
Towards Structured Algebraic Programming
Daniele G. Spampinato
Computing Systems Lab

Huawei Zurich Research Center
Zurich, Switzerland

daniele.giuseppe.spampinato@huawei.com

Denis Jelovina
Computing Systems Lab

Huawei Zurich Research Center
Zurich, Switzerland

denis.jelovina@huawei.com

Jiawei Zhuang
HiSilicon

Huawei Technologies Co., Ltd.
Shenzhen, China

zhuangjiawei@hisilicon.com

Albert-Jan N. Yzelman
Computing Systems Lab

Huawei Zurich Research Center
Zurich, Switzerland

albertjan.yzelman@huawei.com

Abstract
Structured matrices and tensors exhibiting properties such
as symmetry and fixed non-zero patterns are known for
making algorithms and data storage more efficient. Due to
emerging power and efficiency constraints required by the
scale of modern scientific, machine learning, and edge com-
puting applications, algorithm experts are revisiting tradi-
tional linear algebra algorithms with the goal of making new
structures appear. Such structures often result from new nu-
merical approximations that would greatly benefit from a
more flexible linear algebra interface than standard BLAS
and LAPACK, allowing for mixed precision and data types
to appear in place of traditional floating-point operations.
Algebraic programming interfaces, like GraphBLAS, while
naturally abstracting the algebras of their operations, do
not explicitly capture structured, densely stored arrays. In
this paper, we present a preliminary design of a new alge-
braic programming interface for structured containers with
template-generic, non-zero patterns. This interface offers
to backend implementations the possibility of integrating
more compile-time pattern information in the loop-based
implementation of primitive operations as well as in the
formulation of array accesses. We demonstrate its ability to
specify important dense matrix decomposition algorithms
and argue its ability to expose high-performance backends.

CCSConcepts: •Computingmethodologies→Algebraic
algorithms; Linear algebra algorithms; •Mathematics
of computing→Mathematical software performance.

Keywords: algebraic programming, mathematical software,
dense linear algebra, structured matrices

ARRAY ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 9th ACM SIGPLAN International Workshop on Libraries,
Languages and Compilers for Array Programming (ARRAY ’23), June 18, 2023,
Orlando, FL, USA, https://doi.org/10.1145/3589246.3595373.

ACM Reference Format:
Daniele G. Spampinato, Denis Jelovina, Jiawei Zhuang, and Albert-
Jan N. Yzelman. 2023. Towards Structured Algebraic Programming
. In Proceedings of the 9th ACM SIGPLAN International Workshop on
Libraries, Languages and Compilers for Array Programming (ARRAY
’23), June 18, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3589246.3595373

1 Introduction
The GraphBLAS interface [9] enables implementing graph
algorithms using linear algebraic operations [26]: graphs
represented in terms of their sparse adjacency or incidence
matrices and linear algebra primitives, such as matrix-vector
(mxv) or matrix-matrix (mxm) multiplication, are used as al-
gorithmic building blocks. Critically, GraphBLAS promotes
an algebraic programming style: the algebraic structures
(e.g., semirings1) used by the primitives are explicitly passed
as input arguments, enabling a small set of primitives to
specify a large space of algorithms. For example, the same
mxv primitive can be used to implement both a step of the
single-source shortest path algorithm with the min-plus
semiring (i.e., < R ∪ {+∞},min, +, +∞, 0 >) as well as a
step of 𝑘-hop reachability with the Boolean semiring (i.e.,
< {𝑇, 𝐹 }, 𝑜𝑟, 𝑎𝑛𝑑, 𝐹,𝑇 >) [51].
Such an idea could also be adopted for expressing mod-

ern adaptations of dense linear algebra algorithms, using
mixed floating- and fixed-point precision as well as integer
arithmetic [10, 46]. Revisited functionalities may include LA-
PACK [5] algorithms, like the Cholesky, LU, and QR decom-
positions, eigensolvers, and linear systems solvers. These
functionalities are typically expressed in terms of lower-level
linear algebraic operations on structured input and/or out-
put matrices, i.e., containers with special non-zero patterns
(e.g., triangular and band matrices) and/or entry patterns
(e.g., symmetric and orthogonal matrices). Structured con-
tainers enable faster and more accurate algorithms, as well
as more efficient memory storage schemes [19]. Capturing

1Denoted < T, ⊕, ⊗, 0, 1 >, a semiring is a set T equipped with two binary
operations ⊕ and ⊗ with identities 0 and 1, respectively (more in Sec. 3.1).

https://doi.org/10.1145/3589246.3595373
https://doi.org/10.1145/3589246.3595373

ARRAY ’23, June 18, 2023, Orlando, FL, USA Spampinato et al.

structured containers is therefore a critical requirement for
an algebraic programming interface aiming at supporting
current and future numerical applications. While sparse stor-
age schemes, for example the compressed row and column
storage (CRS and CCS), could represent structured containers
(in particular structurally sparse containers such as diagonal
and band matrices) dense applications best store matrices
and vectors using compact layouts. Doing so avoids the mem-
ory indirection typically incurred by sparse storage schemes
and achieves higher compression rates. Gareev et al. [18]
demonstrate that high-performance optimization techniques
used to optimize dense mxm (and more generally tensor con-
traction) [33, 47] can also be applied when the operation is
generalized over semirings. However, the basic concept of a
general dense container alone is not sufficient for the speci-
fication of a large number of LAPACK-Level functionalities.
To bridge this gap, this paper proposes the design of an

algebraic programming interface where low-level algebraic
primitives, like mxv and mxm, on generic semirings can be
applied to densely-stored structured containers with generic
patterns. We build our idea on the Algebraic Programming
(ALP)/GraphBLAS [2], a modern C++ library mathemati-
cally equivalent to the GraphBLAS C interface, and dub our
prototype framework ALP/Dense. It contributes:

• a new generic type for structured containers that de-
couples the formulation of container non-zero patterns
(e.g., tridiagonal), from the formulation of container
storage schemes (Sec. 4.1). Container nonzero struc-
ture types allow for compile-time specialization of loop
constraints to the non-zero pattern, while the storage
scheme type allows the symbolic mapping of logical
elements to their memory locations; and

• container views (e.g., gathering a sub-matrix) can trans-
form both the non-zero pattern and the container ac-
cess function (Sec. 4.2). Chain of views could be further
optimized, e.g., the composition of static views (i.e.,
views introducing runtime-invariant changes) may be
performed at compile time.

• The paper, furthermore, shows that ALP/Dense allows
implementing LAPACK-level functionalities, such as
LU, QR, and Eigen decompositions (Sec. 5.1); and

• demonstrates that the presence of efficient building
blocks for the ALP/Dense primitives results in ALP/-
Dense algorithms competitivewith highly-tuned, dense
linear algebra libraries (Sec. 5.2).

2 Related Work
Mathematical interfaces, such as the BLAS [12, 13, 30], have
pioneered the area of performance portability by exposing a
relatively small set of primitive operations mainly responsi-
ble for the performance of scientific applications when exe-
cuted on parallel systems (Sec. 3.2). Several vendor (e.g., Intel
oneMKL [25], Nvidia cuBLAS [34], and Huawei KML [24])

and open source (e.g., OpenBLAS [3] and BLIS [47]) libraries
exist, which provide highly-tuned implementations of the
BLAS for modern CPUs and accelerators, including for small-
sized input and output matrices (typically focusing on gemm
or Level 3 operations, e.g., libxsmm [23], BLASFEO [17], and
libShalom [50]). However, the power and performance de-
mands of modern applications, whether deployed on large
exascale systems or small automotive and IoT edge devices,
are pushing towards the limits of what a static library inter-
face, like the BLAS, can offer [10, 47]. Enhancing the flexibil-
ity and automatic performance optimization of mathematical
frameworks has therefore become a major area of investiga-
tion. Here, we briefly discuss some lines of work related to
our own research direction.

Algebraic Programming Interfaces. The idea of cap-
turing different algorithms by generalizing low-level numer-
ical primitives over their algebraic structures has had notice-
able impact in the sparse linear algebra and graph algorithms
community [26, 41]. Implementations of the GraphBLAS [11]
and equivalent C++ APIs, e.g., ALP/GraphBLAS [4] and
GBTL [1], enable generic operations on sparse matrix and
vector containers, while the LLVM/Polly extension in [18]
demonstrates that the generic dense tensor contractions can
still leverage BLIS-like analytical modeling and optimiza-
tions [31, 47]. Our work builds on ALP/GraphBLAS extend-
ing its algebraic interface to dense, structured containers.
The BLIS-based approach in [18] could be extended to take
static information from the container types (e.g., their non-
zero patterns and storage schemes) into account.

Flexible Dense Linear Algebra APIs. Linear algebra li-
braries, for example, Armadillo [39], Eigen [21], xtensors [32],
and Numpy/Scipy [22, 49], provide a tradeoff between perfor-
mance and flexibility, offering a flexible C++ and/or Python
interface to BLAS- and LAPACK-like functionalities with
sparse and dense vector, matrix, and tensor containers. Some
of these libraries (e.g., Armadillo and Scipy) implicitly as-
sume containers have properties when used with opera-
tions, such as matrix decompositions. Others support specific
structured views on general containers (e.g., Eigen supports
selfadjointView and TriangularView methods on matri-
ces). While certain optimizations on general containers are
supported by most of these libraries (e.g., lazy evaluation on
general matrices), the lack of an explicit organization of con-
tainers’ patterns often leads to suboptimal performance in
the presence of more complex structured expressions [7, 36].
In contrast, ALP/Dense provides a mechanism for capturing
and classifying patterns at the type level, making this infor-
mation available at compile time for both correctness and
performance optimization purposes.

Dense LinearAlgebraCompilers. Several domain-speci-
fic compilers explicitly handle and take advantage of struc-
tured containers. Systems like Cl1ck [14] and Linnea [7]
identify efficient ways to express dense linear algebra al-
gorithms in terms of BLAS and LAPACK calls, driven by

Towards Structured Algebraic Programming ARRAY ’23, June 18, 2023, Orlando, FL, USA

patterns (which they call properties) of the structured matri-
ces in the input expression. The concept of partially ordered
set of non-zero patterns described in Sec. 4.1 is inspired by
Linnea. LGen [44] describes a polyhedral-based approach to
generate SIMD-vectorized C code starting from the non-zero
and entry patterns of the matrices in an input basic linear
algebra expression of fixed size. ALP/Dense also builds on a
similar concept of non-zero pattern. It trades the flexibility
of a full polyhedral description (at the price of involving
expensive external libraries) with a more restricted class of
patterns (captured via C++ metaprogramming) useful for
expressing LAPACK-level algorithms. The Lift [35] compiler
allows to define nested array types where inner arrays may
have different sizes (including dependent on outer ones), cap-
turing triangular matrices and stencils. GBTLX [38] extends
GBTL with a SPIRAL-based [15] code generation backend for
certain sparse optimization patterns supported by SPIRAL.
Finally, [18] and [45] show how to integrate BLIS-level opti-
mization of gemm-like operations within a general-purpose
LLVM compiler infrastructure [28], while [8] expresses a
similar optimization strategy with MLIR [29].

3 Background
In this section, we briefly introduce some basic concepts
from ALP/GraphBLAS, the algebraic programming interface
ALP/Dense builds on, and standard dense linear algebra APIs,
which our work aims at capturing with a flexible interface.

3.1 ALP/GraphBLAS
ALP/GraphBLAS [2, 51] is a sequential, STL-compatible C++
programming interface mathematically equivalent to Graph-
BLAS. Its API exposes three major concepts: Opaque vector
and matrix containers, algebraic structures (e.g., binary op-
erators, monoids, and semirings) and primitives, i.e., a basic
set of operations on containers, such as element-wise op-
erations, mxv, and mxm. Monoids are algebraic structures
denoted 𝑀 =< T, ⊕, 0 > where ⊕ is an associative binary
operator2 on set T with identity 0 ∈ T, while semirings2,
denoted 𝑆 =< T, ⊕, ⊗, 0, 1 >, are formed combining a com-
mutative, additive monoid (e.g.,𝑀) with a multiplicative one
< T, ⊗, 1 >, where multiplication distributes over addition
and multiplication by 0 annihilates elements in T. Primitives
compute on opaque containers using algebraic structures
explicitly passed as additional input. Consider the following
use example of grb::foldl3 primitive:
1 grb::Monoid <

2 grb:: operators ::min < T >,

3 grb:: identities :: infinity

4 > Mon;

5 grb::Vector < T > x(n), y(n);

2ALP/GraphBLAS allows an even more general formulation of the operators
with different domain and range sets [51].
3Note that in ALP fold primitives are overloaded on the input/output types.
In this example, folding applies𝑀 element-wise accumulating on the left
operand. Were y a scalar, folding would reduce vector x into it.

6 ... // Building vectors x and y

7 grb::foldl(y, x, Mon);

which folds all elements in an ALP/GraphBLAS vector 𝑥 into
the corresponding elements from an input/output vector 𝑦
using the Mon monoid, i.e., 𝑦𝑖 = min(𝑦𝑖 , 𝑥𝑖). Two remarks
about the mathematical specification of this operation are
useful in our context.

OpaqueContainers and Backends. First, use of opaque
ALP/GraphBLAS containers decouples the mathematical no-
tion of vector exposed to the algorithm developers (here
referred to as the users of the library) from the memory
control aspects, which can be freely governed by the frame-
work, e.g., choosing a suitable sparse storage scheme. The
user can control this at a high-level by compiling an ALP
program targeting a specific backend. ALP backends encode
different levels of parallelism that may provided by the hard-
ware target, ranging from auto-vectorization to automatic
shared- and distributed-memory parallelization, or a mixture
of any of these. Backend choices are made via flags passed
to the compiler. ALP/GraphBLAS provides a compiler wrap-
per for simplifying compilation. For example, the following
command targets a shared memory-parallel backend:

$ alpcxx -b shmem -o app.x app.cpp

where the flag (i.e., -b) will trigger the inclusion of appro-
priate compiler and linker flags needed to target the chosen
backend. The choice of an ALP/GraphBLAS backend drives
the automatic optimization process of the framework, in-
cluding making decisions about parallel memory allocation.
Critically however, the user code remains unchanged and
always looks like standard, sequential C++.

Algebras and Algebraic Type Traits. The implementa-
tion of an algebraic primitive, like the grb::foldl in the
example above, can make sure that algebraic properties hold
at compile time using type traits. For instance, if the selected
operator is non-associative then a monoid cannot be formed
and a compiler error is raised.

In ALP/Dense, we build on these two concepts of opaque
containers and template-based type traits to leverage compile-
time decisions on dense structured containers.

3.2 Dense Linear Algebra Libraries
The Linear Algebra Package (LAPACK) offers important lin-
ear algebra algorithms frequently occurring in scientific ap-
plications, including the Cholesky, QR, LU, eigenvalue, and
singular value decompositions. LAPACK is one of the early
example of performance portable libraries. Its algorithms are
expressed in terms of lower-level operations: the Basic Lin-
ear Algebra Subprograms (BLAS). The BLAS defines three
levels of basic dense functions, i.e., vector-vector (Level 1),
matrix-vector (Level 2), and matrix-matrix (Level 3) opera-
tions. Building LAPACK on top of BLAS (ideally in terms
of the highest possible level, i.e., BLAS 3) allows to exploit

ARRAY ’23, June 18, 2023, Orlando, FL, USA Spampinato et al.

(𝑎)
𝑟𝑎𝑛𝑔𝑒1

𝑟𝑎𝑛𝑔𝑒2

𝑆11 𝑆12

𝑆21 𝑆22 -=

(𝑏)

𝑆22 B 𝑆22 − 𝑆21 · 𝑆12

(𝑐)
𝑟𝑎𝑛𝑔𝑒1

𝑟𝑎𝑛𝑔𝑒2

solved

𝑆11 𝑆12

𝑆21 𝑆22

Figure 1. (a)–(b): Partitions of SPD matrix 𝑆 during the first
iteration of a blocked variant of the Cholesky decomposition
(BChol). 𝑆11 and 𝑆22 are SPD, 𝑈𝑝 (𝑆11) is upper triangular.
Since 𝑆 is SPD, only𝑈𝑝 (𝑆11) and 𝑆12 are updated (c)).

the cache hierarchy, instruction-level parallelism, and vector
functional units of modern architectures.

We take the Cholesky decomposition to illustrate the typ-
ical layout of an LAPACK functionality as well as possible
structured matrices appearing in this context. In particular,
we consider the upper triangular, in-place, blocked variant
of the Cholesky algorithm (in short BChol) as illustrated in
Fig 1. BChol computes the (unique) factorization𝑈𝑇𝑈 = 𝑆 of
a real, symmetric (or complex, Hermitian) positive-definite
matrix 𝑆 , where 𝑈 is an upper triangular matrix directly
stored in the upper part of 𝑆 (in-place version).
Each iteration of BChol consists of three updates of the

upper part of the original matrix 𝑆 as showed in Fig. 1:
1. Solve a smaller (unblocked) UChol:

𝑆11 B UChol(𝑆11), Fig. 1(a) red update

2. BLAS 3 triangular solve:

𝑈𝑝 (𝑆11) · 𝑆12 B 𝑆12, Fig. 1(a) yellow

3. BLAS 3 rank-k update:

𝑆22 B 𝑆22 − 𝑆21𝑆12, Fig 1(b).

The algorithm progresses iteratively trough diagonal blocks
from the top-left corner down to the bottom-right one. Dur-
ing the 𝑘th iteration, the 𝑘th row panel of the resulting ma-
trix is calculated, while all previous ones have been already
updated (green panel in Fig 1(c)).

Data Layouts. As noted in [47], the BLAS fixes a very
strict storage layout for matrices, exposing it to the user. For
example, matrices must be provided in column-major order
(row-major is also an option in the analogous C interface
CBLAS) and strides between elements are not allowed along
a matrix’s leading dimension. In ALP/Dense, the goal is to
hide this complexity from the user, allowing the framework
to flexibly express and control storage layouts.

4 Structured ALP/Dense Extension
In this section, we describe in more details the proposed
ALP/Dense framework extension to support operations on
structured containers. In particular, we will focus on two
major aspects. First, their internal representation in ALP.

Second, their role in the implementation of ALP/Dense prim-
itives with two representative ALP/Dense backends, i.e., the
reference sequential and parallel backends.

4.1 Structured Containers
An ALP/Dense structured container accepts additional tem-
plate parameters for conveying non-zero patterns’ informa-
tion. As mentioned in Sec. 1, in this paper we focus on dense
patterns. For example, an upper triangular matrix of size
𝑛 × 𝑛 with elements in T can be declared as follows:
1 alp::Matrix <

2 T, alp:: structures :: UpperTriangular ,

3 alp::Dense

4 > U(n);

Listing 1. Declaration of an upper triangular matrix 𝑈 ∈
T𝑛×𝑛 in ALP (we may drop the 𝑎𝑙𝑝 namespace in future
examples for the sake of clarity).

In the code snippet above, Line 3 selects one of the predefined
non-zero patterns supported by ALP, while Line 4 specifies
that the non-zero area in the upper triangular part of the
matrix is dense, i.e., a static mapping between any element
in that area and a location in memory should be provided
by the framework at compile time. Notice that nothing says
whether the zero part of the matrix should be stored or not,
or whether non-zero elements follow a row-major order. As
mentioned in Sec. 3.1, ALP/Dense leverages opaque contain-
ers to maintain full control on the layout of the data and
their access. The pattern and density arguments are handles
provided to the ALP/Dense user to specify the mathematical
layout of the container. Any storage layout decision is dele-
gated to ALP/Dense and may be based, e.g., on the choice of
a specific backend as discussed later in this section.

Remarks on ALP/Dense Vectors and Scalars. In the
remainder of the paper, we will mostly focus on matrices for
introducing and explaining new concepts. However, unless
stated otherwise, those concepts equally apply to ALP/Dense
vectors and scalars. For the sake of our discussion, a vector
of length 𝑛 and a scalar can be intuitively treated as special
matrix instances of size 𝑛×1 and 1×1, respectively. Next, we
explain how non-zero patterns are organized in ALP/Dense
and internally associated, by the framework, with a particular
storage scheme.

ALP/Dense Non-Zero Patterns. ALP/Dense represents
non-zero patterns as C++ empty classes. The goal of such
classes is to capture key geometric features of patterns and
logical implications between them for compile-time optimiza-
tions and error handling. Currently, ALP/Dense statically
describes the following properties of a non-zero pattern:

1. Band Intervals: The location of one or more non-
zero band intervals, where a band interval defines as
an area of the matrix between two diagonals [ℓ,𝑢),
ℓ,𝑢 ∈ Z, ℓ < 𝑢. Diagonal tags are centered around
the main diagonal (the 0-diagonal) and specified as

Towards Structured Algebraic Programming ARRAY ’23, June 18, 2023, Orlando, FL, USA

template arguments. For example, a tridiagonal ma-
trix has a single non-zero band interval [−1, 2). If a
band is only limited by the size of a matrix on one side,
ALP/Dense represents its interval as open-ended on
that side. For example, we denote the band interval of
the upper part of an upper triangular matrix as [0,).
A general rectangular matrix is defined as having a
completely open-ended interval: (,). Finally, a tuple
of intervals could be used to capture the union of mul-
tiple bands. e.g., the matrix

[0 𝑎 0
𝑏 0 𝑐
0 𝑑 0

]
is associated with

the tuple ([−1, 0) , [1, 2)). This idea is similar to the
polyhedral concept of structural information in [44].
By limiting the scope of representation to a union of
band intervals, however, we make processing this in-
formation via metaprogramming practical, while still
capturing important non-zero patterns appearing in
linear algebra applications.

2. is_a-Relation: Intuitively, if a non-zero pattern 𝑆𝐵
has all properties of a pattern 𝑆𝐴 we can invariably
state that a matrix with pattern 𝑆𝐵 is also a matrix
with pattern 𝑆𝐴. For example, an upper triangular ma-
trix is both a square and an upper trapezoidal ma-
trix. Such is_a-relation on non-zero patterns forms
a partially ordered set [7] that can be used to verify
runtime-invariant predicates via C++ type traits as
part of ALP/Dense implementations.

Figure 2 summarizes the two properties of non-zero pat-
terns captured in ALP/Dense. Currently, the interface com-
prises major non-zero patterns required by the algorithms
discussed in Sec. 5.1, such as tridiagonal and trapezoidal
ones. Entry patterns, such as symmetric and orthogonal, can
also be included in the is_a poset and used as a pattern
argument in the declaration of a container. ALP/Dense inter-
nal developers may use them to identify static optimization
opportunities (e.g., always accessing the same part of a sym-
metric matrix 𝑆 due to the property 𝑆𝑖, 𝑗 = 𝑆 𝑗,𝑖) via type traits.
Notice that capturing explicitly the entry relation of such pat-
terns (e.g., in a similar way to the access functions discussed
shortly for non-zero patterns) may enable the framework to
apply some of these optimization automatically. We plan to
investigate this in future work.
As previously discussed, the non-zero pattern of a struc-

tured container is specified by the user without making any
decision about the way data is stored in memory. This choice
is delegated to the ALP/Dense framework as we now explain.

Selecting an ALP/Dense Storage Scheme. An ALP/-
Dense storage scheme is an internal component of the frame-
work that interfaces the mathematical layout of a container
and its memory instantiation. The process of selecting a
storage scheme is both backend- and pattern-specific. The
backend choice influences how containers are distributed

0-diagonal u-diagonal

ℓ -diagonal is_a-relation

(a) (b)

Figure 2. Properties of a non-zero pattern in ALP/Dense:
(a) its static band intervals, denoted [ℓ,𝑢) with respect to
the main diagonal; (b) The is_a-relation among available
non-zero patterns, here exemplified by the set of general,
square, upper trapezoidal, and upper triangular patterns.

↦ =

Global layout Thread layout Block layout

AF choice: 2D block-cyclic + row-major block

(i, j) AF(i, j) < tr, tc, br, bc, loc >(i, j)

Figure 3. Possible choice of a hierarchical access function
(AF) for a dense, general matrix when targeting the com-
bination of shared-memory parallel and sequential refer-
ence backends: A 2D block-cyclic storage in shared memory,
where each local block is stored in row-major order. The 𝑙𝑜𝑐
coordinate is expressed as a storage polynomial.

and allocated across threads as well as the way they are ac-
cessed. The latter is described via an access function (AF),
i.e., a function that maps non-zero coordinates of a container
to a physical location in memory (e.g., (𝑖, 𝑗 ↦→ 𝐴𝐹 (𝑖, 𝑗) for a
matrix). The range of the AF is generally multidimensional.
For example, as shown in Fig. 3, the ALP/Dense reference
backend currently defines a flat 1D memory layout while its
combination with the shared-memory backend adds addi-
tional dimensions to enable a 2D block-cyclic layout.

DenseALP/DenseAccess Functions. The non-zero pat-
tern of a container may also affect the choice of the storage
scheme as certain patterns (e.g., the upper part of the matrix
declared in Listing 1) may be stored more compactly by allo-
cating memory only for non-zero elements. To capture this,
the innermost dimension of an AF normally associated with
local storage is defined in ALP/Dense using polynomial ob-
jects, dubbed storage polynomials. For example, the generic
storage polynomial declared below:
1 using namespace alp:: internal;

ARRAY ’23, June 18, 2023, Orlando, FL, USA Spampinato et al.

2 storage :: polynomials :: BivariateQuadratic <

3 Ai2 , Aj2 , Aij , Ai, Aj, A0, D

4 > P(ai2 , aj2 , aij , ai, aj, a0);

instantiates the following bivariate, quadratic polynomial:

𝑃 (𝑖, 𝑗) = 1
𝐷

(
𝐴𝑖2𝑎𝑖2𝑖

2 +𝐴 𝑗2𝑎 𝑗2 𝑗
2 +𝐴𝑖 𝑗𝑎𝑖 𝑗𝑖 𝑗

+𝐴𝑖𝑎𝑖𝑖 +𝐴 𝑗𝑎 𝑗 𝑗 +𝐴0𝑎0
)

(1)

where 𝑖 , 𝑗 , 𝐴∗, 𝑎∗ ∈ Z and 𝐷 ∈ Z \ 0. Such polynomials
are expressive enough to capture classic LAPACK storage
schemes. Template coefficients 𝐴∗ enable compile-time opti-
mizations (e.g., dropping zero terms) and the denominator
𝐷 allows representation of a compact storage, such as the
LAPACK’s packed storage. For example, the linear 2D polyno-
mial 𝑃𝑅 (𝑖, 𝑗) = 𝑖𝑛 + 𝑗 , associated with a conventional storage
for an𝑚 × 𝑛 matrix in row-major order, is defined as:
1 BivariateQuadratic < 0, 0, 0, 1, 1, 0, 1 >

2 P_R(0, 0, 0, n, 1, 0);

while the polynomial 𝑃𝑈 (𝑖, 𝑗) = (𝑗2 +2𝑖 + 𝑗)/2 defined below:
1 BivariateQuadratic < 0, 1, 0, 2, 1, 0, 2 >

2 P_U(0, 1, 0, 1, 1, 0);

may be selected as a packed, column-major storage format
for the matrix in Listing 1. Finally, notice that union of 𝑘
bands could be associated with a piecewise, bivariate, qua-
dratic polynomial with exactly 𝑘 intervals.

Building on ideas from domain-specific frameworks, such
as SPIRAL [15, 16] and the polyhedral isl library [48], ALP/-
Dense storage polynomials are represented symbolically to
enable further optimizations in the presence of container
views as we discuss next.

4.2 ALP/Dense Views
Views enable casting a different perspective on ALP/Dense
containers (or part of them) without additional memory allo-
cation. Examples of views are gathering a sub-matrix, trans-
posing a matrix, and permuting its rows and/or columns.
Table 1 lists view categories currently supported in ALP/-
Dense. We differentiate between three categories of views:
static, dynamic, and functor views. Next, we introduce each
category in more details beginning with static views which
may affect the access function of a container at compile-time.

Static Views. Static views affect the internal interface to
an ALP/Dense container at compile-time by (i) redefining its
non-zero pattern and/or (ii) redefining its AF.

Statically Affecting the Non-Zero Pattern. Consider
the static view interface in Tab. 1(a), which could be used to
define, for instance, an upper triangular view of a general
square matrix. This type of view is allowed in ALP/Dense
as long as the target non-zero pattern is more specialized
than the input one, according to the is_a-poset discussed in
Sec. 4.1 and shown in Fig. 2 for the upper triangular exam-
ple. The alp::get_view assesses the validity of a view only
when the verification step can be carried out at compile-time
based on the is_a-poset or at runtime if doable in constant

time. For example viewing a general𝑚 × 𝑛 matrix as square
only requires checking that𝑚 = 𝑛. More expensive checks
(e.g., whether a full-rank view of a square matrix is valid) may
be defined and activated in ALP/Dense for debugging pur-
poses. Finally, notice that a view that changes the non-zero
pattern of a container may redefine the semantics of a con-
tainer but has no effect on its AF. For example, a triangular
view of a square matrix may involve accessing fewer ele-
ments but the location of those elements would be identical
to (and defined by) the original square pattern.

Statically Affecting the Access Function. Static views,
such as those listed in Tab. 1(b)–(f), may affect the AF of
a target container, including the formulation of its storage
polynomial. Take for instance the gather view in Tab. 1(b),
which allows the selection of a sub-container, optionally
explicitly changing its non-zero pattern. For matrices, the
elements in a submatrix are selected at runtime using row
and column (strided) ranges as shown in Fig. 4(b). Such range
information can be statically fused into the storage polyno-
mial. In particular, a range alp::range(b, M, s) selects
𝑚 = ⌈(𝑀 − 𝑏)/𝑠⌉ elements within range [𝑏,𝑀) at stride 𝑠 .
As an affine map, it is expressed as follows:

{0, . . . ,𝑚 − 1} → {0, . . . , 𝑀 − 1}; 𝑖 ↦→ 𝑏 + 𝑠𝑖 . (2)

Suppose we use it to select𝑚 rows from the𝑀 × 𝑁 matrix A
as shown below:
1 Matrix <T, structures ::General , Dense > A(M, N);

2 auto gA = get_view(A, range(b, M, s), range(N));

where matrix A is initially assigned a row-major format with
storage polynomial 𝑃𝑅 (𝑟, 𝑐) = 𝑟𝑁 + 𝑐 and alp::range(N)
reduces to the identity map {0, . . . , 𝑁 − 1} → {0, . . . , 𝑁 −
1}; 𝑗 ↦→ 𝑗 . Based on the code above, ALP/Dense can optimize
the polynomial storage of view gA yielding the equivalent
of the polynomial declaration below:
1 BivariateQuadratic < 0, 0, 0, 1, 1, 1, 1 >

2 P_gA(0, 0, 0, s * N, 1, b * N);

This formulation is obtained from the following composi-
tion of the strided and identity maps on rows and columns,
respectively, and the polynomial 𝑃𝑅 :

𝑃𝑅 (𝑟 = 𝑏 + 𝑠𝑖, 𝑐 = 𝑗) = (𝑏 + 𝑠𝑖)𝑁 + 𝑗 = 𝑠𝑁𝑖 + 𝑗 + 𝑏𝑁 . (3)

Differently from the view in Tab. 1(a), which is analogous
to applying a full range to both rows and columns, the valid-
ity of a target non-zero pattern of a sub-container can only
be checked at runtime as it always depends on the range in-
formation. Consider for instance Fig. 4(a) that shows possible
examples of valid submatrix views with change in non-zero
pattern on an upper triangular matrix. The general submatrix
(black box) is valid only if the coordinates of the bottom-left
and top-right corners of the submatrix fall within the band
interval of the source upper triangular matrix. Also, in this
scenario, only constant-time checks can be defined unless in
debug mode.

Towards Structured Algebraic Programming ARRAY ’23, June 18, 2023, Orlando, FL, USA

Table 1. Selection of ALP/Dense views [A] and equivalent Eigen [E] expressions. (a, b, g): [A] M1 is a container view with
any supported DstStr pattern (e.g., UpperTriangular, Symmetric, Tridiagonal, etc.) valid according to is_a-relation with M.
[E] xxx ∈ {triangular, selfAdjoint} and X any acceptable argument for xxx (e.g., triangularView< Upper >). (b, c, d): [A] rng_* an
alp::range(beg, end, inc) . [E] seq_* a Eigen::seq(beg, end, inc) . (g): [A] p_* of type alp::vector< size_t/int/... > . [E] p_* of
type std::vector< size_t/int/... > or several other acceptable array-like containers. (h): [A] Functor views overload low-rank
primitives, alp::outer is used here as a possible example. M2 has Symmetric or General pattern depending on alp::is_commutative<

⊗ >::value. [E] The use of noalias() enables lazy evaluation of the outer product. Assume v is of type Eigen::Matrix< T, Dynamic,

1 >. Implementing T.operator* according to the semantic of ⊗ would mimic the use in [A]. Note that varying operator in [A]
may require varying type T in [E]. Symmetry has to be explicitly expressed if desired, e.g., via selfadjointView.

Category ALP/Dense Interface Eigen-equivalent

Static

M1 = get_view< DstStr >(M); M.xxxView< X >(); (a)
M1 = get_view< DstStr >(M, rng_r, rng_c); M(seq_r, seq_c).xxxView< X >(); (b)
v = get_view(M, rng_r, c); M(seq_r, c); (c)
v = get_view(M, r, rng_c); M(r, seq_c); (d)
M𝑡 = get_view< transpose >(M); M.transpose(); (e)
d = get_view< diagonal >(M); M.diagonal(); (f)

Dynamic M1 = get_view< DstStr >(M, p_r, p_c); M(p_r, p_c).xxxView< X >(); (g)
Functor M2 = alp::outer(v, ⊗); M2.noalias() = v * v.transpose(); (h)

General

Upper
Trapezoidal

Diagonal

Upper
Triangular

(𝑎)

stride view stride view

(𝑏)
Figure 4. (a) Static views on an upper triangular matrix (e.g.,
a general (black box) and upper triangular view (blue box)).
Non-zeros are shown in green, while zeros are in white. (b)
A strided matrix view (on the right) obtained selecting rows
and columns at a stride from the original matrix (left in (b)).

Chaining Static Views. The same fusion optimization
process also takes place when three or more static views are
chained. ALP/Dense currently supports tree-like view chains
as part of a single scope, where new views are fully contained
within previously defined ones without overlapping with
more than one view.

Dynamic Views. Dynamic views are a second category
of views supported by ALP/Dense which enable permuting
the content of a container based on runtime information.
The view in Tab. 1(g) takes as an input three ALP/Dense
containers, i.e., a matrix A and two vectors p_r and p_c.
Vector p_r (p_c) contains integer elements and is interpreted
as a permutation applied to the rows (columns) of matrix A.
Figure 5 shows an example of dynamic view (right matrix)
with row permutation. In particular, the linear algebraic
semantic of this view can be expressed as the multiplication
of the permutation matrix corresponding to the permutation
p_r with matrix A:

𝑃𝑝𝑟𝐴 =
[
𝑒𝑝𝑟 (0) , . . . , 𝑒𝑝𝑟 (𝑀−1)

]𝑇
𝐴, (4)

where 𝐴 ∈ T𝑀×𝑁 and 𝑒𝑖 is the 𝑖th standard basis vector of
T𝑀 . The general view in Tab. 1(g) (with two permutation
vectors) permutes both rows and columns of A: 𝑃𝑝𝑟𝐴𝑃𝑇𝑝𝑐 .

permutation vector
[2, 5, 6, 7, 1, 3, 4, 0] sort view

Figure 5. The right matrix shows a dynamic row-permuting
view of the left matrix according to the permutation vector p𝑟 .
Vector p𝑟 was generated by the alp::sort primitive applied
to the the first column of the matrix on the left.

Permutation vectors are ALP/Dense containers and may
be computed using ALP/Dense primitives. For example, the
alp::sort function may be used to compute the sorting
permutation p𝑟 of the first column of the left matrix in Fig. 5
according to a given ALP/Dense partial order ≥⊆ T2.
Chaining Static and Dynamic Views. Dynamic and

static views may be chained. Interposing dynamic views
between static ones breaks a view chain into a number of
static sub-chains to which the fusion mechanism described
above may be separately applied.

FunctorViews. Functor views are overloadedALP/Dense
primitives which return views on low-rank output. Table 1(h)
shows the example of the outer product primitive between

ARRAY ’23, June 18, 2023, Orlando, FL, USA Spampinato et al.

a vector 𝑣 and its own transpose using an operator ⊗. The
output its a view on the resulting matrix 𝑆 . Notice that ma-
trix 𝑆 may have generic or symmetric pattern depending
on the commutativity of operator ⊗. If matrix 𝑆 is just an
intermediate temporary container with no substantial reuse,
capturing it as a view can save on memory allocation while
computing its elements according to the semantics of the
primitive (i.e., 𝑆𝑖, 𝑗 = 𝑥𝑖 ⊗ 𝑥 𝑗) can be performed on the fly via
C++ lambda functions (functors) whenever required by sub-
sequent accesses. Notice, that the alp::outer functor view
is used just as a representative example. Similarly, a number
of other low-rank and element-wise (e.g., alp::conjugate)
ALP/Dense primitives may provide overloaded views.

Materializing aView. If needed, any kind of views can be
materialized in memory via a call to the alp::set primitive.
The output container needs to match the type (including
element type and non-zero pattern) of the input view. Static
and dynamic views are also acceptable output containers as
they address valid memory.

4.3 ALP/Dense Primitives
In the remainder of this section, we describe how structured
containers and views can support the implementation of
ALP/Dense primitives. In particular, we will discuss their role
in the context of both the reference sequential and parallel
ALP/Dense backends.

Sequential Backend. Non-zero patterns associated with
structured containers can be used to specialize ALP/Dense
primitives, consequently minimizing the amount of redun-
dant computation and data access. For example, consider the
reference implementation of the alp::foldl(A, B, Mon)
primitive applied to two bandedmatrices𝐴,𝐵 ∈ T𝑀×𝑁 with a
monoid Mon B< T, ⊕, 0 >. Assuming𝐴 and 𝐵 have band in-
tervals [𝑙𝐴, 𝑢𝐴) and [𝑙𝐵, 𝑢𝐵), respectively, the primitive com-
putes the following:

𝐴𝑖, 𝑗 B 𝐴𝑖, 𝑗 ⊕ 𝐵𝑖, 𝑗 ,{
(𝑖, 𝑗) ∈ Z2 | 0 ≤ 𝑖 < 𝑀,

max(0, 𝑖 + 𝑙𝐵) ≤ 𝑗 < min(𝑁, 𝑖 + 𝑢𝐵)

}
, (5)

granted that the following condition:

[𝑙𝐵, 𝑢𝐵) ⊆ [𝑙𝐴, 𝑢𝐴), (6)

holds on the band intervals. Notice that 𝐴 is not assigned
outside of (5), as𝐴𝑖, 𝑗 ⊕ 0 = 𝐴𝑖, 𝑗 . Condition (6) can be verified
at compile time via type traits along with other conditions on
the validity of the monoid (Sec. 3.1). The iteration space de-
scribed in (5) can be constructed precisely by the primitive’s
loops via type traits on the type of 𝐵, thus only accessing
data strictly necessary for the computation. Internally, each
logical access to𝐴𝑖, 𝑗 and 𝐵𝑖, 𝑗 is translated into storage coordi-
nates via the AF associated with each container (for example,
the AF in Fig. 3(a) assuming that a row-major order storage
is selected for the two matrices).

Similar logic can be applied to the combination of sup-
ported structured containers and all other ALP/Dense prim-
itives enabling the synthesis of tight iteration spaces and
associated memory maps. In Sec. 6 we will discuss how we
plan to take this type information into account in the de-
velopment of future high-performance sequential backends
with compiler support.

Shared Memory-Parallel Backend. When targeting a
parallel ALP/Dense backend, such as the shared-memory
one, the AF becomes hierarchical (as shown in Fig. 3(b)) with
a coordinate space that depends on the chosen data distribu-
tion. ALP/Dense provides an additional internal view mech-
anism for developers of primitives, which allows referencing
local blocks as sequential ALP/Dense containers. For exam-
ple, consider implementing the primitive alp::eWiseMul(A,
alpha, beta, Sr) with the following specification:

𝐴 B 𝐴 ⊗ 𝛼 ⊕ 𝛽, 𝐴 ∈ T𝑀×𝑁 , 𝛼, 𝛽 ∈ T, (7)

under the semiring 𝑆𝑟 B< T, ⊕, ⊗, 1, 0 >. Suppose the tar-
get backend is a combination of the shared-memory parallel
backend and the sequential reference one. When targeting
a backend, ALP/Dense containers are automatically special-
ized to it. Here, we indicate this with an additional template
parameter in the Matrix type, e.g., Matrix< ..., shmem >
for a matrix in our current example. The internal get_view
function can be used to cast the computation in terms of
the same primitive applied to local sequential blocks Aloc
of size𝑚𝑏 × 𝑛𝑏 as shown in the code sketch below:
1 RC eWiseMul(Matrix < ..., shmem > A, ... alpha , ...,

... Sr) {

2 const auto &da = internal :: getStorageScheme(A)

3 .getDistribution ();

4
5 #pragma omp parallel

6 {

7 thread = config ::OMP:: current_thread_ID ();

8 th_coo = da.getThreadCoords(thread);

9 blk_grd = da.getLocalBlockGridDims(th_coo);

10
11 for(auto &blk_coo: blk_grd) {

12 // Assuming shmem::seq == reference , Aloc has

type

13 // Matrix < ... , reference >

14 auto Aloc = internal ::get_view < shmem::seq >(

15 A, th_coo , blk_coo

16);

17 // Calls func on L.21

18 eWiseMul(Aloc , alpha , beta , Sr);

19 } }

20 }

21
22 // Implementation of eWiseMul for reference containers

23 RC eWiseMul(Matrix < ..., reference > A, ... , ... Sr)

{ ... }

Differently from the user-level get_view, the internal one
associated with the shared-memory backend takes coordi-
nates from a thread and a local block grid, both defined by
the distribution of the storage scheme. For example, assum-
ing the shared-memory storage scheme associated with 𝐴

selects a 2D block-cyclic distribution like the one in Fig. 3(b),

Towards Structured Algebraic Programming ARRAY ’23, June 18, 2023, Orlando, FL, USA

𝐴𝑙𝑜𝑐 would be referencing one of the yellow blocks in the
figure, with a layout specified by the loc storage polynomial.
The internal get_view produces a sequential view container
Aloc suitable for the sequential backend selected in combi-
nation with the parallel one (e.g., reference in the example
in Fig. 3(b)). Currently, ALP/Dense only implements view
mechanisms for general matrices when selecting parallel
backends, but we are working on extending it to include any
supported structured container.

5 Evaluation
In this section, we analyze the new structural extension of
ALP/Dense from both an expressiveness and performance
point of view. In particular, we try two answer two questions:

1. What kind of workloads can be expressed in ALP/-
Dense based on the new extensions introduced in the
previous section (Sec. 5.1)?

2. What performance we can expect from future high-
performance backend implementations (Sec. 5.2)?

5.1 Expressiveness
The current prototype of the ALP/Dense framework is pub-
licly available [4], and collects various algorithmic imple-
mentations including:

• Householder tridiagonalisation;
• Inverse of a symmetric, positive-definite matrix;
• The Cholesky decomposition;
• LU decomposition;
• QR decomposition;
• Singular value decomposition; and
• Symmetric/Hermitian eigenvalue decomposition.

Each backend is associated to a specific include sub-folder,
e.g., include/alp/reference for the reference backend imple-
mentation. ALP Algorithms are available in the include/
alp/algorithms folder. For instance, file cholesky.hpp also
contains the implementation of BChol discussed in Sec. 3.2.
We use the latter as an expressiveness case study and refer
the reader to [4] for further algorithmic implementations.

The Cholesky Decomposition in ALP. In the ALP/-
Dense implementation of BChol, operations are performed
on partitions of matrix 𝑆 as shwon in Fig. 1. In particular, the
unblocked version of the Cholesky decomposition is applied
to square diagonal blocks:
1 auto S11 = get_view(S, range1 , range1);

2 cholesky_uptr(S11 , ring); // unblocked version

The diagonal view 𝑆11 inherits the SPD pattern from ma-
trix 𝑆 which enables passing it to the cholesky_uptr func-
tion. Following, the linear system 𝑈𝑝 (𝑆11) · 𝑆12 B 𝑆12 is
solved using (in-place) forward substitution on the upper
triangular view of 𝑆11 and the general panel 𝑆12:
1 auto S12 = get_view < General >(S, range1 , range2);

2 algorithms :: forwardsubstitution(

3 get_view < UpperTriangular >(S11), S12 , ring);

Finally, the rank-k update of the square diagonal view 𝑆22
is computed using the alp::mxm and alp::foldl primitives:

1 // S22t is also symmetric

2 size_t n = ncols(S12);

3 Matrix < T, typename S:: structure > S22t(n);

4 set(S22t , zero);

5 mxm(S22t ,

6 get_view < view:: transpose >(S12), S12 , ring);

7 auto S22 = get_view(S, range2 , range2);

8 foldl(S22 , S22t , minus);

Notice that the mxm and foldl primitives should investi-
gate the patterns of its parameters to determine that only
half of the matrix needs to be computed. Further, the storage
scheme of 𝑆22 is compile-time deducible from the one of 𝑆 ,
making each internal access to 𝑆𝑡22 yield a suitable access to
the memory of 𝑆 .

5.2 Performance
An ALP/Dense high-performance, sequential backend is cur-
rently work in progress. However, we show projected per-
formance obtained with our framework using a dispatch
backend. Compiling with this backend, ALP/Dense inter-
cepts specific combinations of primitives provided by us and
maps them to BLAS calls. The dispatch backend allows for
independent benchmarking of:

• sequential algorithms, where operations are dispatched
to an external library, and

• parallel algorithms where operations on blocks are
dispatched to an external library.

Experimental Setup. All experiments reported here are
performed on Kunpeng 920-4826 machine (2 sockets, 96
cores) with 500GB DRAM. Symbols in plots show the mean
value for an experiment repeated 30 times, while the shaded
area around the symbols (small and not visible in some cases)
indicates the corresponding standard deviation. In shared-
memory parallel experiments, we also use thread pinning,
in order to improve the memory locality, by setting the envi-
ronment variable GOMP_CPU_AFFINITY="0-15 24-39 48-63
72-87" to reflect the NUMA domains of a Kunpeng 920-4826
machine. ALP dispatches to KML BLAS, a vendor BLAS im-
plementation optmized for Kunpeng processors [24].

Sequential.We compare ALP/Dense implementation of
the blocked Cholesky decomposition compiled with a dis-
patch backend with the Netlib LAPACK [6]. Both link against
the sequential version of KML BLAS. We use two block sizes
𝐵𝑆 = 128 and 𝐵𝑆 = 64, and show that the performance of
ALP/Dense is on par with the one of Netlib LAPACK im-
plementation, as shown in the upper panel of Fig. 6, full
green line with circles (ALP/Dense 𝐵𝑆 = 128) and full or-
ange line with triangles (ALP/Dense 𝐵𝑆 = 64) compared to
full blue line with square (LAPACK). The blocked Cholesky
decomposition with fixed block sizes delivers similar and
better performances for large matrices (matrix size larger
than 2000), for instance, for matrix size 𝑁 = 4000, execution

ARRAY ’23, June 18, 2023, Orlando, FL, USA Spampinato et al.

time of ALP/Dense block algorithm is 7% shorter than the
LAPACK execution time.

0

1000

2000
nthreads=1

ALP + OMP-kblas BS=128
ALP + OMP-kblas BS=64
LAPACK + OMP-kblas

0

200

400

ex
ec

ut
io

n
ti
m

e
/
m

s

nthreads=64
ALP + OMP-kblas BS=128
ALP + OMP-kblas BS=64
LAPACK + OMP-kblas

500 1000 1500 2000 2500 3000 3500 4000
matrix size (N)

0

500

1000 nthreads=96
ALP + OMP-kblas BS=128
ALP + OMP-kblas BS=64
LAPACK + OMP-kblas

Figure 6. Execution time of ALP/Dense Cholesky block-
decomposition (less is better) as a function of (square-) ma-
trix size 𝑁 . Block-decomposition using block sizes 𝐵𝑆 = 128
(green lines with circles), 𝐵𝑆 = 64 (orange lines with trian-
gles) and Netlib LAPACK implementation (blue lines with
squares). Tests are performed using 1 (upper panel), 64 (mid-
dle panel) and 96 (bottom panel) threads.

Shared-Memory Parallel. In a first experiment, with-
out modifying the ALP/Dense blocked algorithm, shared-
memory parallel performance is inspected for 64 and 96
threads (middle and bottom panel, respectively, in Fig. 6) link-
ing the same ALP program compiled with the dispatch back-
end in the sequential experiment above against the shared-
memory parallel version of KML BLAS. Netlib LAPACK is
also linked against the same version of the BLAS library. In
particular, for matrix size 𝑁 = 4000, ALP/Dense blocked
algorithm execution time is shorter by a factor 1.6 and 2.4
when using 64 and 96 (all available) threads, respectively.

In a second experiment, we evaluate the performance of
the alp::mxm primitive compiled with a combination of the
shared memory-parallel and the sequential dispatch back-
ends. The parallel alp::mxm is implemented based on the
2.5D matrix multiplication algorithm in [43]. In particular,
we use threads in both a 2D (ALP/Dense 2D) and a 3D (ALP/-
Dense 3D) grid configuration. The sequential alp::mxm is
dispatched to a sequential version of gemm from KML BLAS.
We compare against the shared-memory implementation of
gemm from KML BLAS. In the upper panel in Fig. 7 we see
the performance comparison for the operation 𝐶 += 𝐴 × 𝐵,
where 𝐴, 𝐵 and𝐶 are square 𝑁 ×𝑁 matrices, between ALP/-
Dense 3D (orange line with circles), ALP/Dense 2D (green

0

2000

4000

ex
ec

ut
io

n
ti
m

e
/
m

s

MXM nthreads=64
3D algorithm ALP + kblas
2D algorithm ALP + kblas
OMP-kblas

2000 4000 6000 8000 10000
matrix size (N)

0

25

50

75 Rank-k update (k=128)
nthreads=64

2D algorithm ALP + kblas
OMP-kblas GOMP_CPU_AFFINITY off
OMP-kblas GOMP_CPU_AFFINITY on

Figure 7. ALP/Dense (upper panel) multiplication of two
square 𝑁 × 𝑁 matrices, execution time (less is better), for
ALP/Dense 3D (orange line with circles), ALP/Dense 2D
(green line with triangles) and Kunpeng OMP-BLAS (blue
line with squares), using 64 threads. Execution time (bottom
panel) of ALP/Dense (green line with triangles) and Kun-
peng OMP-BLAS rank-k update (𝐶 += 𝐴 × 𝐵, where 𝐶 is a
square 𝑁 × 𝑁 matrix, 𝐴 is 𝑁 × 𝑘 , and 𝐵 is 𝑘 × 𝑁 , rectan-
gular matrix, (𝑘 = 128 in all cases), using 64 threads, with
thread pinning enabled (blue line with squares) and disabled
(magenta dashed line).

line with triangles) and KML BLAS (blue line with squares),
using 64 threads, which results in comparable performances
in all three cases. The bottom panel in Fig. 7 shows perfor-
mance comparisons between the ALP/Dense 2D and KML
BLAS (blue line with squares) rank-k update, i.e.,𝐶 += 𝐴×𝐵

operation, where 𝐶 is square 𝑁 × 𝑁 matrix, 𝐴 is 𝑁 × 𝑘 and
𝐵 is 𝑘 × 𝑁 size matrix, and 𝑘 = 128 in all cases (same as the
block size used in the mxm experiment). In the ALP/Dense
implementation, all matrices are blocked into 𝐵𝑆 = 128 sized
blocks, and redistributed in memory according to 2D scheme.
The tests have been performed using 64 OpenMP threads,
where we have imposed OpenMP thread binding. We see
that ALP/Dense 2D outperforms or stays within standard
deviation of the performance of KML BLAS. Additionally,
ALP/Dense 2D shows much smaller performance variations
than KML BLAS library with thread pinning disabled.

6 Limitations and Future Work
In this section, we point out some of the current limitations
in our approach and briefly discuss how we intend to address
them in future work.

High-performance ALP/Dense. Currently, most of the
proposed ALP/Dense features are implemented as part of a

Towards Structured Algebraic Programming ARRAY ’23, June 18, 2023, Orlando, FL, USA

reference backend at the sequential level. We plan to intro-
duce a high-performance sequential backend as well, leverag-
ing optimization methodologies from past library and com-
piler experiences [8, 18, 47]. In particular, we plan to further
leverage the static knowledge from the pattern of a container
and its access function in the optimization process.

Exploiting Entry Patterns. Structured containers, such
as symmetric, skew symmetric, and Vandermonde matrices
exhibit entry patterns which can currently only be captured
implicitly by including ad-hoc patterns with a general non-
zero band in the is_a poset discussed in Sec. 4.1. We believe
that a modern algebraic programming interface should sup-
port new algorithmic formulations by easily incorporating
old and newly emerging container structures [20, 37], even
if not (yet) considered by established HPC interfaces, such as
BLAS and LAPACK. For this reason, we plan to extend our
pattern description mechanism at the container type level
to also include entry patterns along with non-zero patterns.

Unified Sparse and Dense API. The interface of ALP/-
Dense builds on ALP/GraphBLAS, which supports general
sparse matrices and vectors. In the future, we plan to inves-
tigate a unified ALP interface with the possibility to define
the non-zero pattern of a container as either dense or sparse
(e.g., in Listing 1), enabling primitives to operate on mixed
storage schemes. Further, extending the approach to tensor
containers may define a truly flexible algebraic interface for
multidimensional array programming [18, 27, 40, 42].

7 Conclusion
In this paper, we proposed a new algebraic programming
interface to express primitive operations on structured con-
tainers with densely-stored non-zero patterns, such as band
and triangular matrices. The container type decouples the
formulation of its non-zero pattern from the one of its storage
schemes, allowing users to build structured mathematical
formulations, backends and to pair them with appropriate
storage schemes and access functions. A compiler can use
static information from the container types to verify that
primitives are used on conformant containers as well that
they are implemented using tight loop bounds. We demon-
strated that this interface can be integrated in a modern C++
algebraic programming API and used to express and compute
important structured linear algebra algorithms occurring
in scientific computing and machine learning applications.
If supplied with an efficient primitive implementations, al-
gorithms based on our interface can achieve performance
competitive with high-performance numerical libraries.

Acknowledgments
We thank the anonymous ALP contributors as well as the
anonymous reviewers for their constructive comments.

References
[1] 2020. GraphBLAS Template Library (GBTL), v. 3.0. https://github.com/

cmu-sei/gbtl.
[2] 2021. ALP/GraphBLAS. https://github.com/Algebraic-Programming/

ALP.
[3] 2022. OpenBLAS – An optimized BLAS library. https://www.openblas.

net/.
[4] 2023. ALP/Dense. https://github.com/Algebraic-Programming/ALP/

tree/array23-artifact.
[5] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford,

James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, Alan McKenney, et al. 1999. LAPACK users’ guide.
SIAM.

[6] Edward Anderson and Jack Dongarra. 1990. Lapack working note
19: Evaluating block algorithm variants in LAPACK. University of
Tennessee.

[7] Henrik Barthels. 2021. Linnea: A Compiler for Mapping Linear Algebra
Problems onto High-Performance Kernel Libraries. Dissertation. RWTH
Aachen University. https://hpac.cs.umu.se/~barthels/publications/
dissertation.pdf

[8] Uday Bondhugula. 2020. High Performance Code Generation in
MLIR: An Early Case Study with GEMM. CoRR abs/2003.00532 (2020).
arXiv:2003.00532

[9] Benjamin Brock, Aydın Buluç, Timothy Mattson, Scott McMillan, and
José Moreira. 2021. The GraphBLAS C API Specification: Version 2.0.0.
https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf.

[10] Qinglei Cao, Sameh Abdulah, Rabab Alomairy, Yu Pei, Pratik Nag,
George Bosilca, Jack Dongarra, Marc G. Genton, David E. Keyes, Hatem
Ltaief, and Ying Sun. 2022. Reshaping Geostatistical Modeling and
Prediction for Extreme-Scale Environmental Applications. In Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’22). Article 2, 12 pages.

[11] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS:
Graph Algorithms in the Language of Sparse Linear Algebra. ACM
Trans. Math. Softw. 45, 4, Article 44 (dec 2019), 25 pages. https://doi.
org/10.1145/3322125

[12] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. 1990.
A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Softw. 16, 1 (mar 1990), 1–17. https://doi.org/10.1145/77626.79170

[13] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson. 1988. An Extended Set of FORTRAN Basic Linear Algebra
Subprograms. ACM Trans. Math. Softw. 14, 1 (mar 1988), 1–17. https:
//doi.org/10.1145/42288.42291

[14] D. Fabregat-Traver and P. Bientinesi. 2011. Automatic Generation
of Loop-Invariants for Matrix Operations. In 2013 13th International
Conference on Computational Science and Its Applications. 82–92. https:
//doi.org/10.1109/ICCSA.2011.41

[15] Franz Franchetti, Tze-Meng Low, Thom Popovici, Richard Veras,
Daniele G. Spampinato, Jeremy Johnson, Markus Püschel, James C.
Hoe, and José M. F. Moura. 2018. SPIRAL: Extreme Performance
Portability. Proceedings of the IEEE, special issue on “From High Level
Specification to High Performance Code” 106, 11 (2018).

[16] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. 2005. For-
mal Loop Merging for Signal Transforms. In Programming Languages
Design and Implementation (PLDI). 315–326.

[17] Gianluca Frison, Dimitris Kouzoupis, Tommaso Sartor, Andrea Zanelli,
and Moritz Diehl. 2018. BLASFEO: Basic Linear Algebra Subroutines
for Embedded Optimization. ACM Trans. Math. Softw. 44, 4, Article 42
(jul 2018), 30 pages. https://doi.org/10.1145/3210754

[18] Roman Gareev, Tobias Grosser, and Michael Kruse. 2018. High-
Performance Generalized Tensor Operations: A Compiler-Oriented
Approach. ACM Trans. Archit. Code Optim. 15, 3, Article 34 (sep 2018),
27 pages. https://doi.org/10.1145/3235029

https://github.com/cmu-sei/gbtl
https://github.com/cmu-sei/gbtl
https://github.com/Algebraic-Programming/ALP
https://github.com/Algebraic-Programming/ALP
https://www.openblas.net/
https://www.openblas.net/
https://github.com/Algebraic-Programming/ALP/tree/array23-artifact
https://github.com/Algebraic-Programming/ALP/tree/array23-artifact
https://hpac.cs.umu.se/~barthels/publications/dissertation.pdf
https://hpac.cs.umu.se/~barthels/publications/dissertation.pdf
https://arxiv.org/abs/2003.00532
https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1109/ICCSA.2011.41
https://doi.org/10.1109/ICCSA.2011.41
https://doi.org/10.1145/3210754
https://doi.org/10.1145/3235029

ARRAY ’23, June 18, 2023, Orlando, FL, USA Spampinato et al.

[19] Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations
(fourth ed.). The Johns Hopkins University Press.

[20] Albert Gu, Karan Goel, and Christopher Re. 2022. Efficiently Modeling
Long Sequences with Structured State Spaces. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=
uYLFoz1vlAC

[21] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen. https://eigen.
tuxfamily.org/.

[22] Charles R. Harris et al. 2020. Array programming with NumPy. Nature
585, 7825 (Sept. 2020), 357–362. https://doi.org/10.1038/s41586-020-
2649-2

[23] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. 2016. LIBXSMM: Accelerating Small Matrix Multiplications by
Runtime Code Generation. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC ’16). Article 84, 11 pages. https://doi.org/10.5555/3014904.3015017

[24] Ltd Huawei Technologies Co. 2023. KML Kunpeng Math Library. https:
//www.hikunpeng.com/developer/boostkit/library/math. Accessed:
2032-03-07.

[25] Intel. 2023. Intel oneAPI Math Kernel Library. https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl.html.

[26] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Lan-
guage of Linear Algebra. Society for Industrial and Applied Mathemat-
ics. https://doi.org/10.1137/1.9780898719918

[27] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions
and Applications. SIAM Rev. 51, 3 (2009), 455–500. https://doi.org/10.
1137/07070111X

[28] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis & transformation. In International Sym-
posium on Code Generation and Optimization (CGO). 75–86. https:
//doi.org/10.1109/CGO.2004.1281665

[29] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler
Infrastructure for Domain Specific Computation. In IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO. 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[30] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic
Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math.
Softw. 5, 3 (sep 1979), 308–323. https://doi.org/10.1145/355841.355847

[31] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S.
Quintana-Orti. 2016. Analytical Modeling Is Enough for High-
Performance BLIS. ACM Trans. Math. Softw. 43, 2, Article 12 (aug
2016), 18 pages. https://doi.org/10.1145/2925987

[32] Johan Mabille, Sylvain Corlay, and Wolf Vollprecht. 2016. xtensor.
https://github.com/xtensor-stack/xtensor.

[33] Devin A. Matthews. 2018. High-Performance Tensor Contraction
without Transposition. SIAM Journal on Scientific Computing 40, 1
(2018), C1–C24. https://doi.org/10.1137/16M108968X

[34] Nvidia. 2023. cuBLAS. https://docs.nvidia.com/cuda/cublas/.
[35] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. 2019.

Position-Dependent Arrays and Their Application for High Perfor-
mance Code Generation. In Proceedings of the 8th ACM SIGPLAN Inter-
nationalWorkshop on Functional High-Performance andNumerical Com-
puting (FHPNC 2019). 14–26. https://doi.org/10.1145/3331553.3342614

[36] Christos Psarras, Henrik Barthels, and Paolo Bientinesi. 2022. The
Linear Algebra Mapping Problem. Current State of Linear Algebra
Languages and Libraries. ACM Trans. Math. Softw. 48, 3, Article 26
(sep 2022), 30 pages. https://doi.org/10.1145/3549935

[37] Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu
Li, Yuchao Dai, Lingpeng Kong, and Yiran Zhong. 2023. Toeplitz
Neural Network for Sequence Modeling. In The Eleventh International
Conference on Learning Representations. https://openreview.net/forum?
id=IxmWsm4xrua

[38] Sanil Rao, Anurag Kutuluru, Paul Brouwer, Scott McMillan, and Franz
Franchetti. 2020. GBTLX: A First Look. In 2020 IEEE High Performance
Extreme Computing Conference (HPEC). 1–7. https://doi.org/10.1109/
HPEC43674.2020.9286231

[39] Conrad Sanderson and Ryan Curtin. 2016. Armadillo: a template-based
C++ library for linear algebra. Journal of Open Source Software 1, 2
(2016), 26. https://doi.org/10.21105/joss.00026

[40] Martin D. Schatz, TzeMeng Low, Robert A. van de Geijn, and Tamara G.
Kolda. 2014. Exploiting Symmetry in Tensors for High Performance:
Multiplication with Symmetric Tensors. SIAM Journal on Scientific
Computing 36, 5 (2014), C453–C479. https://doi.org/10.1137/130907215

[41] Stanislav G. Sedukhin andMarcin Paprzycki. 2012. GeneralizingMatrix
Multiplication for Efficient Computations on Modern Computers. In
Parallel Processing and Applied Mathematics, Roman Wyrzykowski,
Jack Dongarra, Konrad Karczewski, and Jerzy Waśniewski (Eds.). 225–
234. https://doi.org/10.1007/978-3-642-31464-3_23

[42] Shruti Shivakumar, Jiajia Li, Ramakrishnan Kannan, and Srinivas
Aluru. 2021. Efficient Parallel Sparse Symmetric Tucker Decompo-
sition for High-Order Tensors. 193–204. https://doi.org/10.1137/1.
9781611976830.18

[43] Edgar Solomonik and James Demmel. 2011. Communication-Optimal
Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms.
In Euro-Par 2011 Parallel Processing, Emmanuel Jeannot, Raymond
Namyst, and Jean Roman (Eds.). 90–109.

[44] Daniele G. Spampinato and Markus Püschel. 2016. A Basic Linear
Algebra Compiler for Structured Matrices. In International Symposium
on Code Generation and Optimization (CGO). 117–127.

[45] Xing Su, Xiangke Liao, and Jingling Xue. 2017. Automatic Generation
of Fast BLAS3-GEMM: A Portable Compiler Approach. In Proceedings
of the 2017 International Symposium on Code Generation and Optimiza-
tion (CGO ’17). 122–133.

[46] Yaohung Tsai. 2020. Mixed-Precision Numerical Linear Algebra Algo-
rithms: Integer Arithmetic Based LU Factorization and Iterative Refine-
ment for Hermitian Eigenvalue Problem. Dissertation. University of
Tennessee. https://trace.tennessee.edu/utk_graddiss/6094

[47] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework
for Rapidly Instantiating BLAS Functionality. ACM Trans. Math. Softw.
41, 3, Article 14 (jun 2015), 33 pages. https://doi.org/10.1145/2764454

[48] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhe-
dral Model. In Mathematical Software – ICMS 2010. Springer Berlin
Heidelberg, 299–302.

[49] Pauli Virtanen et al. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[50] Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, and Zheng Wang.
2021. LIBSHALOM: Optimizing Small and Irregular-Shaped Matrix
Multiplications on ARMv8 Multi-Cores. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’21). Article 72, 14 pages. https://doi.org/10.1145/
3458817.3476217

[51] A. N. Yzelman, D. Di Nardo, J. M. Nash, and W. J. Suijlen. 2020. A
C++ GraphBLAS: specification, implementation, parallelisation, and
evaluation. (2020). Preprint.

Received 2023-03-31; accepted 2023-04-21

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://eigen.tuxfamily.org/
https://eigen.tuxfamily.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5555/3014904.3015017
https://www.hikunpeng.com/developer/boostkit/library/math
https://www.hikunpeng.com/developer/boostkit/library/math
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/2925987
https://github.com/xtensor-stack/xtensor
https://doi.org/10.1137/16M108968X
https://docs.nvidia.com/cuda/cublas/
https://doi.org/10.1145/3331553.3342614
https://doi.org/10.1145/3549935
https://openreview.net/forum?id=IxmWsm4xrua
https://openreview.net/forum?id=IxmWsm4xrua
https://doi.org/10.1109/HPEC43674.2020.9286231
https://doi.org/10.1109/HPEC43674.2020.9286231
https://doi.org/10.21105/joss.00026
https://doi.org/10.1137/130907215
https://doi.org/10.1007/978-3-642-31464-3_23
https://doi.org/10.1137/1.9781611976830.18
https://doi.org/10.1137/1.9781611976830.18
https://trace.tennessee.edu/utk_graddiss/6094
https://doi.org/10.1145/2764454
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3458817.3476217
https://doi.org/10.1145/3458817.3476217

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 ALP/GraphBLAS
	3.2 Dense Linear Algebra Libraries

	4 Structured ALP/Dense Extension
	4.1 Structured Containers
	4.2 ALP/Dense Views
	4.3 ALP/Dense Primitives

	5 Evaluation
	5.1 Expressiveness
	5.2 Performance

	6 Limitations and Future Work
	7 Conclusion
	References

