
Effective implementation of the High Performance
Conjugate Gradient benchmark on GraphBLAS

1st Alberto Scolari
Computing Systems Laboratory

Zurich Research Center
Huawei Technologies, Switzerland

alberto.scolari@huawei.com

2nd Albert-Jan Yzelman
Computing Systems Laboratory

Zurich Research Center
Huawei Technologies, Switzerland
albertjan.yzelman@huawei.com

Abstract—Applications in High-Performance Computing
(HPC) environments face challenges due to increasing
complexity. Among them, the increasing usage of sparse data
pushes the limits of data structures and programming models
and hampers the efficient usage of existing, highly parallel
hardware. The GraphBLAS specification tackles these challenges
by proposing a set of data containers and primitives, coupled
with a semantics based on abstract algebraic concepts: this
allows multiple applications on sparse data to be described
with a small set of primitives and benefit from the many
optimizations of a compile-time-known algebraic specification.
Among HPC applications, the High Performance Conjugate
Gradient (HPCG) benchmark is an important representative
of a large body of sparse workloads, and its structure
poses several programmability and performance challenges.
This work tackles them by proposing and evaluating an
implementation on GraphBLAS of HPCG, highlighting the main
changes to its kernels. The results for shared memory systems
outperforms the reference, while results in distributed systems
highlight fundamental limitations of GraphBLAS-compliant
implementations, which suggests several future directions.

Index Terms—hpcg,multigrid,red-black gauss-seidel,graphblas

I. INTRODUCTION

The High-Performance Computing (HPC) landscape is cur-
rently facing challenges due to the steadily increasing com-
plexity of applications and platforms. Applications from both
classical scientific domains like physics and newer domains
like data analytics or Artificial Intelligence (AI) require at-
taining high performance metrics while at the same time
keeping programming efforts under control. An important
trend is the adoption of sparse data, which model some
real-world scenarios where certain entities are associated to
others and only a small subsets of all possible associations
is of interest. Examples of this trend are diverse, ranging
from Finite Elements Methods (FEMs)-based applications for
physics [1] to graph-based applications for the analysis of
large data sets [2]. Computing platforms are also becoming
increasingly complex, and writing reliable and performing
applications requires nowadays costly expertise and platform-
specific tools. Current software solutions also fall short in
adapting to the growing landscape of HPC applications while
ensuring effective hardware usage.

In this scenario, applications of special interest in HPC are
iterative solvers for sparse linear systems [3], which allow
studying many physical problems by relying on a sparse
description of the physical system. Several software packages
implement sparse solvers on different hardware platforms [4],
and the research is increasingly active. As a consequence,
the need for standardization and comparison led to the in-
troduction of a widely-accepted HPC benchmark named High
Performance Conjugate Gradient (HPCG) [5], from which the
eponymous HPCG rank for supercomputers was created [6].
HPCG solves a sparse linear problem Ax = b, where A is a
sparse matrix of size n × n, b a dense, known vector and x
the unknown vector. Unlike dense solvers such as the well-
known High Performance Linpack (HPL) suite [7], HPCG
fully exploits the sparsity of the A matrix by implementing an
iterative solver algorithm whose time and space complexity are
proportional to the number of non-zeroes in A and by using
suitable data structures. Although HPCG solves a specific
physical problem, the algorithms it is composed of represent
a wide class of solvers, and the ranking guidelines disallow
problem-specific optimizations [8].

Despite standardization efforts, multiple data structures for
sparse data exist, whose choice depends on various factors
(sparsity pattern, computation, hardware, etc.); as a conse-
quence, the implementation of algorithms may strongly vary,
leading to a complex design space. Instead, productivity calls
for an abstract representation of the computation as close as
possible to its algebraic formulation: this led to the introduc-
tion of GraphBLAS [9], a specification to develop algorithms
for graphs with strong algebraic foundations. Unlike BLAS
[10] and other frameworks, GraphBLAS does not prescribe
a specific storage format for vectors and matrices, leaving
the choice to the specific implementation. This abstraction
enables domain experts to develop algorithms that are portable
and leave optimizations to the specific implementation, thus
achieving a complete separation of concerns.

Despite the increasing adoption of GraphBLAS, sparse
solvers are still an area of active development and challenge
both the GraphBLAS specification and its implementations.
This paper presents an implementation of HPCG on top of
GraphBLAS, addressing the related design and implementa-
tion choices. Hence, it brings the following contributions:

ar
X

iv
:2

30
4.

08
23

2v
1

 [
cs

.D
C

]
 1

7
A

pr
 2

02
3

• it discusses the main design decisions to implement
HPCG on top of GraphBLAS, showing how its kernels
can be implemented on top of opaque data structures

• it assesses the performance of the implementation
in shared memory systems typical of HPC environ-
ments, outperforming the reference with no manual or
architecture-specific optimization efforts

• it assesses the performance of the implementation in a
distributed system, showing current limitations

• it discusses theoretical limitations and possible advance-
ments to the current implementations and to the Graph-
BLAS specification

This paper is organized as follows. Section II introduces to
the background information, in particular the problem HPCG
solves, its main kernels and the GraphBLAS specification.
Section III discusses the design decisions necessary to imple-
ment HPCG on top of GraphBLAS. Section IV explains the
main characteristics of the implementation, while Section V
shows its evaluation on several HPC-grade systems. Section VI
highlights the main efforts to accelerate HPCG on HPC
architectures. Finally, Section VII discusses the achievements
of this work and possible future work.

II. BACKGROUND

This section explains the structure of the HPCG benchmark,
its kernels and performance characteristics. It then describes
the aspects of GraphBLAS that are relevant to this paper.

A. The HPCG benchmark

Many problems of interest to physicists and engineers are
represented by Partial Differential Equationss (PDEs) and
model the problem space as a 1D, 2D or 3D grid. Elliptic
PDEs are an important class, as they describe many common
problems and are usually discretized on a 3D spatial grid of
nx × ny × nz = n points, where the interactions are modeled
according to the physics of the system. These interactions often
involve only points that are spatially close (e.g., within a halo),
producing inherently sparse matrices.

HPCG [8, 11] solves a heat-diffusion problem on a semi-
regular 3D grid via a preconditioned Conjugate Gradient
(CG) solver [12], modeling heat exchanges among neighboring
elements. HPCG main kernels are:

1) input generation
2) Conjugate Gradient solver, in turn relying on the
3) Multigrid preconditioner, implemented on top of the
4) Symmetric Gauss-Seidel smoother;
5) restriction and refinement, to recursively call the Multi-

grid (MG) preconditioner and use its result;
The following sections delve into the details of these kernels.

B. Input generation

An iterative sparse solver has three inputs: the system
matrix A, the right-hand side vector b and the initial hint
for the solution x(0). Since HPCG simulates a well-known
heat diffusion problem on a semi-regular grid, these inputs
are generated automatically, with b = 1 and x(0) = 0.

Listing 1: Steps of the MG preconditioner
1 function MG(mg_level,z,r)
2 z ← sgs_smoother(mg_level,z,r)
3 if (mg_level.coarser_sys = nil)
4 return z
5 f ← mg_level.A * z
6 rc ← restrict(mg_level,r − f)
7 zc ← 0
8 zc ← MG(mg_level.coarser_level,zc,rc)
9 z ← z + refine(mg_level,zc)
10 z ← sgs_smoother(mg_level,z,r)
11 return z

C. Conjugate Gradient solver

The CG solver [12] is a generic, iterative algorithm for
the solution of PDEs, which starts from the user-given so-
lution x(0) and iteratively refines it until converging to the
final solution x(i) after i iterations, or until the solution is
“close enough”, i.e., until the module of the residual vector
r = b − Ax(i) is smaller than a given threshold. The main
computational kernels of CG are the sparse vector product
spmv, the dot product of two vectors dot and the linear
combination of two vectors waxpby. Among them, spmv
dominates the runtime due to its complexity: HPCG system
matrix A, which represents a semi-regular 3D grid with halo
1, has from 8 to 27 nozeroes per rows, resulting in a total size
Θ (n). Therefore, the work complexity of an spmv operation
in HPCG, and thus of an iteration of the CG solver, is Θ (n).

D. Multigrid (MG) preconditioner

The second main kernel of HPCG is the MG preconditioner
[13], which improves the convergence towards the solution at
the cost of higher complexity and slightly less generalization
w.r.t. the CG solver. This preconditioner improves the initial
solution by computing an approximation z of A−1r in a
recursive fashion, which then contributes to the main solution
of CG x(i). It does so by attempting to solve a problem Az = r
through successive, recursive restriction and refinement steps:
on each recursion the current solution z (initially 0) is im-
proved by a smoothing step and by solving a smaller problem
based on a restriction of r and z; the result of this recursive
problem is then refined and contributed back to z.

Listing 1 sketches the MG preconditioner in more detail:
1) line 2: smooth z from r via the Symmetric Gauss-Seidel

(SGS) smoother, so that Az ≈ r;
2) lines 3-4: if the maximum number of coarsening levels

has been reached, simply return the current solution z;
3) line 5: compute f ← Az, i.e., the current residual for the

problem Az = r;
4) line 5: compute the restricted residual rc for the problem

Az = r, i.e., the restriction of r − f ;
5) line 8: improve the initial zc ← 0 (line 6) by recursively

calling the MG preconditioner on rc and the coarser
system mg level.coarser level;

6) line 9: refine zc to the current system and add it to z,
thus improving on the initial solution z;

7) line 10: smooth z again to remove oscillatory components
added in the previous step.

E. Symmetric Gauss-Seidel (SGS) smoother

The basic Gauss-Seidel (GS) algorithm smooths z by up-
dating each value zi of it as

zi ← (Ai,i)
−1

ri −
n−1∑

j=0,j 6=i

Ai,jzj

 0 ≤ i < n; (1)

essentially, Equation (1) solves the i-th equation of the prob-
lem Az = r. GS prescribes the order of increasing i to
compute Equation (1), causing the output value zi to depend
on the input values zj , j < i computed in the previous
iterations of Equation (1) and for which Ai,j 6= 0; hence,
Ai,j 6= 0 determines the presence of direct (i, j) dependencies,
which then propagate transitively across values depending on
A. Therefore, the available parallelism depends on A itself.
For HPCG, A is a semi-regular grid over a homogeneous
spatial domain, which causes (i, j) dependencies to propagate
transitively from all j < i, making the execution of GS in
HPCG inherently sequential, a major performance bottleneck
in HPC highly parallel systems.

The SGS version adds to the previous step (called forward
sweep) another step, called backward sweep, which performs
the same operations but with i from n − 1 to 0, improving
the convergence for many problems [13]; nonetheless, the
aforementioned performance issue holds for SGS as well.

The complexity of SGS in HPCG also depends on the
structure of A, because Equation (1) is computed n times for
each row i of A. Since each row has Θ (1) nozeroes, the total
work complexity of SGS is Θ (n).

F. Restriction and refinement

The restriction operation projects a vector from a fine space
to a coarse space, the refinement operation does the opposite.
Restriction occurs to create the inputs for the coarser problem
(line 6 of Listing 1), whose output is refined to improve the
current solution (line 9).

HPCG restriction operation implements straight injection
[14]: it restricts the vector in the fine space by a factor of
two along each dimension and populates each point of the
coarse vector with the value at the lowest coordinates of the
corresponding octet in the fine space. Correspondingly, the
refinement operation populates the finer vector with the cor-
responding values of the coarse vector and zeroes elsewhere.

As these operations move data in a fixed sparse pattern and
do not require computation, the HPCG reference implementa-
tion performs it in-place by directly accessing the input and
output arrays, thus making assumptions on the data structure.

HPCG 3D input domain requires restricting/refining vectors
by a factor eight; furthermore, the number of restriction/refine-
ment levels is limited to a fixed number (typically 4), for a total
work complexity of Θ (n). Hence, the whole work complexity
of HPCG reference implementation is Θ (n).

G. Data distribution for distributed execution

A focal design aspect of the reference HPCG implemen-
tation is the data distribution across nodes for distributed
execution. To achieve minimal data exchange, the reference
optimally splits the physical simulation grid of sizes nx×ny×
nz = n across the p nodes. To achieve optimality, it computes
the factorization p = px × py × pz that maps optimally to
the nx × ny × nz grid. In this way only the 2D halos in the
physical space need to be exchanged among nodes: if each
local dimension is sd = nd/pd, d ∈ {x, y, z}, the number
of points each node exchanges with its eight 3D neighbors
is h = 2 (sxsy + sysz + sxsz). The rows of matrix A are
partitioned following this distribution and nodes update only
vector data during the computation. Hence, if nd = Θ (3

√
n)

and pd = Θ
(

3
√
p
)

with d ∈ {x, y, z}, then each nodes
exchanges Θ

(
3
√

n2/p2
)

values before an mxv operation.

H. The GraphBLAS specification and its implementations

GraphBLAS [9] is a specification based on two core con-
cepts: graphs can be represented via matrices and algorithms
on graphs can be expressed via algebraic operations defined
over algebraic structures like monoids and semirings. These
abstractions ease programming while providing with solid
assumptions to carry optimizations, like the properties of
the algebraic structure. This specification stresses the impor-
tance of sparse data structures and operations, and is thus a
good fit for modern HPC applications and for sparse linear
solvers in particular, inasmuch it allows domain experts to
implement algorithms without extensive programming and
optimization efforts, while ensuring good performance thanks
to its performance semantics. From a high-level perspective, a
GraphBLAS program is thus a sequence of standard algebraic
operations like spmv, dot and waxpby performed on opaque
data structures representing matrices and vectors, augmented
with information about the algebraic structure.

Containers opaqueness allows implementations the freedom
to make different choices based on the platform and the
data, which determines performance. Multiple implementa-
tions of the official C specification [15] exist, like Suit-
Sparse:GraphBLAS [16], vendor-specific ones [17] and also
C++ implementations [18, 19], which employ template meta-
programming to optimize operations based on the user-given
algebraic structure.

III. DESIGN OF HPCG KERNELS FOR GRAPHBLAS

This section explains the design decisions to implement
HPCG on GraphBLAS. Some HPCG kernels in Section II-A
require little effort, because the operations in GraphBLAS
closely match those in the reference HPCG implementation.
This is the case for the CG solver, which is composed of
standard algebraic operations that easily map to GraphBLAS,
keeping the same work complexity Θ (n) of the reference.
Instead, the components of the MG preconditioner do not
straightforwardly map. The following sections explain their
design.

Listing 2: GraphBLAS pseudo-code for the RBGS forward pass
1 function grb_rbgs_forward(mg_level,z,r,c)
2 for k from 0 to c
3 s← mxv(mg_level.colors[k],
4 mg_level.A, z)
5 apply(i -> {z[i]← (r[i] - s[i] +
6 z[i] * mg_level.A_diag[i]) /
7 mg_level.A_diag[i]},
8 mg_level.colors[k])
9 return z

A. Symmetric Gauss-Seidel (SGS) smoother

As from Section II-E, HPCG smoother is, in combina-
tion with its input, inherently sequential. Furthermore, the
ordering of updates to zi in Equation (1) makes this kernel
not easily expressible with standard algebraic operations. One
could attempt to workaround this latter limitation, e.g., by
implementing the SGS kernel with n spmv operations on n
vectors and updating one point at a time, but the time and
memory overheads of such a solution would be prohibitive,
and the execution would still be sequential.

Instead, multiple works [20, 21] replace the SGS smoother
with Red-Black Gauss-Seidel (RBGS), which overcomes these
limitations by relaxing some (i, j) dependencies via a parti-
tioning scheme that groups together indices. Indeed, HPCG
technical specification [8] allows changing the smoother under
the condition that the new one passes the internal symmetry
test. RBGS relaxation enables updating independent indices in
parallel at the cost of a higher number of iterations to achieve
the same smoothing effect of GS [22]. Nonetheless, the
performance gain thanks to parallelisation usually outweighs
the higher number of iterations.

If the partitioning scheme finds c colors Ck, 0 ≤ k < c,
all zi for which i ∈ Ck can be updated in parallel as in
Equation (1). This allows implementing RBGS with natively
parallel GraphBLAS primitives, as Listing 2 sketches: here,
operations on all elements of a color k are implemented
with GraphBLAS primitives, thus inherently parallel; instead,
colors are processed sequentially (loop of line 1) to meet
the dependencies among them. The masked mxv of line 3
implements the summation of Equation (1) for all values of
color k: the first argument mg_level.colors[k] is a binary
mask marking the indices i ∈ Ck, so that mxv computes
the outputs only for these positions into s. The following
apply operation applies the lambda in the first argument
in parallel for all marked elements of the mask, i.e., for
all i ∈ Ck, computing the remaining part of Equation (1)
and then updating zi as a side effect. This function needs
to access the diagonal value of A, which is stored in a
dedicated vector mg_level.A_diag since GraphBLAS does
not allow accessing individual matrix values in constant time.
This vector is initialized during input generation.

An effective partitioning scheme depends on A: the larger
the parts of a partitions, the larger the exposed parallelism.
For HPCG, an effective and simple partitioning scheme can

be implemented via a greedy coloring algorithm [23] that
tracks only direct (i, j) dependencies: if there is a direct (i, j)
dependence, than i and j must have different colors. Higher
parallel efficiency is achieved when the number of colors is
low, i.e., the coloring is near-optimal. For HPCG 3D grid,
greedy coloring achieves optimal results, finding eight colors.

Partitioning schemes other than our greedy one are possible.
Some of them also group the indices to improve the spatial
locality of data accesses [20, 21], so that indices having the
same color Ck are stored in physically contiguous positions.
The choice of a more advanced partitioning scheme depends
on the physical domain and is thus orthogonal to the pro-
gramming framework, and hence outside the scope of this
work. In the reference implementation, any grouping of indices
can be realized by manipulating the data structures of the
system A, which are non-opaque, while GraphBLAS makes
this impossible because of containers opaqueness. However,
a grouping scheme can be performed via a row permutation
matrix P and its transposed PT as PTAP , which is supported
in GraphBLAS via the mxm operation.

Since RBGS is a relaxation of GS to expose more par-
allelism, its work complexity also takes into account the
number of processing units p. With serial execution the
work complexity is still Θ (n), because it performs the same
computation of Equation (1), though in a different order.
Under the assumption that all partitions are large enough
to efficiently parallelise their computation using p cores, the
expected speedup is p. Since n is orders of magnitudes higher
than p in realistic workloads and the coloring algorithm we
use here can optimally identify the eight colors for HPCG
input domain, we indeed assume this assumption holds and
that RBGS has work complexity Θ (n/p).

B. Restriction and refinement

The HPCG reference implementation directly accesses the
storage to compute both restriction and refinement, which
is impossible in GraphBLAS because vectors are opaque
objects. As HPCG straight injection restriction is a linear
operation, it corresponds to a matrix–vector multiplication
with a rectangular matrix of sizes n × n

8 and naturally is
expressible in GraphBLAS. Similarly, HPCG refinement is
the transposed operation of restriction. Therefore, the work
complexity is that of an mxv operation on HPCG, i.e., Θ (n).

This constraint forces the materialization of a matrix,
whereas HPCG reference implements restriction as an array
of indices to copy from the fine vector to the coarse one, and
uses the same vector to implement refinement. Because of
the data structures typically used to describe sparse matrices,
e.g., the three arrays of Compressed Sparse Row (CRS) [24],
a GraphBLAS implementation of refinement/restriction may
incur additional storage and time overheads compared to the
reference; the work complexity, however, is the same.

IV. IMPLEMENTATION

We implement HPCG on GraphBLAS using a C++ variant
of the GraphBLAS specification by Yzelman et al. named

Listing 3: ALP/GraphBLAS C++ implementation of the forward
RBGS pass. Error checking omitted.
1 void grb_rbgs_forward(
2 const Matrix<double> &A,
3 const Vector<double> &A_diag,
4 const std::vector<Vector<bool>> &colors,
5 const Vector<double> &r,
6 Vector<double> &x,
7 Vector<double> &tmp, // workspace buffer
8 Ring &ring
9) {
10 for(size_t c = 0;c < colors.size();++c){
11 mxv<descriptors::structural>(
12 tmp, colors[c], A, x, ring);
13 eWiseLambda([&](size_t i) {
14 double d = A_diag[i];
15 double v = r[i]-tmp[i]+x[i]*d;
16 x[i] = v/d; },
17 colors[c], x, r, tmp, A_diag);
18 }
19 }

ALP/GraphBLAS [19], which describes GraphBLAS prim-
itives and their algebraic structure via C++ templates to
leverage the (algebraic) type safety checks and the automatic
performance optimization of modern compilers via template
meta programming– while keeping a concise code base. From
here on, we call this implementation ALP. We expect ALP
to attain performance comparable to that of a hand-coded
C/C++ application such as the HPCG reference code, which is
also coded in C++ that, similar to ALP/GraphBLAS, does not
employ abstractions that may prevent compiler optimizations,
thus enabling a fair comparison of the two implementations.
Listing 3 implements the forward pass of RBGS with ALP/-
GraphBLAS, showing in red and orange the GraphBLAS
containers and primitives, respectively. It closely follows the
structure of Listing 2, showing the A,A_diag,colors fields
of mg_level in Listing 2 as explicit C++ function parame-
ters: here, the color masks are passed via a common C++ data
structure storing the boolean masks of type Vector<bool>.

ALP/GraphBLAS provides several descriptors to pass do-
main information to operations. In line 11 of Listing 3 ALP/-
GraphBLAS structural descriptor leverages the optimized im-
plementation of Vector for sparsity, causing mxv to ignore
the actual nonzero value of the color mask colors[c] and
follow only the sparsity pattern, avoiding useless memory
accesses. Another example is the refinement operation of
Section III-B, which uses the restriction matrix transposed; to
avoid materializing the transposed matrix, the mxv operation
for refinement is added the transpose matrix descriptor to use
the restriction matrix directly.

ALP/GraphBLAS also provides several backends, i.e. im-
plementations of containers and operations tailored to different
execution environments that can be chosen at compile time and
that all meet GraphBLAS performance semantics. Throughout
our experiments, ALP uses the shared-memory backend for
multicore machines and the hybrid backend for distributed and

TABLE I: BSP asymptotic cost components for the distributed
implementations.

Ref ALP

computation n/p n/p

communication 3
√

n2/p2 n/p(p− 1) ≈ n

synchronization 1 1

multicore execution. The shared-memory backend distributes
the execution among cores using OpenMP threads, taking into
account Non Uniform Memory Access (NUMA) architectures
via a NUMA-aware memory allocator [25] and preferring
interleaved allocations to balance memory accesses among
domains and avoid bottlenecks. The hybrid backend relies
on the Lightweight Parallel Foundations (LPF) communica-
tion layer [26] to provide high-performance communication
functionalities. The LPF interface and semantics abide by the
Bulk-Synchronous Parallel (BSP) [27] model of computation,
while the hybrid ALP/GraphBLAS backend assumes a 1D
grid of nodes and splits matrix rows and vectors according
a block-cyclic distribution. This requires all nodes to have
an up-to-date copy of the entire input vector before an mxv
operation, which is enforced via a sparsity- and mask-aware
all-to-all communication. The communication cost for an mxv
with dense vectors is proportional to the maximum amount of
data any node sends or receives; i.e., Θ (n(p− 1)/p) ≈ Θ (n).
Since there is a constant number of mxv operations within
HPCG and the number of benchmark iterations is controlled by
the user, the total communication complexity of ALP is Θ (n).
Similarly, synchronizations occur before every mxv operation,
thus with a global synchronization cost of Θ (1).

The linear complexity of communication costs are expected
to affect performance, as experiments in Section V confirm.
Section VII further elaborates on this limitation, highlighting
inherent limits of GraphBLAS and discussing mitigations.

We implement the RBGS smoother of Section III-A also
in the reference HPCG code base available online [11]. From
here on, we call this implementation Ref. Ref uses OpenMP
to update the values within a single color in parallel in a
shared memory system, together with MPI-3 primitives to ex-
change information among nodes for distributed execution; in
particular, MPI Irecv/Isend are used to overlap execution
and communication when updating the values of x for each
color. Unlike Ref, the hybrid ALP/GraphBLAS backend uses
blocking GraphBLAS semantics and thus features no such
overlap. Like ALP (Section III-A), however, also Ref has
Θ (n/p) work complexity.

The color-aware data exchange in Ref follows the same
design principles in Section II-G, where each node exchanges
with the geometrical neighbors only the values in its halo
having the specific color to be updated. This keeps the
same communication complexity derived in Section II-G:
Θ
(

3
√
n2/p2

)
. In Ref, neighboring nodes synchronize after

updating each color. Since the number of colors found for

TABLE II: Details of the experimental machines; italics means
per socket, otherwise per node.

x86 ARM

CPU Xeon Gold 6238T Kunpeng 920-4826
cores 22 48

threads 44 (HT enabled) 48
max frequency (GHz) 3.70 2.6

L3 cache (MB) 30.25 48
per core L2 cache (KB) 1024 512

memory channels 6 8
NUMA domains 1 2

sockets 2 2
RAM memory (GB) 192 512

max DDR frequency (MHz) 2933 2933
attained bandwidth (GB/s) 192 246.3

network adapter,
bandwidth

Mellanox ConnectX-5,
2x100Gb/s

HPCG does not depend on n or p, the total synchronization
is again Θ (1). Table I summarizes the BSP asymptotic cost
components of both ALP and Ref.

As in the original code base, Ref does not use any NUMA-
aware memory allocator, thus resorting to the standard domain-
local memory allocations of the C++ standard library imple-
mentation. The shared-memory and hybrid ALP/GraphBLAS
backends, however, do perform NUMA-aware allocations.

V. EXPERIMENTAL RESULTS

This section discusses the experiments to validate the two
implementations proposed in Section IV. Section V-A dis-
cusses the results on two systems: the first one is a dual-socket
machine using an x86-64 architecture, here called x86; the sec-
ond one is a dual-socket ARM64 machine, here called ARM.
Table II shows the relevant hardware characteristics of both
systems. Both employ Ubuntu Linux 20.04 and employ GCC
9 as compiler. Neither Ref nor ALP employ any architecture-
specific library or instruction, thus remaining portable. An
InfiniBand network interconnects up to 7 ARM machines,
providing a cluster for scale-out experiments that Section V-B
discusses; there, Ref uses the optimized OpenMPI distribution
provided with the network adapter. Although multiple runs
of the RBGS may improve convergence, HPCG performs by
default one run, as this work does across all experiments.

All experiments achieve numerically comparable results,
which allows fixing the number of iterations across all of
them, thus making execution times directly comparable. Each
experiment is repeated 10 times and the plots in this section
show the average value. Unbiased standard deviations across
experiments are negligible and thus not shown.

A. Results on shared memory

Figure 1 and Figure 2 show the strong scalability on both
shared memory systems. In both plots, the x axis shows the
number of application threads, increasing from less than those
on a single socket to all those available on both sockets. To
avoid caching effects, the problem size is set to the maximum
that fits in the system memory, which is higher for ARM:

16 20 24 28 32 36 4044 48 96
threads

750

1000

1250

1500

1750

ex
ec

ut
io

n
tim

e
(s

)

Ref
ALP

Fig. 1: Execution time of ALP and Ref with increasing number
of threads on ARM

10 14 18 22 44 - 1S 44 88 - 2S
threads

400

500

600

700

800
ex

ec
ut

io
n

tim
e

(s
)

Ref
ALP

Fig. 2: Execution time of ALP and Ref with increasing number
of threads on x86

this motivates the different time ranges between the two plots.
Threads are pinned on physical cores, packing them on one
socket if possible, i.e., with at most 48 threads on ARM and 22
threads on x86. Figure 2 also shows results with 44 threads
on one socket (value “44 - 1S” on the x axis) and with 88
threads on two sockets (value “88 - 2S” on the x-axis), thus
with hyperthreads. For the Ref results on two sockets, we
test in both systems the default allocation policy as well as
the interleaved one, enforced via the numactl command.
As the latter always outperforms the former, the plots report
only the interleaved Ref execution– thus assuming that the
exploration regarding NUMA allocation is a common step for
HPC practitioners, especially when dealing with multi-socket
configurations.

Both Figure 1 and Figure 2 show that ALP outperforms
Ref with all threads configurations. When the threads fit in

2 3 4 5 6 7
nodes

500

1000

1500

ex
ec

ut
io

n
tim

e
(s

)
Ref
ALP

Fig. 3: Execution time of ALP and Ref with increasing number
ARM nodes

one socket, ALP shows on both systems to saturate more
quickly than Ref; this is due to the optimization available
in ALP, where the GraphBLAS semantics and the C++
template-based implementation allow propagating rich infor-
mation across software layers and to the compiler. In Figure 1,
the performance of Ref slightly degrades when the number
of threads approaches the number of cores on single socket,
which we attribute to the NUMA-unaware allocation policy
and to the two NUMA domains per socket. In Figure 2 with
44 threads pinned on a single socket (value “44 - 1S”), the
two implementations are close, showing that Ref saturates only
with hyperthreading; this suggests that ALP is more optimized.

B. Results on the distributed system

Figure 3 shows the results from weak-scaling experiments
on a test cluster of ARM systems. These results confirm
the asymptotic analysis in Table I. The Ref implementation
shows a good weak scalability behavior, with execution times
differing by at most 5% among different number of nodes,
while the input size n grows proportionally to p.

Instead, the execution time of ALP increases linearly with
the number of nodes, conform to Table I.

C. Scalability of Refinement/Restriction and RBGS

Figures 4-7 show the percentage of time spent in the MG
kernel, split between the refinement/restriction kernels (dark
bars) the and RBGS kernel (bright bars). The plots show the
results for both implementations and for several setups, both
shared memory and distributed; for each amount of compute
resources (threads/nodes), the plots show the breakdown for
each of the 4 coarsening levels (finer to coarser from left to
right, respectively). The percentages refer to the total execution
time, and the runtime in a given level does not include coarser
levels. In all plots, MG (thus including RBGS) emerges as
the main kernel of the entire HPCG simulation, with the
aggregated MG execution time spanning from 80% to 90%

16 20 24 28 32 36 40 44 48 96
threads

0

20

40

60

80

%
 e

xe
cu

tio
n

tim
e

Fig. 4: Percentage of execution time spent in refinement/re-
striction (dark) and in RBGS (bright) for shared memory ALP
on ARM

16 20 24 28 32 36 40 44 48 96
threads

0

20

40

60

80

%
 e

xe
cu

tio
n

tim
e

Fig. 5: Percentage of execution time spent in refinement/re-
striction (dark) and in RBGS (bright) for shared memory Ref
on ARM

of the total execution time, while CG occupies the remaining
10% to 20% of the execution time. In turn, the aggregated
execution of the RBGS smoother across all coarsening levels
accounts for always more than 50% of execution time.

Figures 4 and 5 show the results for shared memory on
ARM. Both refinement/restriction and the RBGS kernels show
good scalability with many threads, with their percentage of
runtime barely varying with respect to the total execution. In
particular, in ALP the percentage of the two kernels slightly
decreases with the increasing number of cores, while in Ref it
fluctuates more clearly, probably due to the NUMA-unaware
allocation policy. The results for x86 are qualitatively very
similar, and thus not shown.

Instead, Figures 6 and 7 show the results for the distributed-

2 3 4 5 6 7
nodes

0

20

40

60

80
%

 e
xe

cu
tio

n
tim

e

Fig. 6: Percentage of execution time spent in refinement/re-
striction (dark) and in RBGS (bright) for distributed ALP

2 3 4 5 6 7
nodes

0

20

40

60

%
 e

xe
cu

tio
n

tim
e

Fig. 7: Percentage of execution time spent in refinement/re-
striction (dark) and in RBGS (bright) for distributed Ref

memory setup, where Ref spends a smaller percentage of time
than ALP in refinement/restriction but a slightly higher one
in RBGS. We attribute this to the multiple synchronization
steps the implementation of RBGS within Ref, where for
each color each node synchronizes with its neighbors. Instead,
refinement/restriction is more expensive in ALP because it is
implemented via an mxv, which requires synchronization (as
from Table I), while Ref directly accesses the vector data (as
from Section II-F). For both implementations the percentages
of execution time of the kernels remain very close across
different numbers of nodes.

This observation, together with the good weak-scaling of
Ref in Figure 3, shows that the chosen design scales well. The
worse scalability behavior of ALP of Figure 3, in opposition to
the good results in Figure 6, instead are caused by an inability
to pass domain-dependent information to GraphBLAS.

VI. RELATED WORK

In the literature, multiple efforts are devoted to the opti-
mization of the HPCG benchmark for different architectures.
Architectures based on commodity CPUs are still common
targets for HPCG, and vendors often made large efforts
to showcase the capabilities of their architectures and the
optimization strategies suitable for this benchmark: this is
the case, among others, for x86 [28] and for ARM [20].
Similarly, HPCG implementations for CPU-based distributed
architectures receive particular attention [21, 29].

Another body of work optimizes the benchmark for pro-
grammable accelerators like Intel Xeon Phi [28] or NVIDIA
accelerators [30] at cluster scale. Accelerated solutions can be
effective to achieve high performance, but need thorough op-
timizations and may exacerbate load-balancing issues. Indeed,
some work also employs hypergraph partitioning strategies
[31] to load-balance among heterogeneous nodes.

All of these solutions face the challenge of parallelizing the
GS smoother, and typically resort to various implementations
of RBGS together with a coloring algorithm, as this work does.
Nonetheless, they devote large efforts to perform dedicated
optimizations in order to exploit the underlying hardware.
For example, [29] stresses on the importance of kernels
fusion to improve access locality and save on bandwidth,
a typical bottleneck for HPCG nowadays. Although fusion
is a common compiler technique to achieve this goal, it is
hard to perform it in an automatic fashion on complex code
bases, especially if written with general-purpose programming
languages like those traditionally used in HPC. Here, exploit-
ing domain-specific information like the algebraic properties
of operations required by the GraphBLAS specification can
expose to the framework and the compiler many optimization
and parallelization opportunities. Indeed, recent work [32]
already proposes an extension of the current ALP/GraphBLAS
implementation that fuses kernels corresponding to different
GraphBLAS operations, showing large benefits in terms of
locality and thus performance.

VII. CONCLUSIONS AND FUTURE WORK

This work presents a design of the HPCG benchmark on
top of GraphBLAS, discussing the main kernels and their
re-design for an effective implementation on top of standard
algebraic operations. The code is available open-source to-
gether with ALP/GraphBLAS1. The implementation on shared
memory systems outperforms the reference one, bringing
further evidence that expressing algorithms in a high-level,
algebraic formulation enables a large spectrum of opportunities
for automatic optimizations. Therefore, domain experts may
attain both performance and productivity gains by pursuing
an algebraic formulation of their problems.

Instead, the distributed-memory implementation shows fun-
damental scalability limitations compared to the reference,
which leverages domain-specific geometrical information. For
future work, Section VII-A discusses possible enhancements

1https://github.com/Algebraic-Programming/ALP

that would especially benefit shared memory systems, while
Section VII-B discusses the limitations for the distributed-
memory parallelisation of HPCG, potential mitigations, and
changes those would imply for GraphBLAS.

A. Improvements for shared memory systems

Domain-specific information can be beneficial for perfor-
mance also in the case of a shared memory system. For exam-
ple, the restriction and refinement operations in GraphBLAS
in Section III-B must be materialized into a dedicated matrix,
with storage and bandwidth costs. Instead, a GraphBLAS
framework may be extended to allow a more abstract descrip-
tion of a linear operation, which may enable many compiler
optimization and trade bandwidth for computation. Such an
abstraction is possible when an operation can be described
with few parameters, which is the case for restriction/refine-
ment if we take into account the geometrical structure of the
HPCG input. Although such abstract representation may not be
feasible in domains like Algebraic Multigrids (AMRs), several
workloads that operate on regularly structured sparse matrices,
whether geometric in nature or not, may benefit.

Orthogonally, existing abstractions already allow pipelined
execution of GraphBLAS operations [32], with benefits for
data locality and performance under investigation.

B. Future work for distributed systems

Distributed systems fundamentally challenge the Graph-
BLAS specification, in particular the opaqueness of contain-
ers: when domain-specific, geometrical information is lost or
hidden in the nonzero pattern of a matrix, standard matrix
distribution strategies usually cannot achieve the same scala-
bility as domain-specific solutions. We describe four classes
of solutions, dubbed i to iv, ordered by how much expertise is
required by the GraphBLAS user. Solution A may hence be
appropriate for hero programmers [33], which includes expert
HPC programmers who typically compose and maintain code
like HPCG. On the other end of the spectrum, solution D
would be preferred by humble programmers [33] as it allows
them to focus on the purely algebraic specification of the code,
and not on details that affect performance or scalability.

i) A definitive solution is to pass such domain-specific infor-
mation to a GraphBLAS container so to explicitly give the
implementation a preferred data partitioning, from which
GraphBLAS may automatically derive a parallel work
schedule for level-2 and 3 BLAS operations, both sparse
and dense. Such annotation, however, 1) requires strong
programmer expertise not only on their domain but also
on the mapping of domain knowledge to linear algebra
concepts, while 2) a framework implementing such a
solution breaks the current GraphBLAS prescription of
opaque containers. We dub this solution A, and proceed
to discuss alternatives that alleviate these disadvantages.

ii) Limiting the amount of programming effort required,
multiple distributed backends with different matrix par-
titioning strategies may be provided. For example, a 2D
matrix distribution instead of ALP/GraphBLAS current

1D decreases the communication cost in Table I from
n(p − 1)/p to n/p

(√
p− 1

)
, thus only partially allevi-

ating the communication bottleneck visible in the weak
scaling experiment of Section V-B. This only partially
improves on the current state and still requires some
expert knowledge to understand how efficiently the input
domain maps on the backend partitioning strategy.

iii) One can leverage existing distributed data structures to
describe grids and implement a GraphBLAS wrapper for
these objects, allowing their use with linear algebraic
operations. However, this solution depends on external
software components and thus looses the performance
guarantees of GraphBLAS. Another option is to extend
GraphBLAS with the notion of grids, and provide matrix
views of such objects; however, this escapes the intended
scope of the GraphBLAS specification.

iv) Finally, black-box partitioning methods may be used to
automatically infer a partitioning of GraphBLAS matri-
ces, with little to no user intervention. This reconstructs
the domain information from the input itself, although at
potentially significant pre-processing cost incurred while
creating a GraphBLAS matrix, or may, at the cost of
generality, incur this cost at compile time [34].

REFERENCES

[1] K. Bathe, Finite Element Procedures, ser. Finite Element
Procedures. Prentice Hall, 1996, no. Teil 2.

[2] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader, “Massive
streaming data analytics: A case study with clustering
coefficients,” in 2010 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010, pp. 1–8.

[3] Y. Saad, Iterative methods for sparse linear systems.
SIAM, 2003.

[4] H. Anzt, E. Boman, R. Falgout, P. Ghysels,
M. Heroux, X. Li, L. Curfman McInnes, R. Tran Mills,
S. Rajamanickam, K. Rupp, B. Smith, I. Yamazaki, and
U. Meier Yang, “Preparing sparse solvers for exascale
computing,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, vol. 378, no. 2166, p. 20190053, 2020.
[Online]. Available: https://royalsocietypublishing.org/
doi/abs/10.1098/rsta.2019.0053

[5] J. Dongarra, M. A. Heroux, and P. Luszczek, “A
new metric for ranking high-performance computing
systems,” National Science Review, vol. 3, no. 1, pp.
30–35, 01 2016. [Online]. Available: https://doi.org/10.
1093/nsr/nwv084

[6] “Top 500 - HPCG.” [Online]. Available: https://www.
top500.org/lists/hpcg/

[7] J. J. Dongarra, P. Luszczek, and A. Petitet, “The
LINPACK Benchmark: past, present and future,” Con-
currency and Computation: Practice and Experience,
vol. 15, 2003.

[8] S. Report, M. Heroux, J. J. Dongarra, and P. Luszczek,
“HPCG Technical Specification,” 2013.

[9] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti,
J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine,
H. Meyerhenke et al., “Mathematical foundations of the
GraphBLAS,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2016, pp. 1–9.

[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh, “Basic linear algebra subprograms for Fortran
usage,” ACM Transactions on Mathematical Software
(TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[11] “Official HPCG benchmark source code.” [Online].
Available: https://github.com/hpcg-benchmark/hpcg

[12] Y. Saad, Iterative Methods for Sparse Linear
Systems: Second Edition, ser. Other Titles in Applied
Mathematics. Society for Industrial and Applied
Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), 2003. [Online]. Available:
https://books.google.ch/books?id=h9nwszYPblEC

[13] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multi-
grid. Elsevier, 2000.

[14] W. H. Press and S. A. Teukolsky, “Multigrid Methods
for Boundary Value Problems. I.” Computers in Physics,
vol. 5, no. 5, pp. 514–519, 1991.

[15] B. Brock, A. Buluç, T. Mattson, S. McMillan, and
J. Moreira, “The GraphBLAS C API Specification,”
Nov. 15, 2021 [Online]. [Online]. Available: https:
//graphblas.org/docs/GraphBLAS API C v2.0.0.pdf

[16] T. A. Davis, “Algorithm 1000: SuiteSparse:GraphBLAS:
Graph Algorithms in the Language of Sparse Linear
Algebra,” ACM Trans. Math. Softw., vol. 45, no. 4,
dec 2019. [Online]. Available: https://doi.org/10.1145/
3322125

[17] “IBM GraphBLAS.” [Online]. Available: https://github.
com/IBM/ibmgraphblas

[18] S. McMillan, S. Misurda, M. Zalewski, P. Zhang,
and A. Lumsdaine, “Design and implementation of
the GraphBLAS Template Library (GBTL),” 07 2016.
[Online]. Available: https://resources.sei.cmu.edu/asset
files/Presentation/2016 017 001 494328.pdf

[19] A. N. Yzelman, D. Di Nardo, J. M. Nash,
and W. J. Suijlen, “A C++ GraphBLAS:
specification, implementation, parallelisation, and
evaluation,” 2020, preprint. [Online]. Available:
\url{http://albert-jan.yzelman.net/PDFs/yzelman20.pdf}

[20] D. Ruiz, F. Mantovani, M. Casas, J. Labarta, and
F. Spiga, “The HPCG benchmark: analysis, shared mem-
ory preliminary improvements and evaluation on an Arm-
based platform,” 2018.

[21] K. Kumahata, K. Minami, and N. Maruyama,
“High-performance conjugate gradient performance
improvement on the K computer,” The International
Journal of High Performance Computing Applications,
vol. 30, no. 1, pp. 55–70, 2016. [Online]. Available:
https://doi.org/10.1177/1094342015607950

[22] I. Duff and G. Meurant, “The effect of ordering on
preconditioned conjugate gradient,” BIT, vol. 29, 12
1989.

[23] A. Lim, Y. Zhu, Q. Lou, and B. Rodrigues, “Heuristic
methods for graph coloring problems,” 03 2005, pp. 933–
939.

[24] Y. Saad, Iterative Methods for Sparse Linear Systems,
2nd ed. Society for Industrial and Applied Mathematics,
2003. [Online]. Available: https://epubs.siam.org/doi/abs/
10.1137/1.9780898718003

[25] A. Kleen, “An NUMA API for Linux,” Aug. 2004.
[Online]. Available: https://halobates.de/numaapi3.pdf

[26] W. Suijlen and A. N. Yzelman, “Lightweight Parallel
Foundations: a model-compliant communication layer,”
ArXiv, vol. abs/1906.03196, 2019.

[27] L. G. Valiant, “A Bridging Model for Parallel
Computation,” Commun. ACM, vol. 33, no. 8, p.
103–111, aug 1990. [Online]. Available: https://doi.org/
10.1145/79173.79181

[28] “Overview of the Intel Optimized HPCG.” [Online].
Available: https://www.intel.com/content/www/us/en/
develop/documentation/onemkl-linux-developer-guide/
top/intel-oneapi-math-kernel-library-benchmarks/
intel-opt-high-perf-conjugate-gradient-benchmark/
overview-of-the-intel-optimized-hpcg.html

[29] Y. Liu, C. Yang, F. Liu, X. Zhang, Y. Lu, Y. Du,
C. Yang, M. Xie, and X. Liao, “623 Tflop/s HPCG run
on Tianhe-2: Leveraging millions of hybrid cores,” The
International Journal of High Performance Computing
Applications, vol. 30, pp. 39 – 54, 2016.

[30] E. Phillips and M. Fatica, “Performance analysis of
the high-performance conjugate gradient benchmark on
GPUs,” International Journal of High Performance Com-
puting Applications, vol. 30, 08 2015.

[31] A. Cevahir, A. Nukada, and S. Matsuoka, “High
performance conjugate gradient solver on multi-GPU
clusters using hypergraph partitioning,” Computer
Science - Research and Development, vol. 25,
no. 1, pp. 83–91, 2010. [Online]. Available:
https://doi.org/10.1007/s00450-010-0112-6

[32] A. Mastoras, S. Anagnostidis, and A.-J. N. Yzelman,
“Design and Implementation for Nonblocking Execution
in GraphBLAS: Tradeoffs and Performance,” ACM
Trans. Archit. Code Optim., vol. 20, no. 1, nov 2022.
[Online]. Available: https://doi.org/10.1145/3561652

[33] A. N. Yzelman, “Humble heroes,” 2022, pre-print.
[Online]. Available: https://albert-jan.yzelman.net/PDFs/
yzelman22-pp.pdf

[34] K. Cheshmi, S. Kamil, M. M. Strout, and M. M. Dehnavi,
“Sympiler,” in Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis. ACM, nov 2017. [Online].
Available: https://doi.org/10.1145%2F3126908.3126936

