in the s to s + 1 split has the maximum number of elements. Also,
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calculating a single MBR is a O(d) operation, and calculating its Hilbert value takes O(dl) time.
Thus the loop in 14-17 takes O(s2Mdl) time. which dominates the remainder of the algorithm.

Another costly operation is sorting all elements in S̃. This takes O(sM log sM) = O(sM(log s +
log M)) time. It is unclear if this is of lower order than O(s2Mdl), so we take them together to
obtain

O(sMdl(s + log sM)).

Take note that the Hilbert R-tree overflow algorithm bubbles upward, if the parent node also
overflows. Since the tree height is of order O(log n), the total time required for the overflow
algorithm is, worst case:

tHilbertOverflow = O(sMdl log (n)(s + log sM))(3.20)

On a side note, we have that the underflow algorithm A.7.6 has the same complexity as the
overflow algorithm. This is because the need for sorting and redistributing is exactly the same as
that of the overflow algorithm. We thus also have:

tHilbertUnderflow = O(sMdl log (n)(s + log sM))(3.21)

The HilbertUpdate algorithm A.7.3 largely has the same complexity as well, save for the need
to sort the elements at each node. Also, the algorithm only bubbles upward and does not visit
any sibling nodes. Thus we obtain:

tHilbertUpdate = O(Mdl log (n))(3.22)

Analysing the HilbertChooseLeaf algorithm A.7.2 we see that the main difference lies in the
fact that we do not select on MBRs, but on LHV-values, thus losing the running time depen-
dency on the number of dimensions d. However, on leaf nodes we have to calculate the Hilbert
coordinate values in O(ld) time per leaf node. Hence:

tHilbertChooseLeaf = O(M(log (n) + ld))(3.23)

Now we are able to put it all together and obtain the following running time order for insert-
ing a single element in an Hilbert R-tree:

tHilbertInsert(n) = tHilbertChooseLeaf + tHilbertUnderflow + tHilbertUpdate

= O(M(log (n) + ld) + sMdl log (n)(s + log sM) + Mdl log (n))

= O(M(log (n) + ld(1 + log (n)(s(s + log sM) + 1))))

= O(sldM log (n)(s + log sM))(3.24)

When inserting n elements into an Hilbert R-tree one-by-one, we thus obtain the following
construction time:
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tHilbertConstruction =
n

∑
i=1

O(sldM log (i)(s + log sM))

= O(sldM(s + log sM)
n

∑
i=1

log (i))

= O(sldM(s + log sM) log (n!))

= O(sldMn(s + log sM) log n),(3.25)

which is of the same order as the basic R-tree construction time.

3.3. Summary

The following table summarises the results presented in this chapter:
Datastructure Asymptotic construction time
Bisection tree n log n
Hilbert R-tree n log n
Basic R-tree n log n
HilbertTGS n log2 n

TGSa n|S| log2 n

aWith, standardly, |S| equal to the number of dimensions d.

3.4. Querying

3.4.1. GSA Analysis. We will now analyse Algorithm 2.1 to get a feel of the general perfor-
mance of spatial trees. Assuming correctness of the tree with respect to the functions fv, we can
simplify analysis as follows. We assume operations such as retrieving elements or children from
a given node are O(1) operations. We also assume the union operation on two sets is an O(1)
operation5.

At each call of the GSA on a given node v, all elements stored at v are visited (lines 2-6).
Remember that the number of elements stored at v is denoted by |vO|. Then the running time
T(v) up until line 6 is O(1 + 3|vO|) = O(|vO|).

The algorithm proceeds by visiting all children of v on which it evaluates fv and compares
its result to 1; so T(v) up until line 8 is O(|vO|+ |vC|) (with |vC| the number of children of v). At
line 9, things get complicated; on basis of the result at line 8, GSA may be recursively called here.

If we assume that the time needed for the GSA algorithm on the ith child of v, denoted by vi,
to complete is equal to T(vi), then T(v) = O(|vO|+ |vC|+ ∑|vC |

i=1 fvi (x)T(vi)). Let a = max v∈V |vO|
and b = max v∈V |vC|, then T(v) has an upper bound of order

O(a + b + ∑
w∈vC

fw(x)T(w)).(3.26)

Applying this result to the bisection tree structure, we obtain the following theorem.

THEOREM 3.8 (Bisection Tree GSA performance). The Generic Search Algorithm 2.1 applied on a
Bisection Tree runs in O(n + h) time, worst case.

PROOF. We have a generic running time of T(r) = O(a + b + ∑v∈rC
fv(x)T(v)), with r the tree

root. As per construction of the bisection tree, there is absolutely no overlap between siblings.
Also, b is fixed at 3, while a may vary. Elements are only stored at the leaf nodes, thus for any

5This can for example be realised by using a linked list.
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FIGURE 3.4. Illustration in two dimensions of a badly constructed bisection tree
with h = 4. Each rectangle corresponds to a leaf node; leaf node LULU (left-
up-left-up) contains all elements in the box, except for one which is contained in
RDM (right-down-mid, the node containing the elements on the bisection line
between RDL and RDR).

non-leaf we have a = 0. The tree depth is fixed at h. If we assume, without loss of generality, that
h ≥ 2, we can obtain:

T(r) = O(a + b + ∑
v∈rC

fv(x)T(v))

= O(b + ∑
v∈rC

fv(x)T(v)), (a = 0 for internal nodes.)

= O(b + T(v)), for some v ∈ rC

= O(b + (b + T(ṽ))), for some ṽ ∈ vC, v ∈ rC

= O([
h−1

∑
i=0

b] + a)

= O((h − 1)b + a)

Then, worst case we have that a = n, resulting in a running time of O(h + n). �

The worst case scenario happens when all elements are mapped onto a single leaf element.
This only happens when the bisecting hyperplanes were chosen poorly enough so that (nearly)
all elements are continuously found at a single side of any such plane. Figure 3.4 illustrates such
a bad case. We see that querying the bottom-right elements would take time proportional to the
tree height (4), while querying for any element in the upper-left rectangle (LULU) would take
time proportional to both the tree height, and nearly all elements in the complete dataset (11 out
of 12).

Note that this worst-case scenario is worse than when we directly would check all elements
for intersection; this would be independent of trees and thus would run in O(n) time, losing
the dependency on the tree height. However, if we assume that the number of elements stored
at each leaf node is much smaller than n, as would be the case when the bisecting hyperplanes
are chosen well enough, the asymptotic expected running time for querying the bisection tree is
O(h).
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3.4.2. Point Query. We will now determine the worst case, best case and average running
times of a single random point query on a general R-tree. Let us be given a valid R-tree R =
(r, V, E) with a minimum number of elements or children m and a maximum M. Also, let the
height of R be given by h, and the number of elements stored in R be given by n. As mentioned
before, the point query is a special case of the earlier analysed GSA; however, we will now analyse
the point query using the Master Theorem (3.4) to obtain a more thorough analysis.

To easily use this theorem, we will utilise an indexing scheme on the nodes of R as given
in figure 3.5. This indexing gives us the ability to distinguish between nodes on different levels
on the R-tree by their superscript indexes. To make analysis easier, the leaf nodes vh

i in this
representation denote the objects stored at the leaf nodes of the original tree R; the leaf nodes now
each correspond to a single stored element, instead of the tree node storing a number of objects.
The variables ni, for 0 ≤ i ≤ h denote the number of nodes at the given tree level. It is easily seen
that ni is bounded as follows:

mi ≤ ni ≤ Mi, 0 ≤ i ≤ h − 1,(3.27)

and nh = n.
In the case of an R-tree, the tree height is also bounded by the variables m and M, as follows:

dlogM ne ≤ h ≤ dlogm ne(3.28)

We will make no further assumptions on the R-tree from here on out; we will try to achieve
an analysis as general as possible. Assume the point-query algorithm called on a node v ∈ V
has a running time of T̃(v). If the node v is a leaf node, which for the sake of this analysis now
corresponds to a single stored object, returning that element takes O(1) time; T̃(vh

j ) = O(1) for

all j. Also, we see that an recursion is given by T̃(vi
j) = O(M + ∑vi+1

k ∈vi
jC

f (vi+1
k )T̃(vi+1

k )). These

relations are still not completely in the form of equation 3.1, but this can be overcome by shifting
from a running time function T̃ based on nodes, to a function T based on the number of objects
stored in the subtree with those nodes as root. Let us further examine this.

The root node v0
0 of course stores exactly n elements. Since we are not to make any assump-

tions on tree specifics, we can only proceed with bounds for the problem sizes on lower levels:
the subtrees of the nodes at depth 1 each store between dn/Me and dn/me objects. Generally, the
nodes at depth i store in a number of elements ei ∈ [d n

Mi e, d n
mi e] ⊂ Z. With this information we

can derive two bounds for the running time function T:

T1(1) = O(1)

T1(n) = O(dppoint · Me · T(dn/Me) + M)(3.29)

and

T2(1) = O(1)

T2(n) = O(dppoint · me · T(dn/me) + m)(3.30)

with ppoint ∈ [0, 1] ⊂ R; ppoint denotes the average probability that the point-query algorithm
will recurse in one of the children of an internal node. This representation is somewhat flawed,
since ppoint in reality varies for each tree node. The variable ppoint describes in essence the R-tree
quality; for large values, the algorithm recurses into many children and for the smaller values
of ppoint the algorithm recurses into relatively few children on each tree level. Given that each
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node has in between m and M children, it seems to be reasonable to assume that indeed T1 and
T2 bound T:

∀n ∈ Z : T(n) ∈ [T1(n), T2(n)](3.31)

In terms of Theorem 3.4, we find the factors t1 = log dp·Me
log M and t2 = log dp·me

log m and the functions
f1(n) = O(M) and f2(n) = O(m).

THEOREM 3.9. Worst-case point query time. For single random point-queries, the running time
T(n) is of order Θ(n), worst case.

PROOF. Worst case, we recurse over all nodes; i.e., ppoint = 1. As such we have:

t1 = 1, and t2 = 1

We start with the first bound. Since f1(n) = O(M) = Θ(1) = O(1), letting ε = 1 results
in f1(n) = O(nt−ε) = O(1). As such, case 1 of Theorem 3.4 applies and we obtain T1(n) =
Θ(n). Analogously, a similar bound is achieved for T2(n) and as such, under assumption of
equation 3.31, T(n) = Θ(n), worst case.

�

THEOREM 3.10. Best-case point query time. For single random point-queries, the running time T(n)
is in Θ(log(n)), best case.

PROOF. Best case, we recurse over only one node; dppointme = dppointMe = 1. Thus,

t1 = 0, and t2 = 0

f (n) = Θ(1) = Θ(nt1) so case 2 of the Master theorem applies, resulting in T1(n) being in
Θ(log(n)). This also applies for T2(n) and as such, T(n) = Θ(log(n)).

�

Since there exist many variations of R-trees, all resulting in different tree build-ups, trying
to derive an average running time seems an hopeless task. However, the way in which different
R-tree variations query is different solely in which nodes, and in how many nodes, the point-
query algorithm has to recurse. This is reflected in the variables t1 and t2 by the parameter ppoint.
Obviously, when dp · Me > 1 (not best-case), a situation similar to the worst case bound arises.
Since the f functions are still asymptotically constant, case 1 always applies, and as such:

T1(n) = Θ(n
log dppoint ·Me

log M )

T2(n) = Θ(n
log dppoint ·me

log m )

Hence, if for some R-tree variation the factor ppoint is known, we can estimate the query
performance using the above bounds. Otherwise, we have to make due only with the knowledge
the asymptotic running time is somewhere in between the best and worse case presented earlier.
Note that ppoint at a given node v is directly dependent on the volumes of the bounding boxes

BBi; ppoint = Volume(∪i BBi)
Volume(vMBR) .
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d = 1

d = 0

d = h
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0
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n1

vh
nh

vh
0

v1
1
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0

FIGURE 3.5. An indexing scheme for the R-tree nodes. The variable d denotes
the tree depth.

3.4.3. Line query. For line queries, we can calculate bounds as was done for point queries
by using a parameter pline instead of ppoint. Note that it is a lot more likely for a line query to
intersect with multiple bounding boxes at a given internal node than when doing a point query;
the chance of intersection of an arbitrary bounding box with a random line segment is larger than
intersection with a single random point. When the line segment is quite small with respect to the
bounding boxes, we still obtain the same best case query time as presented for point queries; we
then still recurse into only one child at each tree level. Also, it is clear that worst-case we still
obtain the same bound as in Theorem 3.9; we still cannot do worse than recurse into all children
at each tree level.

Hence the only interesting question here is how much more greater is pline than ppoint, when
the underlying tree structure is unchanged? This question is equivalent to asking what the ratio
P(l∩B 6=∅)

P(x∈B) is, with B an arbitrary bounding box contained in the unit bounding box U, x a random

point in U, and l a random line segment in U. As mentioned earlier, P(x ∈ B) equals Volume(B)
Volume(U) =

Volume(B). We will now proceed with calculating P(l ∩ B 6= ∅).
Let us for this purpose define a random line segment in a more precise manner.6

DEFINITION 3.11. Let l1, l2 be random inRd. Then, a line segment l consists of all points x contained
in {l1 + t(l2 − l1)}, t ∈ [0, 1], l1, l2 ∈ Rd.

Without loss of generality, assume we have some bounding box B with minimum coordinate
b− ∈ [0, 1]d and maximum coordinate b+ ∈ [0, 1]d with b−i ≤ b+

i for i = 1, . . . , d. B is contained in
the unit bounding box U.7

Let us consider first the case of d = 1. The resulting problem is visualised in 3.figure 6(a).
Consider a plot with the position of l1 on the horizontal axis and l2 on the vertical axis, where the
area resulting in intersection is marked. Such a plot is easily constructed for the one-dimensional
case and is shown in 3.figure 6(b). From this figure, we derive a function fP(l∩B 6=∅(b−, b+) denot-
ing the probability of intersection, given a bounding box B ∩U:

fP(l∩B 6=∅(b−, b+) = 1− (b−)2 − (1− b+)2

= 2b+ − (b−)2 − (b+)2,(3.32)

6Note that actually, one can define random line segments in multiple ways. One can for example randomly de-
termine a line centre point, randomly generate a line length and an angle α (or multiple angles when in more than two
dimensions) which the line makes with respect to the x-axis; this also results in a perfectly randomly generated line. How-
ever, these two examples do not result in the same distribution of random lines. The average line length, for example,
differs by almost a factor two [Ros04].

7i.e., U has minimum coordinate (0, . . . , 0) ∈ Rd and maximum coordinate (1, . . . , 1) ∈ Rd.
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0 1b− b+

(a) The problem of a line intersecting
an interval, or rather, a one-dimensional
box.
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(b) The probability of intersection visualised
in a two-dimensional graph. The x-axis de-
notes the value of l1 and the y-axis the value
of l2. The filled area represents when the
line segment between l1 and l2 intersects the
interval between b− and b+.

FIGURE 3.6. Some figures illustrating line-box intersection in the one-
dimensional case.

assuming, of course, that b− ≤ b+. This case can be easily extended into more dimensions. To
this end, consider for example the two-dimensional case in figure 7(a). Now imagine we choose
some position y along the vertical axis, and an angle φ ∈ [0, π]. We then construct a line l(y, φ)
as in figure 7(b). Let the line length l(y, φ) from y to the edge of U be denoted by s. The line may
intersect B on the way to the edge; hence we can define q as the distance on l(y, φ) from y to the
first edge of B hit, and r the distance from the last edge of B hit until the edge of U. See figure 7(c).

Now suppose the line segment constructed by the points l1 and l2 is a subset of l(y, φ) for
some y and φ. Then, the probability fP(l∩B|l⊂l(y,φ))(l, φ) that this line segment intersects B is,

according to equation 3.32, equal to 2r−q2−r2

s . Thus the probability any line segment hits B equals:

∫ π

0

∫ 1

0
fP(l∩B|l⊂l(y,φ))(l, φ)dydφ =

∫ π

0

∫ 1

0

2r(y, φ)− q2(y, φ)− r2(y, φ)
s(y, φ)

dydφ(3.33)

Evaluating this integral is not straightforward. It requires distinguishing multiple cases when
integrating over φ, as can be seen in figure 7(d). These cases depend on the value y. As such,
calculating the two-dimensional case would be a tedious task, and calculating it for three dimen-
sions or more is even harder. This, combined with the fact that we rather have a result applicable
for all dimensions, is the reason why we will work with an upper bound on the probability we
wish to calculate. This upper bound is derived as follows.

Consider figure 3.8. Note that l cannot intersect B if both l1 and l2 are both in the first or third
column or row. This notion generalises quite simply to higher dimensions; on each dimension
we have three different intervals, and if l1 and l2 fall in the same interval on any dimension,
intersection is not possible. Hence the probability for no intersection is bounded as follows:

P(l ∩ B = ∅) ≥ 1− Πd−1
i=0 (b+

i )2(1− 2b−i + (b−i )2)(3.34)
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FIGURE 3.7. Some figures illustrating line-box intersection in the two-
dimensional case.

and hence the probability that l does intersect B is at most:

P(l ∩ B 6= ∅) ≤ Πd−1
i=0 (b+

i )2(1− 2b−i + (b−i )2)(3.35)

We may also write Volume(B) in terms of b− and b+:

Volume(B) = Πd−1
i=0 b+

i − b−i , and thus,
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P(x ∈ B) =
Volume(B)
Volume(U)

= Πd−1
i=0 b+

i − b−i(3.36)

Given 3.35, an upper bound for the increased difficulty of line queries with respect to point
queries is as follows:

P(l ∩ B 6= ∅)
P(x ∈ B)

≤
Πd−1

i=0 (b+
i )2(b−i − 1)2

Πd−1
i=0 b+

i − b−i
(3.37)

3.4.4. Box query. As in the previous subsection, the best and worst case scenarios as for
point queries still hold, although only for small enough query boxes in case of the best case
query time. We will again proceed with determining how much more complicated box queries
are with respect to point queries. We will therefore calculate the ratio P(Q∩B)

P(x∈B) , with x an random
point, B any bounding box contained in U and Q the random query box, also contained in U. We
firstly precisely define an exact notion of a random bounding box.

DEFINITION 3.12. Let (x1
1, x1

2, . . . , x1
d, x2

1, x2
2, . . . , x2

d) be independently uniformly distributed in [0, 1]2d.
Let q− = (q−1 , q−2 , . . . , q−d ) with q−i = min(x1

i , x2
i ) and q+ = (q+

1 , q+
2 , . . . , q+

d ) with q+
i = max(x1

i , x2
i ).

q− and q+ define the minimum and maximum bound respectively for a random bounding box Q.

In contrast to a line query, we are able to quickly determine the exact probability P(Q ∩ B)
as follows. On each dimension, we define three intervals as inspired by figure 3.8; the interval
’before’ B ([0, b−i ]), the middle interval on B ([b−i , b+

i ]) and the interval ’after’ B ([b+
i , 1]), with b− and

b+ as in Definition 3.12. We see that Q does intersect B if and only if for each dimension i, we
have that q−i is not in the same interval (the before, middle, after intervals from figure 3.8) as q+

i ,
unless it is in the middle interval.

So, the probability of intersection of a random bounding box Q with any bounding box B is
derived as follows. First we begin by deriving the chance that for any dimension i, q−i and q+

i are
in opposite intervals, given that they are not in the middle interval. Let x, y ∼ U ([0, 1− b+

i + b−i ]),
that is, x and y are uniformly random in [0, 1 − b+

i + b−i ]. Write Ib = [0, b−i ], Im = [b−i , b+
i ] and

Ia = [b+
i , 1]. Then:
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popp = P(q−i , q+
i are in opposite intervals|q−i , q+

i /∈ Im)

= P((q−i ∈ Ib ∧ q+
i ∈ Ia) ∨ (q−i ∈ Ia ∧ q+

i ∈ Ib)|q−i , q+
i /∈ Im)

= P(q−i ∈ Ib ∧ q+
i ∈ Ia|q−i , q+

i /∈ Im)

= P((x ∈ [0, b−i ] ∧ y ∈ [b−i , 1− b+
i ]) ∨ (x ∈ [b−i , 1− b+

i ] ∧ y ∈ [0, b−i ]))

= 1− (1− P(x ∈ [0, b−i ])P(y ∈ [b−i , 1− b+
i ]))(1− P(x ∈ [b−i , 1− b+

i ])P(y ∈ [0, b−i ]))

= 1− (1− P(x ∈ [0, b−i ])P(y ∈ [b−i , 1− b+
i ]))2

= 1− (1−
b−i · (1− b+

i )
(1− b+

i + b−i )2 )2(3.38)

The probability that neither q−i or q+
i are in Im can be calculated also:

p/∈Im = P(q−i /∈ Im ∧ q+
i /∈ Im)

= P(q−i ∈ [0, b−i ] ∪ [b+
i , 1])P(q+

i ∈ [0, b−i ] ∪ [b+
i , 1])

= (1−
b+

i − b−i
1− b−i

)2(3.39)

=

(
1− b+

i
1− b−i

)2

.(3.40)

Combining equations 3.38 and 3.40 we obtain the final result:

P(Q ∩ B) = Πd−1
i=0 P(q−i ∈ Im ∨ q+

i ∈ Im) + p/∈Im · popp

= Πd−1
i=0 (1− p/∈Im ) + p/∈Im · popp

= Πd−1
i=0 (1− (1−

b+
i − b−i
1− b−i

)2) + (1−
b+

i − b−i
1− b−i

)2 · (1− (1−
b−i · (1− b+

i )
(1− b+

i + b−i )2 )2)

= Πd−1
i=0 (1− (

1− b+
i

1− b−i
)2) + (

1− b+
i

1− b−i
)2 · (1− (1−

b−i · (1− b+
i )

(1− b+
i + b−i )2 )2)(3.41)

3.4.5. Summary. The best and worst case point-query times have been given in Theorem 3.10
and 3.9, respectively. It has been argued that for small enough line segments and small enough
boxes, this logarithmic best-case running time can also be achieved for line- and box-queries.
Naturally, by the simple fact that an R-tree cannot do worse than recursing into all nodes as in
the worst-case point-query case, the linear worst-case point-query running time also applies for
line- and box-queries.

When for point-queries we assume we are recursing in a constant number of children at
each R-tree node, we arrived in the described average case and achieve a running time of Θ(nt),
0 < t ≤ 1, where t = 1 obviously is the worst-case linear time. The parameter t is directly
dependent on the number of children the point-query search algorithm recurses in.

In the above analysis, we introduced a parameter p ∈ [0, 1] for determining the average
number of children an R-tree would recurse in. In the case of point-queries, p varies per internal
node the point-query algorithm is called on and thus is in direct correlation to the quality of the
R-tree; we have seen that at node-level, p is dependent on the overlap between MBRs stored at
that node.

To determine p for point-queries, we made use of the probability ppoint that a random point
is contained in a given bounding box. For line- and box queries, p is of course also dependent
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on node-level MBR overlap, but also on the probabilities pline and pbox, which are expected to be
significantly larger than ppoint. Hence by assuming we use the same tree structure for all query
types, and thus the amount of node-level overlap remains the same, we have obtained a method
for predicting in how much more children line- and box-query algorithms will recurse in with
respect to point-queries; ppoint, pline, and pbox indicate relative query difficulty.

A lower bound for pline was found, so that pline
ppoint

gives a lower bound on how much more
difficult a line query is with respect to the point-query. ppoint and pbox were explicitly calculated.
The lower bound for pline and the values for ppoint and pbox may be determined for any number
of dimensions.

3.5. Storage

Since an R-tree stores in between m and M objects at each of its nodes, we can easily give
bounds for the total memory usage. For the bisection tree, we know that it always has 3 children,
one of which is a leaf node (the ’middle’ node) and two of which are internal nodes; the order
of memory usage thus can be given explicitly. For the special case of packed R-trees, we know
that each R-tree node has exactly M children, save for one node if the number of input elements
cannot be divided by M exactly. Hence for packed R-trees, the exact order of memory usage is
equal to the order of the lower bound of the general R-tree memory usage.

3.5.1. Bisection tree. In effect, a bisection tree is a binary tree with an additional set of el-
ements stored at each node. This additional set then corresponds to the ’middle’ child of each
node and contains the objects which were intersected by the bisection plane used at that node.
The number of nodes in this binary representation is easily determined when we note that for the
ni from figure 3.5 in this case we have that:

ni = 2i.(3.42)

Given this, the number of nodes in a bisection tree equals ∑h
i=0 ni, where h is the tree height.

Remember that h is equal to the number of recursions of the bisection tree construction algorithm,
and let us assume that this number is dlog2 ne. Then the total number of nodes equals:

ñ =
h

∑
i=0

ni = 2h+1 − 1.(3.43)

Note that this can be easily proven by noting that ∑h
i=0 ni is, in binary, the number of h re-

peated ones: ñbinary = 11 . . . 1. Now we easily see that ñbinary + 1 = 100 . . . 0 which equals 2h+1

in the decimal system, which yields the result in equation 3.43.8

Let us now determine the minimum storage requirements for a single node. Each node
should at least store:

(1) An MBR consisting of two d-dimensional double-precision floating numbers, totalling
2 · d · 64 = 128 · d bytes910.

(2) Two pointers to child nodes (in the case of internal nodes), totalling 2 · 32 bits11.
(3) Two pointers to arrays containing objects (in the case of leaf nodes), totalling 2 · 32 bits.

8One could also recognise ∑h
i=0 2i as a geometric series.

9Assuming a double precision float takes 64 bits of space.
10One can argue if a bisection tree node should store an MBR; this is not an integral part of the bisection method.

However, using an MBR will speed up queries; it can prevent recursing into subtrees which do not contain any valid
objects. Also, the bisection tree implementation by Shell uses MBRs.

11Assuming a 32-bit architecture.
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(4) One pointer to an array (or part of an array) storing the objects which intersected the
bisection plane, totalling 32 bits.

Thus a node in the bisection tree takes about 128 · d + 5 · 32 = 128 · d + 160 bits of mem-
ory, which is linear in the number of dimensions O(d) and constant O(1) otherwise. Given
equation 3.43, a bisection tree containing n elements and has height h = dlog2 ne takes about
(128 · d + 160) · (2h+1 − 1) + 32 · n bits of memory12. Asymptotically, this is of order O(2dlog2 ne).

3.5.2. R-tree. In its most basic state, an R-tree node has the following storage requirements:

(1) A single MBR (also see previous subsection), totalling 128 · d bits.
(2) A pointer to an array of children nodes, totalling 32 bits.
(3) An array storing pointers to children nodes, totalling 0 bits (if leaf) or somewhere in

between 32 · m bits and 32 · M bits.
(4) A pointer to an array of locally stored objects, totalling 32 bits.
(5) An array storing object numbers, totalling 0 bits (if non-leaf) or somewhere in between

32 · m bits and 32 · M bits.
(6) A pointer to the parent node, totalling 32 bits13.

This totals to in between 128 · d + 32 · (3 + m) and 128 · d + 32 · (3 + M) bits per node. The
greatest number of nodes is achieved when all nodes store exactly m children or objects. Then
the ni from figure 3.5 equal mi and the total number of nodes can be determined by using the
following proposition.

PROPOSITION 3.13. Let g, n ∈ Z. Then:

n

∑
i=0

gi =
gn+1 − 1

g − 1
(3.44)

PROOF. The proof will follow the initial approach for g = 2 given in the previous subsection.
Let ñ = ∑n

i=0 gi and ñin base g = 11 . . . 1. Note that when g > 2, ñin base g + 1 no longer equals
100 . . . 0; it equals 11 . . . 2. To still achieve our desired effect, we therefore pre-multiply ñ by
ḡ = g − 1; ḡñin base g = ḡḡ . . . ḡ and so ḡñin base g + 1 = 100 . . . 0. This means that ḡñ + 1 = gn+1.

Rewriting gives ñ = gn+1−1
ḡ = gn+1−1

g−1 and our proof is concluded.14 �

Now note that the height h of an arbitrary R-tree is fixed dependent on m, M and n due to the
height balanced property and the fixed range of the number of children or elements per node. A
bound for h was already given earlier in equation 2.7 and equation 2.8. Following these equations
we obtain bounds for the total number of nodes in an R-tree:

ndlogM ne−1 − 1
M − 1

≤ ñ ≤ ndlogm ne−1 − 1
m − 1

.(3.45)

Hence, the memory usage lower bound becomes

(128 · d + 32 · (3 + M)) · MdlogM ne−1 − 1
M − 1

(3.46)

and the upper bound becomes

12Assuming each object is represented by a single integer (identification) number.
13While not required for the bisection tree, a pointer to the parent node is a necessity for R-trees due to dynamic

updating algorithms (overflow handling).
14Alternatively, one could have simply multiplied both sides of the equation by (g− 1) and obtained equality; which

is how the sum rule for geometric series is usually proven.
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(128 · d + 32 · (3 + m)) · mdlogm ne−1 − 1
m − 1

.(3.47)

We conclude with presenting the asymptotic orders of these bounds. The lower bound is of
order

O(MdlogM ne−1 − 1)(3.48)

while the upper bound is

O(mdlogm ne−1 − 1)(3.49)

Note that we can further bring back both bounds to O(n), however, the extra information in
equations 3.48 and 3.49 will become useful in explaining some of the experimental results we will
present later on. Also remember that equation 3.48 is the exact order of a packed R-tree; hence
packed R-trees should result in the most memory-efficient solutions.





CHAPTER

4
FOUR

Experiments

We will start this chapter with a brief overview which R-tree variants we chose for experi-
mentation. Since these are but a small subset of the total amount of R-tree variants available, we
will also motivate why we chose for these particular variants.

After this motivation, we shall proceed with explaining the testing methodology used for
testing the Bisection tree and the R-tree variants. We conclude with three sections for each specific
area we wanted to test; construction time, query efficiency and memory usage.

The experimentation software has been written in C++, and is kept as generic as possible.
The actual data structures have been implemented fully according to the ANSI standard and
have been tested to compile under GNU, Intel and Microsoft Visual C++ compilers. Some of the
source files used for the actual experimentation however also use some POSIX standard functions
for timing, or GNU specific functions for memory allocation statistics.

4.1. Experimentation machines

Experiments have been performed on the following machines:

Rivium. Rivium is a dual core small server-grade machine with 1 gigabyte of main memory.
The processor is an Intel Xeon 5120, with each core running at 1.86 GHz, at 1066 FSB. The L2 cache
size is 4096 kilobyte.

Qire. Qire is a quad core personal computer with 4 gigabytes of main memory. The processor
is an Intel Q6600, with each core running at 2.4 GHz, also at 1066 FSB. The cores are split in two
groups, each sharing an L2 cache of 4096 kilobytes.

G4. The G4 is an iBook G4 laptop, used only for debugging and development. The processor
speed is 1.33 GHz, with 512 megabytes of memory and 512 kilobytes of cache memory.

4.2. Selection

The R-trees implemented for experimentation are the following:

• Basic R-tree as per [Gut84], with linear and quadratic split.
• Hilbert R-tree, as per [KF94].
• Top-down greedy split (TGS), as per [GRLL98a]. With two different cost functions,

namely:

67
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(1) The sum of the bounding box volumes,
(2) The volume of the intersection of the bounding boxes.

• TGS using the Hilbert ordering.

Also, the original bisection code used by Shell has been imported so that we can fairly com-
pare the results of the bisection method and the R-tree method. We have chosen to implement
the Basic R-tree mostly for obtaining a base reading of what R-trees are capable of, a point from
which to build and improve R-tree performance by implementing variations.

Choosing which variations to implement and test was not trivial. The Hilbert R-tree was
chosen since it was claimed this variation outperforms the R∗ tree and other established R-trees in
most cases, at the time of its introduction (1994) [KF94]. While not the most up-to-date variation
available, the Hilbert R-tree still seemed to be a good variation [MNPT06], [GRLL98a]. In the
latter article, the TGS bulk-loading was introduced; claiming it to be able to beat both the STR-
tree and the Hilbert R-tree in terms of query efficiency.

While implementing the above variations the idea was formed to use Hilbert coordinate or-
dering in combination with TGS to reduce building times. Although seemingly a logical variation
of TGS, we however did not found any articles about this variant or its performance. Taking into
account the expected low implementation cost since both TGS and Hilbert coordinate transfor-
mation were already implemented, we chose to investigate this variant as well.

4.3. Measuring performance

As mentioned in Chapter 1, we are mainly interested the construction times, query perfor-
mances and memory usage of the different methods. To obtain reliable construction time es-
timates, we have used the sys/times.h standard POSIX library to measure only the process
time, which should be uninfluenced by other processes which may be running on the experiment
machine. The experiment software has been set up so that the construction time includes only
the parsing time of the input file, and the time required to build up the requested data structure.

To obtain reliable average query time averages, we perform n random queries for each query
type implemented (point, k-nearest-neighbourhood, line, box) and average the total time re-
quired for the n queries for each single query type. We thus obtain a average query time for
each different query type. n will vary during experiments from 1000 to 105.

Memory allocation is measured via the GNU function malloc_stats() contained in
malloc.h . Since this is only available under GNU compilers, memory allocation measurement
has been implemented in a separately from the construction and query time experiments, so that
the other experiment code stays as portable as possible. malloc_stats() not only returns the
allocated amount of memory, but also how much of the memory allocated is actually being used
after construction of the data structure is complete. This allows us also to measure the memory
efficiency of the data structures.

Datasets. We have used the following datasets for experimentation:

Dataset name Number of non-void blocks ijk-grid size
CRNRPNTS 1 384 8× 8× 6
datacomplete 8484 43× 44× 9
CRNRPNTS 2 11352 43× 44× 6

geom2 486484 42× 40× 377
geom1 3106719 272× 411× 45

4.4. Varying parameters

In the first few experiments, we vary parameters like the minimum and maximum number of
children per node to see what effects these have on the datastructure performances. We also try
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to find a sets of parameters which result in good R-tree performances on our selected datasets. In
the following sections, we will perform more detailed experiments on those sets of parameters.

4.4.1. Varying m and M.

Parameter Value
Experiment machine Rivium

n 1000
Optimisation level Debuga

Hilbert curve order 4
Basic R-tree split method Quadratic

aC++ code compiled in debug mode will result in slower code, but allows for greater run-time control and information
gathering. This is especially useful in combination with debug tools such as valgrind or gdb.

The results for varying the minimum and maximum number of children per node for the
basic R-tree with quadratic split and the Hilbert R-tree are as in figure 4.1 and figure 4.2. Note
that some graphs seem to be missing the first few data points. This commonly happens when
those data points were 0 while the data is plotted in log-log scale; log 0 is not defined properly
and as such is not plotted. More detailed experiment results may be found in Appendix C.1.

For the bulk-loading algorithms, the minimum number of children does not affect the algo-
rithm; they will result in a fully packed tree. Hence we may obtain the figure 4.3 which only
vary M, for different type of bulk-loading schemes. Note that we here supply pictures counting
the number of nodes touched on average, during each query. This is another measure of count-
ing the tree efficiency. Save of cache effects, the number of touched nodes should be directly
proportional to the execution time; this is researched in section 4.5. These graphs were used in-
stead of the wall-clock time graphs since a lot of query times were averaging to zero, resulting in
uninformative graphs.

4.4.2. Varying the Hilbert transformation recursion.

Parameter Value
Experiment machine Qire

n 1000
Optimisation level O3

Minimum number of children 2
Maximum number of children 4

TGS cost function Sum of volumes

Here we research the effect of changing the Hilbert coordinate transform precision. This
experiment of course only applies to the Hilbert R-tree and the HilbertTGS bulk-loading method.
The effects on building times are shown in figure 4.4. The effects on query times can be seen in
figures 4.5 and 4.6.

4.4.3. Varying the sampling rate in the Random TGS algorithm.
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Bisection tree.
2/4 non−bulk−loaded basic R−tree.
4/4 non−bulk−loaded basic R−tree.
2/6 non−bulk−loaded basic R−tree.
4/6 non−bulk−loaded basic R−tree.
2/12 non−bulk−loaded basic R−tree.
4/12 non−bulk−loaded basic R−tree.
8/12 non−bulk−loaded basic R−tree.
12/12 non−bulk−loaded basic R−tree.
2/24 non−bulk−loaded basic R−tree.
4/24 non−bulk−loaded basic R−tree.
8/24 non−bulk−loaded basic R−tree.
12/24 non−bulk−loaded basic R−tree.

(d) Average line query time
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Bisection tree.
2/4 non−bulk−loaded basic R−tree.
4/4 non−bulk−loaded basic R−tree.
2/6 non−bulk−loaded basic R−tree.
4/6 non−bulk−loaded basic R−tree.
2/12 non−bulk−loaded basic R−tree.
4/12 non−bulk−loaded basic R−tree.
8/12 non−bulk−loaded basic R−tree.
12/12 non−bulk−loaded basic R−tree.
2/24 non−bulk−loaded basic R−tree.
4/24 non−bulk−loaded basic R−tree.
8/24 non−bulk−loaded basic R−tree.
12/24 non−bulk−loaded basic R−tree.

(e) Average box query time

FIGURE 4.1. Some figures illustrating results of the basic R-tree with quadratic
split, using different combinations of m and M.
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Bisection tree.
2/4 non−bulk−loaded Hilbert R−tree.
4/4 non−bulk−loaded Hilbert R−tree.
2/6 non−bulk−loaded Hilbert R−tree.
4/6 non−bulk−loaded Hilbert R−tree.
2/12 non−bulk−loaded Hilbert R−tree.
4/12 non−bulk−loaded Hilbert R−tree.
8/12 non−bulk−loaded Hilbert R−tree.
12/12 non−bulk−loaded Hilbert R−tree.
2/24 non−bulk−loaded Hilbert R−tree.
4/24 non−bulk−loaded Hilbert R−tree.
8/24 non−bulk−loaded Hilbert R−tree.
12/24 non−bulk−loaded Hilbert R−tree.

(a) Building time
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Bisection tree.
2/4 non−bulk−loaded Hilbert R−tree.
4/4 non−bulk−loaded Hilbert R−tree.
2/6 non−bulk−loaded Hilbert R−tree.
4/6 non−bulk−loaded Hilbert R−tree.
2/12 non−bulk−loaded Hilbert R−tree.
4/12 non−bulk−loaded Hilbert R−tree.
8/12 non−bulk−loaded Hilbert R−tree.
12/12 non−bulk−loaded Hilbert R−tree.
2/24 non−bulk−loaded Hilbert R−tree.
4/24 non−bulk−loaded Hilbert R−tree.
8/24 non−bulk−loaded Hilbert R−tree.
12/24 non−bulk−loaded Hilbert R−tree.

(b) Average point query time
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Grid size vs. query time −− knn query

 

 
Bisection tree.
2/4 non−bulk−loaded Hilbert R−tree.
4/4 non−bulk−loaded Hilbert R−tree.
2/6 non−bulk−loaded Hilbert R−tree.
4/6 non−bulk−loaded Hilbert R−tree.
2/12 non−bulk−loaded Hilbert R−tree.
4/12 non−bulk−loaded Hilbert R−tree.
8/12 non−bulk−loaded Hilbert R−tree.
12/12 non−bulk−loaded Hilbert R−tree.
2/24 non−bulk−loaded Hilbert R−tree.
4/24 non−bulk−loaded Hilbert R−tree.
8/24 non−bulk−loaded Hilbert R−tree.
12/24 non−bulk−loaded Hilbert R−tree.

(c) Average k-nn query time

102 103 104 105 106 107
10−3

10−2

10−1

100

101

Number of grid elements

Av
er

ag
e 

re
qu

ire
d 

tim
e 

pe
r l

in
e 

qu
er

y 
(in

 s
ec

on
ds

)

Grid size vs. query time −− line query

 

 
Bisection tree.
2/4 non−bulk−loaded Hilbert R−tree.
4/4 non−bulk−loaded Hilbert R−tree.
2/6 non−bulk−loaded Hilbert R−tree.
4/6 non−bulk−loaded Hilbert R−tree.
2/12 non−bulk−loaded Hilbert R−tree.
4/12 non−bulk−loaded Hilbert R−tree.
8/12 non−bulk−loaded Hilbert R−tree.
12/12 non−bulk−loaded Hilbert R−tree.
2/24 non−bulk−loaded Hilbert R−tree.
4/24 non−bulk−loaded Hilbert R−tree.
8/24 non−bulk−loaded Hilbert R−tree.
12/24 non−bulk−loaded Hilbert R−tree.

(d) Average line query time
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Bisection tree.
2/4 non−bulk−loaded Hilbert R−tree.
4/4 non−bulk−loaded Hilbert R−tree.
2/6 non−bulk−loaded Hilbert R−tree.
4/6 non−bulk−loaded Hilbert R−tree.
2/12 non−bulk−loaded Hilbert R−tree.
4/12 non−bulk−loaded Hilbert R−tree.
8/12 non−bulk−loaded Hilbert R−tree.
12/12 non−bulk−loaded Hilbert R−tree.
2/24 non−bulk−loaded Hilbert R−tree.
4/24 non−bulk−loaded Hilbert R−tree.
8/24 non−bulk−loaded Hilbert R−tree.
12/24 non−bulk−loaded Hilbert R−tree.

(e) Average box query time

FIGURE 4.2. Some figures illustrating results of the Hilbert R-tree, using differ-
ent combinations of m and M.
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Bisection tree.
2/4 HilbertTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.
2/24 HilbertTGS bulk−loaded basic R−tree.
2/4 TGSvolume bulk−loaded basic R−tree.
2/12 TGSvolume bulk−loaded basic R−tree.
2/24 TGSvolume bulk−loaded basic R−tree.
2/4 TGSintersect bulk−loaded basic R−tree.
2/12 TGSintersect bulk−loaded basic R−tree.
2/24 TGSintersect bulk−loaded basic R−tree.

(a) Building time
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Bisection tree.
2/4 HilbertTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.
2/24 HilbertTGS bulk−loaded basic R−tree.
2/4 TGSvolume bulk−loaded basic R−tree.
2/12 TGSvolume bulk−loaded basic R−tree.
2/24 TGSvolume bulk−loaded basic R−tree.
2/4 TGSintersect bulk−loaded basic R−tree.
2/12 TGSintersect bulk−loaded basic R−tree.
2/24 TGSintersect bulk−loaded basic R−tree.

(b) Average number of nodes per point query
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Bisection tree.
2/4 HilbertTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.
2/24 HilbertTGS bulk−loaded basic R−tree.
2/4 TGSvolume bulk−loaded basic R−tree.
2/12 TGSvolume bulk−loaded basic R−tree.
2/24 TGSvolume bulk−loaded basic R−tree.
2/4 TGSintersect bulk−loaded basic R−tree.
2/12 TGSintersect bulk−loaded basic R−tree.
2/24 TGSintersect bulk−loaded basic R−tree.

(c) Average number of nodes per k-nn query
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Bisection tree.
2/4 HilbertTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.
2/24 HilbertTGS bulk−loaded basic R−tree.
2/4 TGSvolume bulk−loaded basic R−tree.
2/12 TGSvolume bulk−loaded basic R−tree.
2/24 TGSvolume bulk−loaded basic R−tree.
2/4 TGSintersect bulk−loaded basic R−tree.
2/12 TGSintersect bulk−loaded basic R−tree.
2/24 TGSintersect bulk−loaded basic R−tree.

(d) Average number of nodes per line query
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Bisection tree.
2/4 HilbertTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.
2/24 HilbertTGS bulk−loaded basic R−tree.
2/4 TGSvolume bulk−loaded basic R−tree.
2/12 TGSvolume bulk−loaded basic R−tree.
2/24 TGSvolume bulk−loaded basic R−tree.
2/4 TGSintersect bulk−loaded basic R−tree.
2/12 TGSintersect bulk−loaded basic R−tree.
2/24 TGSintersect bulk−loaded basic R−tree.

(e) Average number of nodes per box query

FIGURE 4.3. Some figures illustrating results of various bulk-loaded R-trees, us-
ing different numbers of maximum children per node.



4.4. VARYING PARAMETERS 73

102 103 104 105 106 107
100

101

102

103

104

105

Number of grid elements

Bu
ild

in
g 

tim
e 

(in
 p

ro
ce

ss
or

 ti
ck

s)

Grid size vs. building time

 

 
Bisection tree.
O2 2/4 non−bulk−loaded Hilbert R−tree.
O3 2/4 non−bulk−loaded Hilbert R−tree.
O4 2/4 non−bulk−loaded Hilbert R−tree.
O5 2/4 non−bulk−loaded Hilbert R−tree.
O6 2/4 non−bulk−loaded Hilbert R−tree.
O7 2/4 non−bulk−loaded Hilbert R−tree.
O8 2/4 non−bulk−loaded Hilbert R−tree.

(a) Hilbert R-tree
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Bisection tree.
2/4 O2−HilbertTGS bulk−loaded basic R−tree.
2/4 O3−HilbertTGS bulk−loaded basic R−tree.
2/4 O4−HilbertTGS bulk−loaded basic R−tree.
2/4 O5−HilbertTGS bulk−loaded basic R−tree.
2/4 O6−HilbertTGS bulk−loaded basic R−tree.
2/4 O7−HilbertTGS bulk−loaded basic R−tree.
2/4 O8−HilbertTGS bulk−loaded basic R−tree.

(b) HilbertTGS

FIGURE 4.4. Build times for various Hilbert curve orders.
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Bisection tree.
O2 2/4 non−bulk−loaded Hilbert R−tree.
O3 2/4 non−bulk−loaded Hilbert R−tree.
O4 2/4 non−bulk−loaded Hilbert R−tree.
O5 2/4 non−bulk−loaded Hilbert R−tree.
O6 2/4 non−bulk−loaded Hilbert R−tree.
O7 2/4 non−bulk−loaded Hilbert R−tree.
O8 2/4 non−bulk−loaded Hilbert R−tree.

(a) Point query
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Bisection tree.
O2 2/4 non−bulk−loaded Hilbert R−tree.
O3 2/4 non−bulk−loaded Hilbert R−tree.
O4 2/4 non−bulk−loaded Hilbert R−tree.
O5 2/4 non−bulk−loaded Hilbert R−tree.
O6 2/4 non−bulk−loaded Hilbert R−tree.
O7 2/4 non−bulk−loaded Hilbert R−tree.
O8 2/4 non−bulk−loaded Hilbert R−tree.

(b) k-nn query
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Bisection tree.
O2 2/4 non−bulk−loaded Hilbert R−tree.
O3 2/4 non−bulk−loaded Hilbert R−tree.
O4 2/4 non−bulk−loaded Hilbert R−tree.
O5 2/4 non−bulk−loaded Hilbert R−tree.
O6 2/4 non−bulk−loaded Hilbert R−tree.
O7 2/4 non−bulk−loaded Hilbert R−tree.
O8 2/4 non−bulk−loaded Hilbert R−tree.

(c) Line query
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Bisection tree.
O2 2/4 non−bulk−loaded Hilbert R−tree.
O3 2/4 non−bulk−loaded Hilbert R−tree.
O4 2/4 non−bulk−loaded Hilbert R−tree.
O5 2/4 non−bulk−loaded Hilbert R−tree.
O6 2/4 non−bulk−loaded Hilbert R−tree.
O7 2/4 non−bulk−loaded Hilbert R−tree.
O8 2/4 non−bulk−loaded Hilbert R−tree.

(d) Box query

FIGURE 4.5. Average query times or node visits for the Hilbert R-tree with vari-
ous Hilbert curve orders.
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Bisection tree.
2/4 O2−HilbertTGS bulk−loaded basic R−tree.
2/4 O3−HilbertTGS bulk−loaded basic R−tree.
2/4 O4−HilbertTGS bulk−loaded basic R−tree.
2/4 O5−HilbertTGS bulk−loaded basic R−tree.
2/4 O6−HilbertTGS bulk−loaded basic R−tree.
2/4 O7−HilbertTGS bulk−loaded basic R−tree.
2/4 O8−HilbertTGS bulk−loaded basic R−tree.

(a) Point query
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Bisection tree.
2/4 O2−HilbertTGS bulk−loaded basic R−tree.
2/4 O3−HilbertTGS bulk−loaded basic R−tree.
2/4 O4−HilbertTGS bulk−loaded basic R−tree.
2/4 O5−HilbertTGS bulk−loaded basic R−tree.
2/4 O6−HilbertTGS bulk−loaded basic R−tree.
2/4 O7−HilbertTGS bulk−loaded basic R−tree.
2/4 O8−HilbertTGS bulk−loaded basic R−tree.

(b) k-nn query
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Bisection tree.
2/4 O2−HilbertTGS bulk−loaded basic R−tree.
2/4 O3−HilbertTGS bulk−loaded basic R−tree.
2/4 O4−HilbertTGS bulk−loaded basic R−tree.
2/4 O5−HilbertTGS bulk−loaded basic R−tree.
2/4 O6−HilbertTGS bulk−loaded basic R−tree.
2/4 O7−HilbertTGS bulk−loaded basic R−tree.
2/4 O8−HilbertTGS bulk−loaded basic R−tree.

(c) Line query
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Bisection tree.
2/4 O2−HilbertTGS bulk−loaded basic R−tree.
2/4 O3−HilbertTGS bulk−loaded basic R−tree.
2/4 O4−HilbertTGS bulk−loaded basic R−tree.
2/4 O5−HilbertTGS bulk−loaded basic R−tree.
2/4 O6−HilbertTGS bulk−loaded basic R−tree.
2/4 O7−HilbertTGS bulk−loaded basic R−tree.
2/4 O8−HilbertTGS bulk−loaded basic R−tree.

(d) Box query

FIGURE 4.6. Average query times or node visits for Hilbert TGS with various
Hilbert curve orders.

Parameter Value
Experiment machine Qire

n 1000
Optimisation level O3
Hilbert curve order 3

Minimum number of children 2
Maximum number of children 12

TGS cost function Sum of volumes

Sampling rates of 10, 25, 50 and 100 percent have been investigated for both the TGS method
and the HilbertTGS method. The effects on building times are as in figure 4.7. Results of the
average node visits per point query are shown in figure 4.8. The results with respect to which
SR-variant is best are similar for each other query. Note that in figure 4.8(b) the number of node
visits for different SR are equal.
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Bisection tree.
2/12 100SR RandomTGS bulk−loaded basic R−tree.
2/12 10SR RandomTGS bulk−loaded basic R−tree.
2/12 25SR RandomTGS bulk−loaded basic R−tree.
2/12 50SR RandomTGS bulk−loaded basic R−tree.

(a) Random TGS
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Bisection tree.
2/12 100SR RHTGS bulk−loaded basic R−tree.
2/12 10SR RHTGS bulk−loaded basic R−tree.
2/12 25SR RHTGS bulk−loaded basic R−tree.
2/12 50SR RHTGS bulk−loaded basic R−tree.

(b) Random HilbertTGS

FIGURE 4.7. Building times of bulk-loading mechanisms using a sampling rate heuristic.
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Bisection tree.
2/12 100SR RandomTGS bulk−loaded basic R−tree.
2/12 10SR RandomTGS bulk−loaded basic R−tree.
2/12 25SR RandomTGS bulk−loaded basic R−tree.
2/12 50SR RandomTGS bulk−loaded basic R−tree.

(a) Random TGS
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Bisection tree.
2/12 100SR RHTGS bulk−loaded basic R−tree.
2/12 10SR RHTGS bulk−loaded basic R−tree.
2/12 25SR RHTGS bulk−loaded basic R−tree.
2/12 50SR RHTGS bulk−loaded basic R−tree.

(b) Random HilbertTGS

FIGURE 4.8. Average number of visited nodes per query of bulk-loaded R-trees
using sampling rate heuristics.

4.5. Average touched nodes versus wall-clock query time

In this section we present both node and wall-clock time graphs for comparison; see figure 4.9
and 4.10. As before, we present the experiment settings:

Parameter Value
Experiment machine Qire

n 1000 (unless otherwise noted)
Optimisation level O3
Hilbert curve order 3

Minimum number of children 2
Maximum number of children 4

TGS cost function Sum of volumes
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Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(a) Time graph for point queries, the number of
queries done is n = 105
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Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(b) Node graph for point queries, the number of
queries done is n = 1000
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Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(c) Time graph for knn queries
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Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(d) Node graph for knn queries

FIGURE 4.9. Comparison between time and node graphs for one-dimensional queries.
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Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(a) Time graph for line queries

102 103 104 105 106 107
101

102

103

104

105

Number of grid elements

Av
er

ag
e 

nu
m

be
r o

f v
isi

te
d 

no
de

s 
pe

r l
in

e 
qu

er
y

Grid size vs. node visits line query

 

 
Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(b) Node graph for line queries
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Bisection tree.
2/4 RandomTGS bulk−loaded basic R−tree.
2/4 HilbertTGS bulk−loaded basic R−tree.

(c) Time graph for box queries
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(d) Node graph for box queries

FIGURE 4.10. Comparison between time and node graphs for two-dimensional queries.
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4.6. Construction time

On basis of the results presented in the previous subsection, we now proceed with more
detailed experiments on the following R-tree variants:

(1) 4-HilbertTGS,
(2) 4-RandomTGS.

Experiments for M = 12, including the dynamic Hilbert R-tree variant have also been per-
formed, but the results were not analysed in detail. The experiment results are included in ap-
pendix C.2 for the interested reader.

The experiments setting now are as follows:

Parameter Value
Experiment machine Qire

n 100000
Optimisation level O3
Hilbert curve order 3

Minimum number of children 2
Maximum number of children 4

TGS cost function Sum of volumes

The construction times are as in figure 4.11. In tabular format, the data is as in Table 4.1.

384 8484 11352 486484 3106719
Bisection tree. 0 1 1 105 752

2/4 HilbertTGS bulk-loaded basic R-tree. 0 5 9 550 16595
2/4 RandomTGS bulk-loaded basic R-tree. 0 9 43 35555 261153

TABLE 4.1. Upper row data denote grid sizes, cell numbers contain the number
of processor ticks required for construction.
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FIGURE 4.11. Construction time of bulk-loading methods and the bisection method
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4.7. Query efficiency

We proceed with obtaining data on query efficiencies of the different variants also experi-
mented with in the previous subsection. The experiments settings remain the same. The number
of queries (n) done is high enough to obtain gapless wall-clock time graphs, hence we do not
show here the average touched nodes graphs.

Parameter Value
Experiment machine Qire

n 100000
Optimisation level O3
Hilbert curve order 3

Minimum number of children 2
Maximum number of children 4

TGS cost function Sum of volumes

The query times are as in figure 4.12. In tabular format, the data is as in tables 4.2, 4.3, 4.4,
and 4.5.

4.8. Memory usage

On memory usage, we have obtained there results as in figure 13(a) and 13(b). Allocated
memory denotes the amount of memory the system has reserved for the given process, while the
in-use memory denotes the number of bytes actually requested the experiment software. Global
experiment settings follow.

384 8484 11352 486484 3106719
Bisection tree. 0.00096 0.00772 0.01474 0.5031 0.98837

2/4 HilbertTGS bulk-loaded basic R-tree. 0.0001 0.0002 0.00014 0.00647 0.01805
2/4 RandomTGS bulk-loaded basic R-tree. 0.00001 0.00008 0.00005 0.00135 0.00077

TABLE 4.2. Upper row data denote grid sizes, cell numbers contain the number
of processor ticks required for point queries.

384 8484 11352 486484 3106719
Bisection tree. 0.0034 0.03588 0.11113 4.76374 25.5806

2/4 HilbertTGS bulk-loaded basic R-tree. 0.00194 0.00409 0.00605 0.03664 0.40226
2/4 RandomTGS bulk-loaded basic R-tree. 0.00124 0.00209 0.00272 0.00711 0.01278

TABLE 4.3. Upper row data denote grid sizes, cell numbers contain the number
of processor ticks required for knn queries.

384 8484 11352 486484 3106719
Bisection tree. 0.00236 0.02606 0.04475 1.77424 4.30865

2/4 HilbertTGS bulk-loaded basic R-tree. 0.00017 0.00397 0.00073 0.12706 0.68414
2/4 RandomTGS bulk-loaded basic R-tree. 0.00019 0.00243 0.00035 0.04147 0.04673

TABLE 4.4. Upper row data denote grid sizes, cell numbers contain the number
of processor ticks required for line queries.
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384 8484 11352 486484 3106719
Bisection tree. 0.00181 0.03019 0.05012 4.75794 21.3555

2/4 HilbertTGS bulk-loaded basic R-tree. 0.00069 0.01716 0.00682 1.27654 10.0069
2/4 RandomTGS bulk-loaded basic R-tree. 0.00054 0.01467 0.00542 0.8876 5.73007

TABLE 4.5. Upper row data denote grid sizes, cell numbers contain the number
of processor ticks required for box queries.
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FIGURE 4.12. Query performance in terms of wall-clock query time for various variants.

Parameter Value
Experiment machine Qire

n 100000
Optimisation level O3
Hilbert curve order 3

Minimum number of children 2
Maximum number of children 4 or 12

TGS cost function Sum of volumes
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FIGURE 4.13. Memory usage of various datastructures.





CHAPTER

5
FIVE

Conclusions

In Chapter 1 we introduced a problem regarding data storage and access in the Dynamo
software package by Shell. Chapter 2 introduced some data structures which may accommodate
the requirements in this context. We analysed their properties theoretically in Chapter 3 and
furthermore implemented the datastructures in C++and went on with experimentation on actual,
real-life datasets supplied by Shell; the experiment results were given in Chapter 4.

Now we will reflect back if the experiment results conform to the theoretical analysis, and
we will decide if the proposed datastructures indeed are effective enough to be used instead of
the bisection method currently employed by Shell. Furthermore, we will also suggest avenues of
further research.

5.1. Experiment Analysis

Here we will analyse the experiments done in Chapter 4, starting with those dealing with
finding good parameters. This is followed by analysing R-trees with the most efficient parameters
we have found. Then, an in-depth comparison to the bisection method will follow.

5.1.1. Number of children. For dynamic R-trees, namely the basic R-tree with quadratic
split and the Hilbert R-tree, we generally see that the higher the maximum amount of children or
elements per node M, the longer the construction time; see figure 4.1 and 4.2. This is conform to
equation 3.6. On the other hand, varying the minimum amount of children or elements per node
does not seem to have an impact as large as varying M, which is also conform the aforementioned
equation; there, m only occurs in the scaling factor log m.

For static R-trees (Figure 4.3), or rather the bulk-loaded R-trees, we also see that M has a
direct scaling influence on the construction times. For all tested values of M on each tested
bulk-loading algorithm, we also see that the order of the construction time stays similar; the
HilbertTGS construction times are of the same order as that of the bisection tree, while the other
bulk-loading algorithms all seem to stay in a higher polylogarithmic order (see section 5.1.4).

This tendency is continued when we consider the query times as well. Less children per node
result in faster query times for point, k-nn and line queries. The results for box queries are less
decisive; the query times are more or less packed on each other, with only the bisection tree being
noticeably slower.

83
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Thus it seems that in our case, overlapping MBRs are not so much of an issue; otherwise a
search would recurse into many children quickly building up the query time (See section 3.4.1).
Instead, the searches seem to branch of into multiple children only in lower levels, when abso-
lutely necessary.

Keep in mind however that a lower amount of children will result in higher trees and thus
in larger memory requirements. Also note that m and M here are chosen without considering
any cache effects; this is contrary to most other R-tree applications, where m and M are chosen
exactly so that a single node fits into the cache exactly. Hence, instead of looking to find optimal
cache effects, we look to find the most effective tree structure instead.

As a result of the experiments done here, we also have seen that the TGSintersect method
generally does not results in more efficient trees with respect to query time than when using the
TGSvolume method; the construction time however does increase significantly. Hence, from here
on out we do not experiment with the intersection-minimising cost function but solely with the
standard total volume minimising cost function when using TGS.

5.1.2. Hilbert curve order. From figure 4.4 we can see that interestingly, a higher Hilbert
order always results in a longer building time for the Hilbert R-tree while the building time re-
quired for HilbertTGS may actually lessen. According to equations 3.23 and 3.24, we have that
the insertion time is linearly dependent on the Hilbert curve order. The total construction time
is mainly dominated by how many overflows take place during insertion. Given the aforemen-
tioned figures, we may conclude that the number of overflows remain similar on large enough
datasets, regardless of the Hilbert curve order. Therefore, there is a linear correspondence be-
tween the curve order and the construction time.

This is not the case for the HilbertTGS bulkloading method. Having equation 3.19 in mind,
we see that there is again a linear correspondence between the number of elements and the con-
struction time (the factor ndl). However, for large enough datasets, this is not reflected in the
figure at all; there, a low-order Hilbert curve will cause the HilbertTGS algorithm to execute
much slower than when using higher order curves. This is due to the low precision low order
curves yield; the generated binary splits are of such bad quality that calculating the MBRs of the
splits 1 requires far more time than when using a higher order curve.

On query times (see figure 4.5), we see that on average, the higher the order, the better the
query times. An exception to this seems to be the third order Hilbert curve; this particular variant
seems to perform on par with the fifth order Hilbert curve in terms of query performance. This
is odd, since a third order Hilbert curve can only distinguish between 83 = (23)3 = 29 = 512
different cells, while the largest dataset contains more than 3 million blocks. There seems to
be no apparent explanation for this phenomenon, altough we suspect it is due to the order in
which grid blocks were intially stored in the datasets supplied by Shell; they are globally ordered
ascendingly, first through the x-axis, then the y- and finally the z-axis. Apperantly, dividing the
grid blocks in 512 subareas higher up the R-tree and using the inferred ordering lower down the
tree, leads to a favorable structure2.

We used a third order Hilbert curve in subsequent experiments because it performed just as
well as a fifth order curve, but needs less recursive calls. However, using a Hilbert curve order
o for which 8o ≥ n (thus, o = 8 for the largest dataset), would result in a more optimal Hilbert-
based R-tree. The question remains if the added construction time due to the larger number of
recursions is worth the gain.

1lines 6, 7, Algorithm A.5.2
2This structure may actually correspond to a hybrid method between a Hilbert R-tree and a so called kd-tree.
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5.1.3. Sampling rate. Here we discuss the results of the so-called RandomTGS and Random
HilbertTGS bulk-loading methods.

Varying the sampling rate to, in the first place, reduce the construction time of bulk-loading
algorithms, seem not to have as great an impact as initially expected. For TGS bulk-loading, the
running times are cut back by a small factor. In numbers, we have the following building times
on the largest dataset available (see also figure 4.7:

Sampling rate Construction time (processor ticks)
100% (normal TGS) 591620

50% 443523
25% 520720
10% 527641

We see that dropping 1 out of 2 possible splits beforehand is faster than considering all splits,
as would be expected. The gain however, is not 50%; it is closer to 25%. More interestingly,
lower sampling rates actually increase the needed construction time with respect to the 50%
sampling rate. In figure 4.7, we even see that for the Random HilbertTGS bulk-loading method,
the construction time of the original TGS method (100%) is actually the fastest one measured.

As a partial explanation for this, profiling the current experimentation software revealed that
the bulk of the construction time needed is used for actual node construction and sorting; not for
the actual recursion of the bulk-loading method. Cutting back on recursion steps would then not
affect the final construction time that much; the only nodes that the algorithm will construct are
nodes that will certainly be part of the resulting R-tree, and this number of nodes to be build is
always the same, under equal numbers of input elements.

With respect to query efficiency (figure 4.8) we see that the true TGS method is less efficient
than the random TGS method for each given sample rate. Apparently, randomisation has some
merits over greedily choosing the best split available. There does not seem to be a clear winner
among the different sampling rates, but going from the construction times, one could say that
random TGS with a 50% sampling rate is preferable over the classic TGS method.

Random HilbertTGS shows a very different picture; adding in randomisation does not seem
to change the eventual tree output. This may be due to a implementation technicality; since the
TGS algorithm always has to consider at least 1 split, the program always considers the first avail-
able split applies randomisation only on the splits to be considered afterwards. If the first split is
also the best one, then each ’random’ Hilbert TGS method results in the same tree, regardless of
the sampling rate.

Hence again going primarily from construction times, we have that the original HilbertTGS
method is preferable to the random HilbertTGS variation.

5.1.4. Construction times. In figure 4.11 we see that the graphs belonging to the bisection
method and the HilbertTGS method have about the same slope. This is conform theory; the con-
struction time of the bisection method is of order O(hn) = O(n log n), and that of the HilbertTGS
method is of order O(n log2 n). In log-log scale, this results in graphs with shapes similar to
ñ + log ñ and ñ + 2 log ñ (with t̃ = log t and ñ = log n); see the following derivations:

et̃ = eñ log eñ = neñ, and as such

t̃ = log neñ = log ñ + ñ,

et̃ = eñ log2 eñ = ñ2eñ, and as such

t̃ = 2 log ñ + ñ.
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Hence for large n, the graph will be dominated by ñ. Indeed, the graphs for the bisection
method and HilbertTGS show nearly linear graphs. The graph belonging to the RandomTGS
method looks more curved, however. For larger number of grid elements, the slope of that graph
still seems to converge to that of HilbertTGS and the bisection method. This can also be ex-
plained from theory; the construction time of RandomTGS is a few factors larger than that of the
HilbertTGS method due to the extra quicksort calls; for each tree level, the entire input set of n
elements is sorted |S| times. This amplifies the logarithmic behaviour at the start of the graph,
resulting in the curve seen in the figure.

Finally, notice from the tables that the time required for constructing an R-tree using Ran-
domTGS is about 350 times slower for the largest dataset, while the HilbertTGS method is 22
times slower; it will take very good query times and a lot of queries for RandomTGS to become
favoured above the HilbertTGS method.

5.1.5. Average number of touched nodes and average time per query. In the previous chap-
ter, we claimed that measuring the numbers of nodes touched during a query is similar to mea-
suring the wall-clock running time. The rationale is that when the query algorithm visits a node
it always takes about roughly the same time to decide in which of the children to recurse or to
decide which elements should be returned; the only variable not considered in this case is the
number of children per node, which may vary. The effect of ignoring this should be small when
M − m is small, or non-existent when the tree is packed, for example in case of bulk-loading
algorithms.

The only difference between time and node measurements would thus only arise from differ-
ence in either code-level optimisation, and differences of how the system architecture is exploited
(cache effects for example), possibly unintendedly. This is the primary reason why node-level
measurement was used; it enables us to measure the efficiency of spatial datastructures without
having to worry about implementation details too much.

Figures 4.9 and 4.10 show a comparison between the average number of nodes touched dur-
ing a single query and the average wall-clock running time of a single query. One can see the
graphs are of similar shape, and as such, the number of touched nodes indeed seems to be a
valid system and optimisation independent measurement of query efficiency.

In contrast of earlier implementations of the experimentation software, the current version
performs quite well in terms of optimisation, with respect to the bisection method. There are
still gains to be expected from implementing advanced memory management; optimising for
cache and forcing contiguous memory use, for example. Due to this current high enough level of
optimisation, most of the following experiments only display the wall-clock time graphs.

5.1.6. Query times. Figure 4.12 is pretty consistent about the relative query performance
of each datastructure; RandomTGS is fastest, followed by HilbertTGS and with the bisection
method as the slowest. This is untrue only for line queries on the smallest dataset; there, HilbertTGS
performs slightly better. The slopes of the graphs for the point and knn queries are noticeably
steeper for the bisection method than for the TGS methods. Both TGS methods seem to perform
similarly with respect to query time complexity, on all query types.

On line queries, the advantage of the R-trees over the bisection tree begins to fade; extrapo-
lating the few data points would indicate the bisection tree would actually achieve better query
times then HilbertTGS after datasets with 108 grid elements or more; this could however be
solved by using a higher order Hilbert curve, which increases the HilbertTGS performance, as
seen earlier. The asymptotic order of RandomTGS and the bisection tree still remain similar.

The same holds for box queries, although the performance of all three trees are nearly similar
now. Note however that these plots are still all in log-log scale, hence even these seemingly small
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difference between the graphs indicate a gain of a factor 2 to 4 for HilbertTGS and RandomTGS,
respectively.

Concluding from these experiments, we can see that for queries which return few close-
by elements, bulk-loaded R-trees can outperform the bisection method easily and consistently.
For queries returning a lot of grid elements the gain of these R-trees over the bisection method
diminishes but still does not perform worse than the bisection tree on any dataset used here.

The theory predicted a running time of fractional power (O(nt) with 0 ≤ t ≤ 1). In figure 5.1
we manually tried to fit the data to a function f (n) = nt · a. Below the results are summarised.
The p value corresponds to the probability the search algorithm would recurse in a given node;
see equation 3.29; the lower, the better the ”quality” of the tree with respect to the particular
query in question.

Figure 4.12 shows two anomalies. The first one regards the difference in query times for
each type of query from the second to the third dataset (8484 to 11352 non-void blocks). For
the bisection tree, we see a steep increase, while for the R-trees we see a decrease, except for
the knn query. There the increase in query time is however still much less than the increase
for the bisection tree. The difference between the two datasets is that the second one contains
void blocks, whereas the third one does not; this would indicate R-trees perform better on ”full”
datasets than the bisection tree.

The second anomaly regards point queries. There, we observe a decrease in query time for
RandomTGS when comparing the query times for the forth and the fifth dataset (486484 and
3106719 non-void blocks). It is unclear what causes this increase in efficiency; it seems too large
to simply put it on the random character of the RandomTGS bulk-loading method.

Datastructure Query type t a p
Bisection point 0.7 5 · 10−4 0.719

RandomTGS point 0.58 5.5 · 10−5 0.559
HilbertTGS point 0.6 3.7 · 10−6 0.574

Bisection line 0.8 3.5 · 10−4 0.803
RandomTGS line 0.8 6 · 10−5 0.758
HilbertTGS line 0.55 1.7 · 10−5 0.536

Bisection knn 0.93 6 · 10−5 0.926
RandomTGS knn 0.49 8 · 10−3 0.493
HilbertTGS knn 0.23 4 · 10−3 0.344

Bisection box 0.93 7 · 10−4 0.926
RandomTGS box 0.99 4 · 10−5 0.986
HilbertTGS box 0.93 5.5 · 10−5 0.908

5.1.7. Turnover points. Suppose we have an application in which we have to use spatial
data storage structures. Let q be the number of queries we have to perform, and for simplicity,
let us assume the queries to be done are of a single type. Then, the best data structure for the job
in terms of wall-clock execution time regarding data access, is the one for which the following is
smallest:

tdata access(q) = tconstruction time + q · taverage single query time(5.1)

Since we know the datastructure currently at use is the Bisection tree, we can use the above
formula to obtain a turnover point of an arbitrary other spatial datastructure S as follows. Let
tS
c denote the construction time of datastructure S and tS

q the average query time of that datas-
tructure. Let tB

c and tS
q be analogously defined for the bisection tree. Then, the turnover point is

calculated as follows:
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(b) Line query
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(c) knn query
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(d) Box query

FIGURE 5.1. Results of fitting query time experiment data to functions of frac-
tional power.

t =
tS
c − tB

c

tB
q − tS

q
.(5.2)

t denotes here at which number of queries q we have that tB
data access(q) = tS

data access(q), so
that for each q > t we have that tB

data access(q) > tS
data access(q) iff tB

q > tS
q .

Note that typically, for a small number of queries, the bisection tree is better than most R-
tree variants because of the low construction time of the bisection method. However, since for
the R-trees treated in this section we have that the average single query time is much lower, we
also have relatively low turnover points after which the R-tree is preferred above the bisection
tree. These turnover points can be calculated from the experiments in section 4.6 and 4.7. These
calculated turnover points are shown in the figures 5.2, 5.3, 5.4, 5.5.
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384 8484 11352 486484 3106719
2/4 RandomTGS bulk-loaded basic R-tree. Always worse 1178.01 2859.09 70644.7 264320
2/4 HilbertTGS bulk-loaded basic R-tree. Always worse 664.894 479.452 896.039 16326.6

FIGURE 5.2. Different combinations of datastructures and grid sizes and their
turnover points on random point queries, wrt the Bisection tree.

384 8484 11352 486484 3106719
2/4 RandomTGS bulk-loaded basic R-tree. Always worse 236.756 387.418 7454.23 10212.9
2/4 HilbertTGS bulk-loaded basic R-tree. Always worse 94.3693 85.649 94.1381 628.794

FIGURE 5.3. Different combinations of datastructures and grid sizes and their
turnover points on random knn queries, wrt the Bisection tree.

384 8484 11352 486484 3106719
2/4 RandomTGS bulk-loaded basic R-tree. Always worse 380.872 968.468 20504.7 61099.5
2/4 HilbertTGS bulk-loaded basic R-tree. Always worse 181.077 181.736 270.159 4394.8

FIGURE 5.4. Different combinations of datastructures and grid sizes and their
turnover points on random line queries, wrt the Bisection tree.

384 8484 11352 486484 3106719
2/4 RandomTGS bulk-loaded basic R-tree. Always worse 515.464 939.597 9220.38 16687.4
2/4 HilbertTGS bulk-loaded basic R-tree. Always worse 306.984 184.758 129.546 1455.77

FIGURE 5.5. Different combinations of datastructures and grid sizes and their
turnover points on random box queries, wrt the Bisection tree.

5.2. Memory usage

From figure 4.13 we see that the results are conform theory; the higher the amount of chil-
dren, the less high the resulting tree becomes, the less the number of internal nodes, and thus
ultimately, the less memory it consumes. Following equation 3.48, we thus have a memory usage
of order

O(MdlogM ne−1 − 1) = O(n).

In figure 5.13(b) we see a difference between RandomTGS bulk-loading and HilbertTGS; this
is because the latter needs extra memory resources during construction to calculate Hilbert co-
ordinates. The effects of this are less apparent as M becomes larger. Basic linear fitting has been
performed on figure 5.13(b); the results are as follows:

Fit to: f (x) = ax

Datastructure a
Bisection 278.69

4-RandomTGS 236.41
4-HilbertTGS 236.23

12-RandomTGS 182.9
12-HilbertTGS 183.03
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Here we see confirmed that the amount of memory used by both bulk-loading strategies is
similar when M is equal. We also see big gains in terms of memory efficiency when increasing M;
the savings from M = 4 to M = 12 is about the same as switching from bisection to RandomTGS
with M = 4.

As mentioned earlier, the current experimentation code does not exploit cache effects, nor
does any memory management whatsoever; memory is allocated for each new tree node con-
structed and thus, memory used by the application is non-contiguous. Also, explicitly creating
a new tree node is slower than allocating a bunch of tree nodes in a single run; this fact may be
exploited to further speed up construction times. In particular, implementing a better memory
management scheme would improve the RandomTGS bulk-loading method considerably (see
also Section 5.1.3).

5.3. Recommended R-Tree variant

Given the preceding analysis, we would conclude the HilbertTGS bulk-loading method seems
to be the method of choice for use with Shell datasets; the datastructure construction times
are good, as are the wall-clock query times. The latter are of course not better then those ob-
tained when using the RandomTGS bulk-loading method, however, the construction time for
that particular variant is a whole lot higher; using formula 5.2 for comparing the RandomTGS
and HilbertTGS methods for point queries on the largest dataset, we have that we need to do
more than approximately 14 · 106 queries. Expected is that this amount of queries is not realistic
for a typical Shell testrun.

While the third order Hilbert curve was used in the final experiments, it might be worthwhile
to use a higher order curve, higher than 5, since one can see a small increase in query times for
the largest dataset in the figure 4.12; if the extra building time is found to be worth the gain. Also,
while the maximum number of children per node set at M = 4 delivers the best performance,
one might opt to increase this amount to lower memory usage.

5.4. Future Work

Due to time limitations, many other ideas we have wanted to experiment with have not been
researched in detail. These ideas are the following.

5.4.1. Research other TGS cost functions. Standardly, the TGS bulk-loading method uses
the sum of the volumes of two MBRs as the cost function f1. Some initial experiments have been
performed by instead taking the volume of the intersection of the MBRs as cost function f2, but
this did not yield any improvements.

Different cost functions may be possible; for instance, a linear combination of f1 and f2 seems
interesting to research, e.g.:

f = α f1 + β f2(5.3)

with −1 ≤ α, β ≤ 1. A good combination α, β may possibly yield better results than when
only using f1 as const function.

5.4.2. Improved Random TGS. Instead of using an uniform3 distribution for deciding when
a binary split should be considered or not, other distributions may result in trees which achieve
higher query efficiency; for instance, one may intuitively think that splitting a set in two equal
parts is probably better than splitting off only the first few elements, giving rise to an uniform

3i.e., each split has the same chance of being selected
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distribution. Note however that which distribution is best will probably be dependent on the
spatial distribution of the data objects to be stored.

5.4.3. Faster and dimension-independent Hilbert coordinate transforms. The Hilbert trans-
formation algorithm outlined in this thesis and implemented in the experimentation software,
only works for d = 2 and d = 3; it is worthwhile to implement an algorithm which works for any
d ≥ 2. This would also open up the possibility to research other Hilbert orderings; the current
one transforms the centre coordinate of MBRs, but no experimentation has been done for any of
the other possibilities outlined in section 2.5.3, because of the limitation of d.

While on basis of [KF93] we expect that using the centre coordinate was the best option in
general, it may be true that one of the other options is a better choice for the type of grids we
store in our case.

5.4.4. Cache and main memory optimisation. It is most certainly worthwhile to implement
a better memory management scheme, as described in Section 5.2. In the case where the R-tree
is fully packed and we apply some bulk-loading scheme (such as TGS), we can calculate the
total number of required tree nodes beforehand. Hence it is possible to allocate one large array
containing exactly the number required nodes in one go, so that the bulk-loading algorithm no
longer actively has to allocate and construct new tree nodes. This will also increase the effect of
the sampling rates in the RandomTGS method, since constructing new nodes no longer will be a
bottleneck.

5.4.5. Differently shaped bounding boxes. We have consistently used the standard hyper-
rectangular bounding boxes, but a differently shaped bounding box might have been more effec-
tive. Shapes to be considered could be, for example, a sphere or a cylinder. However, since the
objects we wish to manage here are beam-like, we do not expect large gains, if any, by using a
different shape.

5.4.6. Priority R-tree. One R-tree variant we did not experiment with but would have liked
to, is the Priority R-tree introduced in [AdBHY04]. In its paper the claimed to outperform the
Hilbert R-tree in terms of query time, and still hold similar construction times. Interesting for us
would be to see how this variant would perform when measured against the HilbertTGS variant.

5.4.7. Tree-level dependent number of children. In our case, we did not use the R-tree for
storing information on a physical system such as a hard-drive, and also did not do any cache
optimisations; as such the number of children n, m ≤ n ≤ M per node was free for us to choose.
However, why would we hold m and M constant for each tree level? Depending on if the input
objects were clustered, it might be worthwhile to use more children per node higher up the tree
so to easily differentiate between those clusters, and fewer children per node when closer to the
leaf nodes to speed up searching. The use of multiple children higher up the node would at least
already result in less memory usage.

5.4.8. Hybrid methods. Another idea we had but could not investigate, were hybrid meth-
ods. These methods consist of using a datastructure for groups of objects; if S is the input set, we
first build sets S1, . . . , Sm each containing |S|/m elements and use a datastructure to store these
sets S1, . . . , Sm. Then, for each of those sets we use a different datastructure to store the actual
objects.

Hence we could, for example use a TGS-based method to store the higher order sets Si, and a
bisection-based datastructure for the actual objects. TGS construction time may be quite fast if m
is small enough, while the bisection method on |S| elements still also has the fastest construction
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time. The advantage is that query times may be improved a lot since TGS enables fast high-
level searching while the slower bisection method is used for querying on smaller subsets of size
|S|/m, which can thus still achieve acceptable query times.

Of course, different R-tree variations could be used as well, and more than two ”layers” of
datastructures can be introduced; this is expected to be very interesting to research.
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APPENDIX

A
ONE

Pseudocode

A.1. Search algorithms

Algorithm A.1.1 Point-Query Search Algorithm on R-trees

Finds a selection of candidate grid elements which may contain a given point x. The returned
selection contains all elements containing a given point x, but may also contain some elements
which do not. The algorithm is called on an initial tree node v, which usually initially the root
node.
Note that this algorithm is a specialisation of the Generic Search Algorithm (Algorithm 2.1) we
used to analyse up until now. PointSearch(v, x)

1: Let S be an initially empty set of grid elements.
2: if v is a leaf node then
3: for all grid element e stored at v do
4: if x ∈ MBR(e) then
5: Add e to S
6: end if
7: end for
8: else
9: for all children vi of v do

10: if x ∈ MBR(vi) then
11: S = S ∪ PointSearch(vi, x)
12: end if
13: end for
14: end if
15: return S

97



98 A. PSEUDOCODE

Algorithm A.1.2 Box-Containment Query Algorithm on R-trees

Finds a selection of candidate grid elements which may be contained in a given bounding box
(or rectangle) BB. The algorithm is called on an initial tree node v, which usually initially the
root node.

BoxSearch(v, BB)

1: Let S be an initially empty set of grid elements.
2: if v is a leaf node then
3: for all grid element e stored at v do
4: if BB ∩MBR(e) 6= ∅ then
5: Add e to S
6: end if
7: end for
8: else
9: for all children vi of v do

10: if BB ∩MBR(vi) then
11: S = S ∩ BoxSearch(vi, BB)
12: end if
13: end for
14: end if
15: return S

Algorithm A.1.3 Line-Query Search Algorithm on R-trees

Finds a selection of candidate grid elements which may intersect with a given line l. l is defined
by its starting point s and its ending point e, both inR3. The algorithm is called on an initial tree
node v, which usually initially the root node.

LineSearch(v, s, e):

1: Let S be an initially empty set of grid elements.
2: if v is a leaf node then
3: for all grid element oi stored at v do
4: if LineIntersect(s, e, MBR(oi)) (See Algorithm A.1.4) then
5: Add oi to S
6: end if
7: end for
8: else
9: for all children vi of v do

10: if LineIntersect(s, e, MBR(vi)) then
11: S = S ∪ LineSearch(vi, s, e)
12: end if
13: end for
14: end if
15: return S
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Algorithm A.1.4 Subalgorithm used for the Line-Query search on R-trees

The following sub-algorithm checks if a line l given by two points s and e intersects with a given
bounding box BB.

LineIntersect(s, e, BB):

1: if s ∈ BB or e ∈ BB then
2: return true
3: end if
4: for i = 1 to d do
5: Let bi be the lower ith dimensional bound of BB
6: Let Bi be the upper ith dimensional bound of BB
7: if [si, ei] ∩ [bi, Bi] == ∅ then
8: return false
9: end if

10: end for
11: return InfiniteLineIntersect(s, e, BB) (See Algorithm A.1.5)

Algorithm A.1.5 Subalgorithm used for the Line-Query search on R-trees

This sub-algorithm utilises Theorem 2.17 to complete intersection detection.

InfitineLineIntersect(s, e, BB):

1: Set d = s − e
2: for i = 1 to d do
3: if di 6= 0 then
4: Let bi be the lower ith dimensional bound of BB
5: Let Bi be the upper ith dimensional bound of BB
6: Let y1 = s + bi−si

di
d

7: Let y2 = s + Bi−si
di

d
8: if y1 ∈ BB then
9: return true

10: end if
11: if y2 ∈ BB then
12: return true
13: end if
14: else
15: if si /∈ [bi, Bi] then
16: return false
17: end if
18: end if
19: end for
20: return false
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Algorithm A.1.6 Hyperplane-Query Search Algorithm on R-trees

Finds a selection of candidate grid elements which may intersect with a given hyperplane. The
algorithm is called on an initial tree node v, usually initially the root node.

HyperplaneSearch(v, n, b):

1: Let S be an initially empty set of grid elements.
2: if v is a leaf node then
3: for all grid elements e stored at v do
4: if IntersectHyperPlane(n, b, MBR(e)) then
5: Add e to S
6: end if
7: end for
8: else
9: for all children vi of v do

10: if IntersectHyperPlane(n, b, MBR(vi)) then
11: S = S ∪HyperplaneSearch(vi, x)
12: end if
13: end for
14: end if
15: return S

Algorithm A.1.7 Subalgorithm for Hyperplane-MBR intersection detection

This algorithm checks for a hyperplane H as in equation 2.11 if it intersects with a given MBR.

IntersectHyperPlane(n, b, MBR)

1: for each edge ej of the MBR (See equation 2.12) do {Note that there exist multiple edges ej
for any j when d ≥ 2}

2: x = b−n·v
nj

+ vj

3: if x ∈ [bj, Bj] then
4: return true
5: end if
6: end for
7: return false

Algorithm A.1.8 Algorithm for k-nearest-neighbourhood query

Performs a k-nearest neighbourhood query on the R-tree with root r. It will return the k objects
with their MBRs closest to a point p ∈ Rd, with d the dimensionality of the (objects stored in the)
spatial tree. This algorithm invokes the subalgorithms A.1.9 and A.1.10, and indirectly also
Algorithm A.1.11.

knnSearch(r, p, k):

1: Let BB = Πd
i=1[pi, pi].

2: Let v = ChooseLeaf(r, BB).
3: Let S = ∅
4: (S, v) = knnFill(S, v, k)
5: S = knnExtend(S, v, k)
6: return S
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Algorithm A.1.9 Subalgorithm for the knn query.

Performs the first phase of the knn-search; i.e., it fills up the set S using heuristics until it has k
elements.

knnFill(S, v, p, k):

1: Set T = {MBR(w)|w ∈ vO}.
2: if |T| − |S| ≥ k then
3: Calculate the distance between each element in T and p using Algorithm A.1.11, and sort

T in ascending order using these distances.
4: Set t = k − |S|.
5: Drop the last |T| − t entries of T
6: end if
7: Set S = S ∪ T
8: if |S| < k then
9: Find sibling leaf nodes vi with their MBR closest to p and add objects from those nodes to

S until |S| = k.
10: Let v denote the last sibling node vi, where the last element in |S| was added from.
11: end if
12: return (S, v)
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Algorithm A.1.10 Subalgorithm for the knn query.

Performs the second phase of the knn-search; i.e., it updates S until S surely consists of the
closest objects (with respect to p).

knnExtend(S, v, p, k):

1: Let m be the maximum of the distance of each object in S compared to p (using
Algorithm A.1.11).

2: if v is an internal node then
3: Let W be the set of unvisited child nodes in vC.
4: Sort W according to the distance of their MBR to p.
5: Exclude from W all nodes with their MBR distance to p larger than m.
6: while |S| < k do
7: Let w be the first element of W and let W = W\w.
8: S = knnExtend(S, w, p, k).
9: end while

10: else
11: Let W be the set of objects in vO.
12: Sort W according to the distance of their MBR to p.
13: Exclude from W all nodes with their MBR distance to p larger than m.
14: while |S| < k do
15: Let w be the first element of W and let W = W\w.
16: S = S ∪ {w}.
17: end while
18: end if
19: if |S| < k then
20: Let r be the parent of v.
21: S = knnExtend(S, r, p, k).
22: end if
23: return S



A.1. SEARCH ALGORITHMS 103

Algorithm A.1.11 Subalgorithm for the knn query.

Finds the distance between a point p and a bounding box BB in d dimensions. Note that in
implementation we can skip calculating the root, if we are interested only in relative distances
(i.e., which is further away than...).

knnDist(p, BB):

1: Let l = 0
2: Let b+ denote the supremum coordinate vector of BB
3: Let b− denote the infimum coordinate vector of BB
4: for i = 1 to d do
5: if pi < b−i then
6: l = l + (b− − pi)2

7: else
8: if pi > b+

i then
9: l = l + (pi − b+

i )2

10: end if
11: end if
12: end for
13: return

√
l
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A.2. Bisection tree construction

Algorithm A.2.1 The Bisection Algorithm.

This algorithm will build a spatial tree using the bisection principle. It will add n elements
o1, o2, . . . , on ∈ Rd to the tree. The tree will have a predefined height of h ≥ 1. The oi are
assumed to be contained within some W ⊂ Rd. Let O denote the set {o1, o2, . . . , on}.

BISECT(O, W, h):

1: Let W be bisected into Wl and Wr by a hyperplane p = {x ∈ W|a · x = b}, for some a ∈ Rd

and b ∈ R.
2: Let Wm = {x ∈ W|a · x = b}.
3: Let Wl = {x ∈ W|a · x < b}.
4: Let Wr = {x ∈ W|a · x > b}.
5: Let Om = {o ∈ O|o ∈ Wm}, and O = O −Om.
6: Let Ol = {o ∈ O|o ∈ Wl}, and O = O −Ol .
7: Let Or = {o ∈ O|o ∈ Wr} = O.
8: Let r be a new spatial tree node, with:

fr(x) =

{
1, if x ∈ W

0, otherwise.

9: if (h==1) then
10: Let nl be a new child node of r with

fnl (x) =

{
1, if x ∈ Wl

0, otherwise

11: Similarly construct child nodes nm and nr using Wm and Wr.
12: Let nl store the elements in Ol , nm elements from Om and nr elements from Or.
13: else
14: Let nl be a new child node of r containing the subtree BISECT(Ol , Wl , h − 1).
15: Let nm be a new child node of r containing the subtree BISECT(Om, Wm, h − 1).
16: Let nr be a new child node of r containing the subtree BISECT(Or, Wr, h − 1).
17: end if
18: return The spatial tree defined by the root r.
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A.3. Basic R-tree construction and manipulation

Algorithm A.3.1 R-tree Insertion Algorithm

This algorithm inserts a spatial object o into the R-tree.

Insert(r, o):

1: Let BB = MBR(o)
2: v = ChooseLeaf(r, BB) (See Algorithm A.3.2)
3: if v has room to store o then
4: Store o at v
5: else
6: Split v into v1, v2 and distribute all children together with o over v1 and v2
7: end if
8: Update the MBR of v (or v1 and v2 when a split occurred), and also update the MBRs of their

ancestors.

Algorithm A.3.2 Leaf-Selecting Subalgorithm for the Object Insertion Algorithm

This algorithm selects a leaf node at which an object with MBR BB should be stored at. The
location is determined by selecting descendants of r by criterion of least enlargement when o
would be added at one of its descendant leaf nodes.

ChooseLeaf(r, BB):

1: if r is leaf then
2: return r
3: end if
4: Let m = ∞
5: for all children vi of r do
6: Let c = Area(MBR(vi) ∪ BB)−Area(MBR(vi))
7: if c < m then
8: m = c
9: j = i

10: end if
11: end for
12: return ChooseLeaf(vj, BB)
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Algorithm A.3.3 Basic R-tree Deletion Algorithm

This algorithm deletes an object o, stored at the tree with root r.

Delete(r, o):

1: Find the leaf v which contains o
2: Remove o from v
3: Let S be an empty set
4: X = v
5: while X 6= r do
6: if X has less than m children then
7: Add all children of X to S
8: Remove X from its parent p
9: X = p

10: end if
11: end while
12: Re-insert all entries in S to the R-tree defined by r
13: if X has only one child c then {At this point, X is the root}
14: Let X = c
15: end if
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Algorithm A.3.4 Linear Split Algorithm

This algorithm adds an object o to a full leaf node v by splitting it in two, in linear time.

LinearSplit(v, o):

Let o0 = o and oi be the ith object stored at v.
for i = 1 to d do {Loop over all dimensions}

Let M be a d by 3 matrix
Let M[i][1] equal the lower bound coordinate of o on the ith dimension
Let M[i][2] equal the lower bound coordinate of o on the ith dimension
Let M[i][3] = M[i][4] = 0
for all objects oj stored at v do

Let t equal the lower bound coordinate of oj on the ith dimension
if t < M[i][1] then

M[i][1] = t
M[i][3] = j

else
if t > M[i][2] then

M[i][2] = t
M[i][4] = j

end if
end if

end for
M[i][1] = M[i][2]− M[i][1]

end for
k = arg max 1≤i≤d M[i][1]
Add oM[k][3] to a set S1 and oM[k][4] to a set S2
while there are still objects oi not added to S1 or S2 do

Select randomly a not-added object ok
Let t1 equal the MBR enlargement of S1 if it would also contain ok
Let t2 equal the MBR enlargement of S2 if it would also contain ok
if t1 < t2 then

Add ok to S1
else

Add ok to S2
end if

end while
Create leaf nodes v1 and v2 from the sets S1 and S2
return (v1, v2)
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Algorithm A.3.5 Quadratic Split Algorithm

This algorithm adds an object o to a full leaf node v by splitting it in two, in quadratic time.

QuadraticSplit(v, o):

Let o0 = o and oi be the ith object stored at v, with 1 ≤ i ≤ M
Select j and k such that the dead space of MBR({oj, ok}) is maximum
Add oj to a set S1 and ok to a set S2
while there are still objects oi not added to S1 or S2 do

Let p = −∞
for all objects oi not yet added do

Let a be the dead space of MBR(S1 ∪ {oi})
Let b be the dead space of MBR(S2 ∪ {oi})
if ‖a − b‖ > p then

p = ‖a − b‖
j = i

end if
Add oj to the set S1 or S2, depending on which set requires the least MBR enlargement

end for
end while
Create leaf nodes v1 and v2 from the sets S1 and S2
return (v1, v2)

Algorithm A.3.6 Exponential Split Algorithm

This algorithm adds an object o to a full leaf node v by splitting it in two, in exponential time.

ExponentialSplit(v, o):

Let o0 = o and oi be the ith object stored at v, with 1 ≤ i ≤ M
for all Possible combinations of splits S1, S2, where S1 ∪ S2 = {o0, o1, . . . , oM} do

Calculate and remember the combination with the least dead space
end for
Create leaf nodes v1 and v2 from the remembered sets S1 and S2.
return (v1, v2)
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A.4. TGS bulk-loading tree construction

Algorithm A.4.1 The TGS Bulk Loading Algorithm

The TGS algorithm takes as input a series of n spatial objects stored in the set O, a cost function
fc (as described above) and the maximum number of objects M per node. Also, since the
algorithm is recursive, we want to keep track of the desired tree height h, which is thus also
supplied. A set of imposed orderings S should also be available.
The algorithm returns a valid R-tree root, and uses subalgorithms A.4.2, A.4.3, and A.4.4. The
main difference with the algorithm presented in [AS07], is that the input set is not pre-ordered
before entering recursion; this would require an O(n) amount of extra storage for each ordering
in S after the first. For large datasets, this is simply too much.

TGSBulkLoad(O, fc, M, S):

1: Let n be the number of objects in O
2: Set

h = max(0, d log n
log M

e − 1)

3: return TGSBulkLoadChunk(O, fc, M, S, h)

Algorithm A.4.2 Subalgorithm for use with TGS bulkloading

This algorithm builds an R-tree with tree depth h. n is the number of input elements, and M the
maximum number of children or elements per node. S is a set of imposed orderings on MBRs
and fc is a cost function taking as input two MBRs.

TGSBulkLoadChunk(O, fc, M, S, h):

1: if h==0 then
2: Determine the MBR m of all objects in O
3: return An internal node containing all objects in O with m as its MBR
4: else
5: Set m = Mh

6: Set P = TGSPartition(O, fc, m, S) {O is now divided into M subsets {p1, p2, . . . , pk} = P,
k ≤ M}

7: Let N be an empty set of nodes
8: for all p ∈ P do
9: N = N ∪ {TGSBulkLoadChunk(p, fc, M, S, h − 1)}

10: end for
11: Determine the MBR m of all nodes in N
12: return An internal node containing the nodes in N as children, and m as its MBR
13: end if
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Algorithm A.4.3 Subalgorithm for use with TGS bulkloading

This method partitions an input set O into k ≤ M subsets using the cost function fc and the
orderings contained in S. Note the difference between M and m; M is the number of maximum
children per node which is not explicitly passed to this function. Instead, the maximum number
of elements which may be stored in the subtree of one of those M children is given; this is m.

TGSPartition(O, fc, m, S):

1: Let n be the number of objects in O
2: if n ≤ m then
3: return O
4: else
5: (L, H) = TGSBestBinarySplit(O, fc, m, S)
6: end if
7: return TGSPartition(L, m) ∪ TGSPartition(H, m)

Algorithm A.4.4 Subalgorithm for use with TGS bulkloading

This method splits an input set O into two sets. This is done by cutting O in partitions of size m
after first having sorted O for an ordering in S. By comparing the cost function applied to each
pair of partition and selecting the pair resulting in the lowest value, we obtain a best binary
split. The best binary split resulting from all different orderings in S is then returned in the
variables L and H.

TGSBestBinarySplit(O, fc, m, S):

1: Let n be the number of elements in O
2: Set p = dn/me − 1
3: c = ∞
4: Let L and H be empty sets
5: for all Ordering s ∈ S do
6: Sort O according to s
7: for i = 1 to p do
8: Compute the bounding box b1 of the MBR containing o1, o2, . . . , omi
9: Compute the bounding box b2 of the MBR containing om(i+1), om(i+2), . . . , on

10: Set t = fc(b1, b2)
11: if t < c then
12: Set c = t
13: Set L = {o1, o2, . . . , omi}
14: Set H = {om(i+1), om(i+2), . . . , on}
15: end if
16: end for
17: end for
18: return (L, H)
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A.5. HilbertTGS bulk-loading

Algorithm A.5.1 The HilbertTGS Bulk Loading Algorithm

Adaptation of Algorithm A.4.1 for efficient use with Hilbert coordinate orderings. This leads to
the HilbertTGS bulk-loading method.
The algorithm returns a valid R-tree root, and uses subalgorithms A.4.2, A.4.3, and A.5.2; the
latter one used instead of Algorithm A.4.4 for the normal TGS method. Note that the S
parameter in Algorithms A.4.2 and A.4.3 are unused in the case of bulk-loading with
HilbertTGS.

HilbertTGSBulkLoad(O, fc, M):

1: Let n be the number of objects in O
2: Set

h = max(0, d log n
log M

e − 1)

3: Sort O according to the Hilbert coordinate of the centre coordinate of each bounding box
o ∈ O.

4: return TGSBulkLoadChunk(O, fc, M, ∅, h)

Algorithm A.5.2 Subalgorithm for use with HilbertTGS bulkloading.

This method adapts Algorithm A.4.4 for use with only the Hilbert ordering. This lessens this
methods running time by several linearithmic orders.

HilbertBestBinarySplit(O, fc, m, ∅):

1: Let n be the number of elements in O
2: Set p = dn/me − 1
3: c = ∞
4: Let L and H be empty sets
5: for i = 1 to p do
6: Compute the bounding box b1 of the MBR containing o1, o2, . . . , omi
7: Compute the bounding box b2 of the MBR containing om(i+1), om(i+2), . . . , on

8: Set t = fc(b1, b2)
9: if t < c then

10: Set c = t
11: Set L = {o1, o2, . . . , omi}
12: Set H = {om(i+1), om(i+2), . . . , on}
13: end if
14: end for
15: return (L, H)
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A.6. Hilbert coordinate calculation

Algorithm A.6.1 Algorithm for transforming a coordinate inRd to [0, 1].

This algorithm transforms some point p ∈ Rd to a real number in [0, 1], by calculating its Hilbert
distance. p is assumed to be contained in the unit cube [0, 1]3. The approximating Hilbert curve
is given to be of order L ∈ N([1, ∞]).
This algorithm employs the subalgorithms A.6.2, A.6.3, and A.6.4.

toHilbert3D(p):

1: Let M be a 3 by 8 matrix containing all 8 vertex coordinates (i.e., (0, 0, 0), (0, 0, 1), (0, 1, 1),
etc.) of the unit cube on each column

2: Let C be an empty set
3: Determine for which jth column of M (Mj) the coordinate Mj is closest to p using

Algorithm A.6.2
4: Set C = C ∪ {j}
5: for i = 0 to L do
6: M = RefineCoors3D(M, j)
7: Determine for which jth column of M (Mj) the coordinate Mj is closest to p using

Algorithm A.6.2
8: Set C = C ∪ {j}
9: end for

10: return fromBase8To10(C)

Algorithm A.6.2 Subalgorithm for use with the toHilbert3D algorithm.

Algorithm used to calculate the distance for use in Hilbert coordinate transformation. The
function simply returns the square of the euclidean norm to save calculation time. Let x, y ∈ Rd.

Distance(x, y) :

1: Set r = 0
2: for i = 1 to d do
3: Set r = r + (xi − yi)2

4: end for
5: return r



A.6. HILBERT COORDINATE CALCULATION 113

Algorithm A.6.3 Subalgorithm for use with the toHilbert3D algorithm.

Refines the coordinates in M to reflect the jth subcell of M; see equation 2.18 for a single cell
transformation in 2D. See [BG01, 7-8] for the full tables.

RefineCoors3D(M, i) :

1: Let Mi denote the coordinate inRd at the ith column of M.
2: Let A be a 3 times 8 matrix.
3: for i = 1 to d do
4: Extract the two coordinates Mi, Mj of the original M for which we have to take the middle

value according to the table.

5: Set Ai =
Mi+Mj

2
6: end for
7: return A

Algorithm A.6.4 Subalgorithm for use with the toHilbert3D algorithm.

This algorithm assumes the input set C contains base-8 digits representing the following base-8
number:

0.C1C2C3 . . . Cn,(A.1)

where n is the set C size.
This algorithm converts the number in equation A.1 to its decimal (base-10) counterpart.

fromBase8To10(C) :

1: Set d = 1.
2: Set r = 0.
3: for i = 0 to n do
4: Set d = 8 · d
5: Set r = r + Ci

d
6: end for
7: return r
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A.7. Hilbert R-tree modification algorithms

Algorithm A.7.1 Inserts a given object into a Hilbert R-tree.

This algorithm inserts the object o into an Hilbert R-tree with r as its root. This function uses
Algorithm A.7.1, A.7.4 and A.7.3.

HilbertInsert(r, o) :

1: Let h be the Hilbert coordinate of the centre coordinate of MBR(o)
2: Let v = HilbertChooseLeaf(r, h)
3: Insert o at v
4: if v is overflowed then
5: HilbertHandleOverflow(v)
6: end if
7: HilbertUpdate(v)

Algorithm A.7.2 Selects a leaf node to store an object in with a given Hilbert key value.

This function selects a leaf node descending from v which has the lowest LHV-value higher
than h.

HilbertChooseLeaf(v, h) :

1: if v is leaf then
2: return v
3: end if
4: Let c = 1 and t be an initially empty variable containing a tree node
5: for all Children w ∈ vC do
6: if LHVw ≤ c then
7: t = w
8: c = LHVw
9: end if

10: end for
11: return HilbertChooseLeaf(t, h)
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Algorithm A.7.3 Updates an R-tree, starting at a modified Hilbert R-tree node.

Updates a given node v with respect to the MBR and LHV values. Is recursively called on the
parent to update all ancestors as well.
This algorithm uses the Hilbert-transformation algorithm as in A.6.1, assuming the tree
dimensionality is three. Storing objects of other dimensions require a specialised Hilbert
transformation algorithm.

HilbertUpdate(v) :

1: if v is leaf then
2: Set MBR(v) = ∪o∈vO MBR(o)
3: Set LHVv = maxo∈vO toHilbert3D(getCenterCoordinate(MBR(o)))
4: else
5: Set MBR(v) = ∪w∈vC MBR(w)
6: Set LHVv = maxw∈vC LHVw
7: end if
8: if v is not root then
9: HilbertUpdate(vparent)

10: end if

Algorithm A.7.4 Hilbert R-tree overflow handling algorithm.

This method handles overflows occurring at an given Hilbert R-tree node v. Note that we count
the elements in a set S from 1 to n, where n is the set size. The ith element of S, i ∈ [1, n] then is
denoted Si.

HilbertOverflow(v) :

1: if v is root then
2: Construct a new Hilbert R-tree node n with its MBR and LHV-value equal to those of v
3: Let v become a child of n, and thus n become the parent node of v
4: end if
5: Let p = vparent

6: Construct a set S̃ containing at most s nodes from pC with their LHV-values as close to
LHVv as possible

7: Move all entries of the nodes in S̃ into a set C (emptying the nodes in S̃
8: Sort the elements in C according to their Hilbert values
9: if All nodes in S̃ are overflowing then

10: Construct a new Hilbert R-tree node w with p as its parent, and also add this node to pC
11: Set S̃ = S̃ ∪ {w}
12: end if
13: Let q = |C|

|S̃|
14: for i = 1 to |S̃| − 1 do
15: Add the elements Ci·q+1, Ci·q+2, . . . , C(i+1)·q to S̃i

16: Update the MBR and the LHV-value of S̃i accordingly.
17: end for
18: Add the elements C(|S̃|−1)·q+1, . . . , C|C| to S̃|S̃||
19: Update the MBR and the LHV-value of S̃|S̃|| accordingly.
20: if p is overflowed then
21: HilbertOverflow(p)
22: end if
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Algorithm A.7.5 Object deletion algorithm for use with Hilbert R-trees.

Object deletion algorithm for Hilbert R-trees. The to-be deleted object o is assumed to be in the
tree structure with root node r. This algorithm uses the algorithms A.7.6 and A.7.3.

HilbertDelete(r, o) :

1: Perform a standard R-tree search for MBR(o) on r to find the leaf node v containing o
2: Remove o from v
3: if v contains less than the minimum amount of elements allowed then
4: HilbertUnderflow(v)
5: end if
6: HilbertUpdate(v)

Algorithm A.7.6 Hilbert R-tree underflow handling algorithm.

Resolves an underflow occurred at a given node v. This algorithm performs a merge between s
nodes according to the Hilbert values of the elements stored at those nodes. Note that this
algorithm is largely similar to the overflow algorithm A.7.4.

HilbertUnderflow(v) :

1: Let p = vparent

2: Construct a set S̃ containing at most s nodes from pC with their LHV-values as close to
LHVv as possible

3: Move all entries of the nodes in S̃ into a set C (emptying the nodes in S̃
4: Sort the elements in C according to their Hilbert values
5: if All nodes in S̃ are underflowing then
6: Delete an arbitrary node from S̃
7: end if
8: Let q = |C|

|S̃|
9: for i = 1 to |S̃| − 1 do

10: Add the elements Ci·q+1, Ci·q+2, . . . , C(i+1)·q to S̃i

11: Update the MBR and the LHV-value of S̃i accordingly.
12: end for
13: Add the elements C(|S̃|−1)·q+1, . . . , C|C| to S̃|S̃||
14: Update the MBR and the LHV-value of S̃|S̃|| accordingly.
15: if p is underflowed then
16: HilbertUnderflow(p)
17: end if



APPENDIX

B
TWO

Software Architecture

In this chapter we will briefly discuss the rationale of the C++ software written for obtaining
the experimental results. Since providing a faster alternative than the bisection method in essence
was the main goal of this thesis, the software written had to be of good quality. Also, since Alten
has interest in continuing development and finding more applications for R-trees, the software
furthermore had to be as generic as possible and good documentation was necessary as well.

To achieve this, initially a framework was set up which supported ’plug-and-play’-like sup-
port for R-tree variations as well as support for the original Shell bisection code. Also, a parser
was developed that was able to read the so-called .inc-files which essentially describes a reser-
voir discretisation. From this point on the framework evolved into a true generic library with
easy-to-use interfaces and excellent encapsulation.

What follows now is first a display of the object-oriented structure, followed by a description
of the interfaces a developer will need to use when employing this R-tree library for his or her
own application. This is then followed by more advanced options for using alternatively shaped
bounding boxes or metrics.

B.1. Object-Oriented Structure

Figure B.1 shows a very basic Unified Modelling Language (UML) diagram denoting the
overall structure of the library. Each box denotes a separate object, or rather, a class. The basic
arrows denote generalisations; the arrow pointing from Spatial Tree to Tree denotes that the Tree
class is a generalisation of the Spatial Tree class, or in more technical terms, the Spatial Tree class
extends the Tree class. The dotted arrows denote which class is dependent on which other class;
for example, the R-tree class cannot work without a Bounding Box.

Class names which are printed italic denote which classes are abstract. Abstract classes rep-
resent objects which are not completely specified; for example, the Ordering class which main
purpose is to define some (semi-)ordering on other objects. However, it is impossible to supply
a generic ordering which works for any object; we cannot specify such an order and as such the
Ordering class is abstract. On the other hand, it is undeniable that ordering arbitrary objects is
a general case of, for example, ordering cubic bounding boxes by their Hilbert coordinates. In
implementation, this abstraction can be useful when we want to implement multiple different
orderings; we can for example design a sorting algorithm which works with any subclass of the
Orderings class.
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Tree

Bounding_Box

Cubic_Bounding_Box

Hilbert_Coordinate_Mapper

R-TreeHilbert_R-Tree

Bisection_Tree

Metric

PointPolytope

Cartesian

Parser

Spatial Tree

Basic R-tree

Bounding_Box_Container

Cubic_Bounding_Box_Container

BinaryParser .inc-file (Shell input)binary file (generic input)

Convertor

TGS Bulk-loaded R-Tree

HilbertTGS

TGSintersect

Bulk-Loaded R-Tree

FPB Bulk-loaded R-Tree

Ordering
Dimension Ordering

Hilbert R-Tree node ordering

Hilbert Ordering

FIGURE B.1. Class diagram of the R-tree library. Italic classnames denote ab-
stract classes.

For more information about Object Oriented programming in C++ we refer to [Eck00a] and
[Eck00b]. For more information on UML, see for example [DWT01]. Also a good read is [RM03],
which among others contains extensive examples using templates.

B.2. Interfaces

Interfaces are the most important aspect of classes for a developer who want to use the class.
An interface basically consists of those functions of a class which are publicly visible. We will
proceed with all relevant library classes and will describe the public functions relevant for typical
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spatial storage use. For a more detailed description of all public functions of these classes, we
refer to the doxygen documentation. Note that this section is meant for those who want to use an
R-tree (as implemented in our experimentation software) in their own software, and thus is quite
technical. Availability of the software code and doxygen documentation is assumed.

B.2.1. Trees. This is the base class of all trees in the current library. It defines the basic meth-
ods one would expect from a general Tree datastructure.

isRoot(). Returns a Boolean indicating if the current tree instance is the root node.
getRoot(). Returns a node of the same type as the current node, which is the root node of the

tree the current node is in.
isEmpty(). Returns a Boolean indicating if the current tree is empty; i.e. contains only the

root which does not store anything.
insert( newElement ). Inserts an element into the tree. Note that the type of element is set

fixed upon the tree declaration, using the templated variable stored type. However, also note
that this template variable is hidden from the user using R-trees; there, the stored type is a Cu-
bic Bounding Box Container.

insertElements( begin, end ). Inserts all elements from the iterator at begin, until (not including)
the iterator end.

B.2.2. Spatial Trees. This is the base class of all trees allowing storage and querying of spa-
tial data.

checkReady(). Returns a Boolean indicating if the current spatial tree instance is ready for
querying.

ensureReady(). Function which makes sure the current spatial tree is ready for querying. This
method should always be called before the first query is executed. Once a tree is ready for query-
ing it remains ready, even if the tree structure is modified (e.g., insertion, deletion); hence this
function does not have to be called more than once.

neighboursOf( point, k ). Searches the k closest stored object to a point in Rd, where d is the
spatial tree dimension. Returns a vector containing the indexes (unsigned ints) of the stored ob-
jects satisfying this query, as all query functions below do.

containedIn ( box ). Searches which objects are contained in a given box (of type
Cubic Bounding Box). Returns a vector of indexes.

intersects ( point ). Searches which objects intersect with a given point (of type Point). Returns
a vector of indexes.

intersects ( begin, end ). Searches which objects intersect with a line segment starting at point
begin and ending at end. Begin and end are of type vector¡double¿. Returns a vector of indexes.

B.2.3. R-trees. The R-trees themselves inherit the interfaces from the Spatial Tree and the
more general Tree classes. New functions introduced at this level are tree saving and loading.
Note that these functions are not very advanced; files are written and read as simple text files
and information on the R-tree variation used is not stored in the file; the user should make sure
the files being read in to a given R-tree are written by an R-tree of similar variation. If not, errors
may occur.

writeTreeToFile( filename ). Writes the current tree to a text file.
readTreeFromFile( filename ). Loads a tree from a given text file.

B.2.4. Bulk-loading. Bulk-loading an R-tree results in a so-called static R-tree. However,
we have implemented bulk-loading methods in such a way that a given dynamic R-tree is bulk-
loaded; after bulk-loading, the R-tree behaves as a dynamic R-tree and insertion and removal
operations thus are still supported. Hence when one wants to use bulk-loaded R-trees, a template
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parameter must be given denoting the type of dynamic R-tree which should be bulk-loaded. For
example, one can construct a TGS bulk-loaded Hilbert R-tree as follows:
//declare

TGS_tree< Hilbert_R_tree > my_tree;

//get begin and end iterators from some source

source::iterator begin = source.begin();

source::iterator end = source.end();

//insert elements

my_tree.insertElements( begin, end );

//we’re done inserting and want to do querying

my_tree.ensureReady();

//do our queries

my_tree.intersects(....

B.3. Alternative bounding box shapes and metrics

As mentioned earlier, the bounding boxes used are the Cubic Bounding Box (internally and
for box queries) and the therefrom derived Cubic Bounding Box Container, used for storing the
objects in the leaf nodes. As the name indicates, these boxes are cubically shaped. Of course, a
different shape could also be used, for example, a spherical bounding box; to achieve this, one
can simply interchange the aforementioned bounding box classes with other classes; for example
Spherical Bounding Box and Spherical Bounding Box Container. The interface these classes should
implement is the interface of the abstract class Bounding Box; see the doxygen documentation.

Successful implementation of a bounding box class also involves implementing a default
ordering; see the class Ordering for an interface descriptions, and the file orderings.h for ex-
ample orderings. Note that typically, implementing an ordering consists of only overloading the
getVal() function.

Operations such as calculating the distance between two points, subtraction and additions of
two vectors, and other functions, a specialised metric class has been implemented. The standard
Euclidean metric has been implemented in the class Cart. Other metrics (polar, spherical, etc.)
can easily be implemented as well by extending the abstract Metric class. This modularity can be
useful if we want to store data on roads on a global level, for which a coordinate system different
than the Euclidean system may be preferable.



APPENDIX

C
THREE

Detailed experiment results

C.1. Number-of-children experiment

C.1.1. Settings. The following parameters have been kept constant during this experiment.

Constant parameter Value
Number of queries 1000
Hilbert curve order 4

Compiler GNU
Optimisation level debug

Machine Rivium

C.1.2. Tables.

384 8484 11352 486484 3106719
Bisection tree. 0 1 2 153 1080

2/4 non-bulk-loaded basic R-tree. 0 19 28 1326 9266
2/6 non-bulk-loaded basic R-tree. 0 20 24 1291 9214
4/6 non-bulk-loaded basic R-tree. 1 18 22 1130 7793

2/12 non-bulk-loaded basic R-tree. 1 22 32 1507 10329
4/12 non-bulk-loaded basic R-tree. 0 23 30 1600 10764
8/12 non-bulk-loaded basic R-tree. 1 19 24 1217 8366
12/12 non-bulk-loaded basic R-tree. 0 10 19 645 32763
2/24 non-bulk-loaded basic R-tree. 1 34 47 2128 14976
4/24 non-bulk-loaded basic R-tree. 1 34 44 2179 15597
8/24 non-bulk-loaded basic R-tree. 1 36 49 2229 15708
12/24 non-bulk-loaded basic R-tree. 1 34 48 2208 14053

TABLE C.1.1. Building times in processor ticks. Horizontally we have the grid
size (number of grid elements), while vertically we have the different data struc-
tures used.
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384 8484 11352 486484 3106719
Bisection tree. 0.001 0.007 0.017 0.434 1.422

2/4 non-bulk-loaded basic R-tree. 0.001 0 0.004 0.098 0.209
2/6 non-bulk-loaded basic R-tree. 0 0 0.003 0.069 0.137
4/6 non-bulk-loaded basic R-tree. 0.001 0.002 0.007 0.126 0.223

2/12 non-bulk-loaded basic R-tree. 0 0 0.001 0.042 0.065
4/12 non-bulk-loaded basic R-tree. 0 0 0.002 0.085 0.152
8/12 non-bulk-loaded basic R-tree. 0 0.002 0.005 0.121 0.23

12/12 non-bulk-loaded basic R-tree. 0.002 0.004 0.01 1.023 5.628
2/24 non-bulk-loaded basic R-tree. 0 0.002 0 0.052 0.063
4/24 non-bulk-loaded basic R-tree. 0 0.002 0 0.052 0.098
8/24 non-bulk-loaded basic R-tree. 0 0 0.004 0.063 0.174

12/24 non-bulk-loaded basic R-tree. 0.002 0.002 0.005 0.137 0.241
TABLE C.1.2. Different combinations of datastructures and grid sizes and their
average query time on random point queries.

384 8484 11352 486484 3106719
Bisection tree. 0.005 0.042 0.138 3.656 25.636

2/4 non-bulk-loaded basic R-tree. 0.012 0.031 0.084 0.447 3.116
2/6 non-bulk-loaded basic R-tree. 0.01 0.02 0.056 0.298 2.045
4/6 non-bulk-loaded basic R-tree. 0.01 0.034 0.105 0.53 3.04

2/12 non-bulk-loaded basic R-tree. 0.006 0.018 0.035 0.219 1.427
4/12 non-bulk-loaded basic R-tree. 0.007 0.024 0.051 0.328 2.021
8/12 non-bulk-loaded basic R-tree. 0.008 0.034 0.105 0.52 3.809

12/12 non-bulk-loaded basic R-tree. 0.01 0.057 0.134 2.278 14.245
2/24 non-bulk-loaded basic R-tree. 0.008 0.025 0.046 0.265 1.486
4/24 non-bulk-loaded basic R-tree. 0.008 0.026 0.047 0.262 1.692
8/24 non-bulk-loaded basic R-tree. 0.007 0.03 0.071 0.288 2.551

12/24 non-bulk-loaded basic R-tree. 0.008 0.031 0.097 0.505 3.636
TABLE C.1.3. Different combinations of datastructures and grid sizes and their
average query time on random knn queries.
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384 8484 11352 486484 3106719
Bisection tree. 0.003 0.033 0.06 1.574 5.146

2/4 non-bulk-loaded basic R-tree. 0 0.011 0.013 0.708 2.628
2/6 non-bulk-loaded basic R-tree. 0.001 0.014 0.007 0.603 1.873
4/6 non-bulk-loaded basic R-tree. 0.002 0.022 0.022 0.9 2.997

2/12 non-bulk-loaded basic R-tree. 0.001 0.016 0.007 0.526 1.29
4/12 non-bulk-loaded basic R-tree. 0.001 0.018 0.012 0.736 2.109
8/12 non-bulk-loaded basic R-tree. 0.001 0.022 0.028 0.931 3.34

12/12 non-bulk-loaded basic R-tree. 0.001 0.035 0.042 2.329 10.606
2/24 non-bulk-loaded basic R-tree. 0.001 0.022 0.004 0.644 1.325
4/24 non-bulk-loaded basic R-tree. 0 0.018 0.003 0.64 1.689
8/24 non-bulk-loaded basic R-tree. 0.002 0.022 0.014 0.694 2.508

12/24 non-bulk-loaded basic R-tree. 0.001 0.024 0.026 1.014 3.49
TABLE C.1.4. Different combinations of datastructures and grid sizes and their
average query time on random line queries.

384 8484 11352 486484 3106719
Bisection tree. 0.003 0.037 0.059 3.999 21.737

2/4 non-bulk-loaded basic R-tree. 0.004 0.049 0.029 3.044 15.503
2/6 non-bulk-loaded basic R-tree. 0.003 0.048 0.024 2.598 13.904
4/6 non-bulk-loaded basic R-tree. 0.003 0.058 0.047 3.104 15.291

2/12 non-bulk-loaded basic R-tree. 0.001 0.061 0.023 2.931 12.849
4/12 non-bulk-loaded basic R-tree. 0.003 0.064 0.027 3.071 13.903
8/12 non-bulk-loaded basic R-tree. 0.005 0.065 0.064 3.45 15.441

12/12 non-bulk-loaded basic R-tree. 0.008 0.098 0.151 4.959 20.145
2/24 non-bulk-loaded basic R-tree. 0.002 0.08 0.031 3.413 13.059
4/24 non-bulk-loaded basic R-tree. 0.005 0.081 0.029 3.42 13.439
8/24 non-bulk-loaded basic R-tree. 0.005 0.079 0.051 3.517 14.573

12/24 non-bulk-loaded basic R-tree. 0.005 0.083 0.093 3.79 15.918
TABLE C.1.5. Different combinations of datastructures and grid sizes and their
average query time on random box queries.
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C.2. Twelve children experiments

Note: experiments with RandomTGS with M = 12 have been skipped due to too large con-
struction times.

C.2.1. Settings. The following parameters have been kept constant during this experiment.

Constant parameter Value
Number of queries 1000
Hilbert curve order 3

Compiler GNU
Optimisation level O3

Machine Qire
Minimum number of children 2
Maximum number of children 12

TGS cost function Sum of volumes

C.2.2. Tables. The following tables have been derived from the experiments using a maxi-
mum number of children and objects per node of 12. The datastructures tested are:

• Bisection tree
• Hilbert R-tree
• RandomTGS
• HilbertTGS

384 8484 11352 486484 3106719
Bisection tree. 0 1 1 103 736

2/12 non-bulk-loaded Hilbert R-tree. 1 38 53 2475 16062
2/12 RandomTGS bulk-loaded basic R-tree. 0 8 47 36387 -
2/12 HilbertTGS bulk-loaded basic R-tree. 0 5 8 809 18842
TABLE C.2.1. Building times in processor ticks. Horizontally we have the grid
size (number of grid elements), while vertically we have the different data struc-
tures used.

384 8484 11352 486484 3106719
Bisection tree. 94.432 407.386 1204.72 5284.73 17629.5

2/12 non-bulk-loaded Hilbert R-tree. 27.171 53.049 56.532 466.556 796.614
2/12 RandomTGS bulk-loaded basic R-tree. 10.388 27.506 13.455 86.662 -
2/12 HilbertTGS bulk-loaded basic R-tree. 30.752 60.056 45.681 472.104 1558.75

TABLE C.2.2. Different combinations of datastructures and grid sizes and their
average number of touched nodes on random point queries.
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384 8484 11352 486484 3106719
Bisection tree. 324.282 2432.48 8155.96 54215.8 459380

2/12 non-bulk-loaded Hilbert R-tree. 86.174 168.435 417.308 938.828 7998.3
2/12 RandomTGS bulk-loaded basic R-tree. 65.353 105.001 148.874 111.343 -
2/12 HilbertTGS bulk-loaded basic R-tree. 91.626 188.13 407.456 1064.86 14369.9

TABLE C.2.3. Different combinations of datastructures and grid sizes and their
average number of touched nodes on random knn queries.

384 8484 11352 486484 3106719
Bisection tree. 171.851 1176.74 2633.34 16304.3 59755.4

2/12 non-bulk-loaded Hilbert R-tree. 40.846 394.632 143.064 5429.47 18332.5
2/12 RandomTGS bulk-loaded basic R-tree. 20.804 258.902 42.097 1600.44 -
2/12 HilbertTGS bulk-loaded basic R-tree. 42.456 422.41 107.348 5836.97 32482.8

TABLE C.2.4. Different combinations of datastructures and grid sizes and their
average number of touched nodes on random line queries.

384 8484 11352 486484 3106719
Bisection tree. 198.645 2338.82 3838.6 63668.8 426667

2/12 non-bulk-loaded Hilbert R-tree. 63.544 1385.73 564.782 49396.4 326511
2/12 RandomTGS bulk-loaded basic R-tree. 42.304 1209.84 405.483 36398.5 -
2/12 HilbertTGS bulk-loaded basic R-tree. 64.884 1403.66 517.143 49459.2 357921

TABLE C.2.5. Different combinations of datastructures and grid sizes and their
average number of touched nodes on random box queries.

384 8484 11352 486484 3106719
Bisection tree. 0.001 0.006 0.015 0.451 1.273

2/12 non-bulk-loaded Hilbert R-tree. 0 0.001 0 0.009 0.015
2/12 RandomTGS bulk-loaded basic R-tree. 0 0 0 0 -
2/12 HilbertTGS bulk-loaded basic R-tree. 0 0 0 0.008 0.023

TABLE C.2.6. Different combinations of datastructures and grid sizes and their
average query time on random point queries.

384 8484 11352 486484 3106719
Bisection tree. 0.003 0.033 0.116 3.715 24.701

2/12 non-bulk-loaded Hilbert R-tree. 0.001 0.004 0.009 0.036 0.268
2/12 RandomTGS bulk-loaded basic R-tree. 0 0.003 0.002 0.007 -
2/12 HilbertTGS bulk-loaded basic R-tree. 0.002 0.005 0.007 0.033 0.378

TABLE C.2.7. Different combinations of datastructures and grid sizes and their
average query time on random knn queries.
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384 8484 11352 486484 3106719
Bisection tree. 0.003 0.025 0.044 1.521 4.434

2/12 non-bulk-loaded Hilbert R-tree. 0 0.003 0 0.193 0.514
2/12 RandomTGS bulk-loaded basic R-tree. 0 0.004 0.001 0.043 -
2/12 HilbertTGS bulk-loaded basic R-tree. 0 0.002 0.002 0.142 0.732

TABLE C.2.8. Different combinations of datastructures and grid sizes and their
average query time on random line queries.

384 8484 11352 486484 3106719
Bisection tree. 0.002 0.033 0.048 4.326 20.592

2/12 non-bulk-loaded Hilbert R-tree. 0 0.019 0.007 1.38 8.829
2/12 RandomTGS bulk-loaded basic R-tree. 0 0.017 0.006 0.809 -
2/12 HilbertTGS bulk-loaded basic R-tree. 0.001 0.018 0.005 1.206 8.405

TABLE C.2.9. Different combinations of datastructures and grid sizes and their
average query time on random box queries.

384 8484 11352 486484 3106719
2/12 non-bulk-loaded Hilbert R-tree. 1000 7200 3533.33 5384.62 12570

2/12 RandomTGS bulk-loaded basic R-tree. Always worse 1000 3066.67 80452.3 -
2/12 HilbertTGS bulk-loaded basic R-tree. Always worse 500 533.333 1645.6 15162.4

TABLE C.2.10. Different combinations of datastructures and grid sizes and their
turnover points on random point queries, wrt the Bisection tree.

384 8484 11352 486484 3106719
2/12 non-bulk-loaded Hilbert R-tree. 500 1310.34 495.327 643.653 627.266

2/12 RandomTGS bulk-loaded basic R-tree. Always worse 266.667 403.509 10223.3 -
2/12 HilbertTGS bulk-loaded basic R-tree. Always worse 142.857 82.5688 190.657 752.498

TABLE C.2.11. Different combinations of datastructures and grid sizes and their
turnover points on random knn queries, wrt the Bisection tree.

384 8484 11352 486484 3106719
2/12 non-bulk-loaded Hilbert R-tree. 333.333 1681.82 1181.82 1843.37 3955.61

2/12 RandomTGS bulk-loaded basic R-tree. Always worse 333.333 1093.02 25657 -
2/12 HilbertTGS bulk-loaded basic R-tree. Always worse 217.391 166.667 517.041 4890.6

TABLE C.2.12. Different combinations of datastructures and grid sizes and their
turnover points on random line queries, wrt the Bisection tree.

384 8484 11352 486484 3106719
2/12 non-bulk-loaded Hilbert R-tree. 500 2785.71 1268.29 876.782 1390.89

2/12 RandomTGS bulk-loaded basic R-tree. Always worse 437.5 1071.43 10538 -
2/12 HilbertTGS bulk-loaded basic R-tree. Always worse 266.667 162.791 230.449 1489.13

TABLE C.2.13. Different combinations of datastructures and grid sizes and their
turnover points on random box queries, wrt the Bisection tree.
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C.2.3. Graphs. The following graphs visualise the data in the previous tables.
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Bisection tree.
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FIGURE C.1. Build times of different datastructures
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(a) Number of touched nodes versus grid size,
for point queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
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(b) Wall-clock query time versus grid size, for
point queries

FIGURE C.2. Graphs detailing performance on point queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(a) Number of touched nodes versus grid size,
for knn queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(b) Wall-clock query time versus grid size, for
knn queries

FIGURE C.3. Graphs detailing performance on knn queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(a) Number of touched nodes versus grid size,
for line queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(b) Wall-clock query time versus grid size, for
line queries

FIGURE C.4. Graphs detailing performance on line queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(a) Number of touched nodes versus grid size,
for box queries
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Bisection tree.
2/12 non−bulk−loaded Hilbert R−tree.
2/12 RandomTGS bulk−loaded basic R−tree.
2/12 HilbertTGS bulk−loaded basic R−tree.

(b) Wall-clock query time versus grid size, for
box queries

FIGURE C.5. Graphs detailing performance on box queries
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