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Abstract. We break the symmetry in classical spectral bi-partitioning in order to incen-
tivise the alignment of directed cut edges. We use this to generate acyclic bi-partitions
and furthermore topological orders of directed acyclic graphs with superb locality. The new
approach outperforms the state-of-the-art Gorder algorithm by up to 17× on total reuse
distance and minimum linear arrangement.
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1. Introduction

Graph partitioning plays a central role in a variety of applications, for example classification,
recommendation systems, parallel processing, very-large-scale integration (VLSI), and routing
to name a few. The basic premise is often the same: identifying tightly knit groups of roughly
the same size with few interconnects. To this end, a plethora of methods and algorithms
have been developed ranging from geometric, spectral, local-search, multi-level, evolutionary
methods, and combinations of the aforementioned. We refer to the surveys [Fjä98, SKK+00,
MPSG07, KHKM11, BS13, BMS+16, ÇDF+23].

A specialisation of the graph partitioning problem is acyclic partitioning, where one is given
a directed acyclic graph and the partition itself is required to form a directed acyclic graph1.
This stricter problem is required, for example, when the directed acyclic graph is modelling a
computation with dependencies. As such, it has been used for pipeline computations, efficient
uses of the memory hierarchy, and, in general, as a component of offline scheduling heuristics
[AFK+12, FER+13, ERP+15, ÖBÇ19, PAKY24].

Between undirected and acyclic graph partitioning, there also lies a more relaxed partition-
ing problem: given a directed graph, one seeks to find a partition such that between any two
parts the cut edges mostly point in one direction. This type of partitioning can be used as
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†Joint first authors; listed in alphabetical order.
1Specifically the quotient graph with self-loops removed.
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initialisers for acyclic partitions and for flow-based clustering [HAP22], such as hierarchy clas-
sifications [VLCD19], interbank debts [AOTS15], and population migration patterns [ZDC25].

In this paper, we present a modification to the classic spectral partitioning method of
Fiedler [Fie73, Fie89] which yields an aforementioned nearly acyclic bi-partition. In the case
of a directed acyclic graph, we furthermore augment the nearly acyclic bi-partition to an
acyclic bi-partition. To the best of our knowledge, this marks the first time spectral methods
have been used to address the problem of acyclic partitioning.

As the final and central application of our method in this paper, we turn to the graph-layout
problem, also known as the linear-arrangement problem, of directed acyclic graphs. The latter
asks for a topological order with ‘good locality’. Specifications of locality take on a variety
of shapes. The most well-known metrics to evaluate the locality of an ordering include the
bandwidth, cut width, minimum linear arrangement (sum of edge lengths), and reuse distance.
The associated problems have been well-studied, both from a theoretical and a practical point
of view, as they are widely applicable. Applications range from VLSI design, single-core and
multi-core scheduling, information retrieval, cache utilisation, network reliability, to speeding
up graph and sparse matrix algorithms [Chu88, DPS02, NS12, Pet13].

In due course, we will show that our method excels at generating topological orders for
data and temporal locality. Indeed, we report significant improvements over an acyclic adap-
tation of the state-of-the-art method Gorder [WYLL16]: up to 28× smaller minimal linear
arrangement, up to 17× smaller total reuse distance, 11× smaller cut width, and 6× smaller
bandwidth and maximum reuse distance. Figure 1.1 shows an example with 10× smaller
minimal linear arrangement and total reuse distance.
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Figure 1.1. Topological orderings generated by (a) our direction-incentivised spec-
tral topological-order method (Spectral-dir-top) and (b) an acyclic adaptation of Gorder
(Gorder). The directed acyclic graph corresponds to the lower triangular part of the matrix
‘barth’.

1.1. Nearly acyclic bi-partition. There are several spectral methods in the literature that
deal with directed graphs. Broadly speaking, they can be categorised into two camps: flow-
based and density-based [HAP22]. Examples for flow-based techniques include clustering on
an embedding based on spectral information of the (dampened) page-rank transition matrix
[VLCD19] or Hermitian variants [GM17, Moh20, LS20], bibliographic coupling matrix [Kes63],
co-citation matrix [Sma73], and linear combinations thereof [SP11]. Their main feature is that
they group vertices together if they have a lot of in- and/or out-neighbours in common, but
disregard grouping vertices together which are tightly knit. This makes them suitable for
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detecting hierarchies and flows, but unsuitable for our purposes. On the other hand, density-
based techniques such as using the directed Laplacian [ZHS05, HZS06, Gle06] group tightly
knit vertices, but generally fail to have most cut edges between groups aligned.

In §2 of this paper, we address this gap. We achieve this by taking density-based spectral
partitioning methods, such as the undirected Laplacian [Fie73, Fie89], p-Laplacian [BH09,
SPK+18], or the directed Laplacian [Chu05], and modify them as to incentivise the alignment
of cut edges. The general idea is as follows. Vaguely speaking, the aforementioned methods
assign a vertex the value 1 if they belong to the first cluster and −1 if they belong to the
second cluster. The value of a directed edge is given as the (signed) difference of the source
and target of the edge. Thus, the value is 0 for a non-cut edge, 2 for a cut edge from the
first cluster to the second, and −2 for a cut edge pointing in the reverse direction. Therefore,
the product of the values of two cut edges tells us now whether they are aligned or not.
Hence, summing up all these products over all pairs of edges gives us a term which penalises
non-aligned cut edges. As this penalty term constitutes a quadratic form, we are able to
incorporate it into spectral partitioning methods.

1.2. Acyclic bi-partition. Like balanced undirected bi-partitioning, balanced acyclic bi-
partitioning is NP-hard [GJS74, MPS17]. Yet, the latter is provably harder in the following
sense. For ε-balanced2 undirected bi-partitioning, there exists a polynomial-time O(log(|V |))-
approximation algorithm by Räcke [Räc08], whereas we show that no such algorithm exists
for ε-balanced acyclic bi-partitioning under the exponential-time hypothesis [IP01].

Theorem 1.1. Assuming the exponential-time hypothesis, there is a δ > 0 such that for
every 0 ≤ ε < 1 the ε-balanced acyclic bi-partition problem does not have a polynomial-time

n1/ log(log(n))δ -factor approximation algorithm, where n = |V | is the size of the input graph.

Despite the NP-hardness result, there are a variety of fast heuristics and algorithms in
the literature ranging from topological-order-based [Ker71], to acyclic adaptations of the
Fiduccia–Mattheyses method [CLB94, PSSS21], evolutionary algorithms [SSSW17, MPS18],
and multi-level algorithms [HKU+17, HOU+19, PSSS21]. We refer to the survey [ÇDF+23]
and the references therein for further information.

In §3 of this paper, we present an acyclic bi-partitioner based on our nearly acyclic spectral
bi-partitioner. To fix the acyclicity, we generate a topological order of the directed acyclic
graph, which aims to preserve the bi-partition, and subsequently bisect said topological order.
To the best of our knowledge, this marks the first acyclic bi-partitioner based on spectral
methods.

1.3. Directed acyclic graph layout. A multitude of different techniques and heuristics
have been developed to address graph-layout or linear-arrangement problems. Methods
range from (approximate) minimal degree orderings [ADD96, ADD04], (reverse) Cuthill–
Mckee [CM69, LS76], highest recent relations heuristics such as Gorder [WYLL16], and re-
cursively partitioning-based [SW04]. For a broader overview of the literature, we refer to
[Chu88, DPS02, NS12, Pet13].

In §4 of this paper, we present a heuristic based on our spectral acyclic bi-partition algorithm
for the graph-layout problem for directed acyclic graphs with the additional requirement that
the linear arrangement must be a topological order. Our heuristic works similar to the one
given by Schamberger–Wierum [SW04] for undirected graphs in the sense that it recursively
(acyclicly bi-)partitions the graph into smaller parts which are then laid out in a (topological)
order. We note that similar schemes have been employed to address numerous other problems,
cf. [YB09, GBDD10, YB11, AAA18, BAvL+19]. Here, we make a subtle but notable change
to these schemes. Namely, when we acyclicly bi-partition a subgraph, we take the whole graph
into account and not just the subgraph. This allows us to not only minimise the edge lengths
of the edges within the subgraph, but also the ones that have already been cut by previous
rounds of acyclic bi-partitioning. This leads to an overall better graph layout.

2All parts of the partition are at most a factor (1 + ε) larger than their mean, cf. Definition A.2.
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1.4. Overview. In §2, we discuss the spectral bi-partitioning method with cut-edge direction
incentive; in §3, we extend the method to produce acyclic bi-partitions; and in §4, we discuss
how this can be used to generate a topological order with good locality properties. The
evaluation of every method may be found in its respective section. In Appendix A, we give
the proof of the inapproximability result, Theorem 1.1.

1.5. Acknowledgements. We thank Davide B. Bartolini and Mehdi Alipour for stimulating
conversations on this and neighbouring topics. We are furthermore thankful to Davide B.
Bartolini for comments on an earlier draft.

Dimosthenis Pasadakis was financially supported by the joint DFG-470857344 and SNSF-
204817 project, and by the Huawei Zurich Research Center.

2. Nearly acyclic spectral bi-partitioning

2.1. Algorithm. Classical spectral bi-partitioning is a continuous relaxation of the discrete
min-cut problem on an undirected graph G = (V,E). The problem may be stated as

argmin
x∈RV

∥x∥2=1
x⊥1

∑
(u,v)∈E

(xu − xv)
2 (2.1)

and its solution is given by the Fiedler eigenvector [Fie73, Fie89]. We refer to [Chu97] and
references therein for an extensive overview of the literature.

In this paper, we consider a directed graph G and would like the cut edges to mostly align
in the same direction. We achieve this by introducing a penalty to (2.1) when the cut edges
are not aligned.

2.1.1. Symmetry-breaking quadratic form. Due to the symmetry of the quadratic form, we
are unable to enforce that a cut edge xu − xv ̸≈ 0, (u, v) ∈ E, is positive. However, by
considering pairs of edges, we are able to construct a quadratic form which is large if and only
if all cut edges point in the same direction; that is, they have the same sign:∑

(u1,v1)∈E
(u2,v2)∈E

(xu1 − xv1)(xu2 − xv2). (2.2)

We note that by Cauchy–Schwarz, we have

|E| ·
∑

(u,v)∈E

(xu − xv)
2 ≥

 ∑
(u,v)∈E

(xu − xv)

2

=
∑

(u1,v1)∈E
(u2,v2)∈E

(xu1 − xv1)(xu2 − xv2). (2.3)

Hence, ∑
(u,v)∈E

(xu − xv)
2 − c

 ∑
(u,v)∈E

(xu − xv)

2

(2.4)

is a symmetric positive semi-definite quadratic form for 0 ≤ c ≤ 1
|E| , which we can use for

spectral bi-partitioning. More precisely, we can squeeze the quadratic form (2.4) between
multiples of the quadratic form (2.1) used in classic spectral partitioning.

∑
(u,v)∈E

(xu − xv)
2 ≥

∑
(u,v)∈E

(xu − xv)
2 − c

 ∑
(u,v)∈E

(xu − xv)

2

≥ (1− c|E|)
∑

(u,v)∈E

(xu − xv)
2.

(2.5)
For 0 ≤ c < 1

|E| , it follows that (2.4) is zero if and only if the Laplacian (2.1) is zero.

Hence, like the Laplacian, the kernel of quadratic form (2.4) identifies the weakly connected
components of the graph G. It furthermore follows that theoretical results on classic spectral
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partitioning on cut quality continue to hold with an additional multiplicative loss of at most
(1− c|E|)−1, e.g., (undirected) Cheeger’s inequality [AM85, Alo86, SJ89].

The final optimisation problem reads:

argmin
x∈RV

∥x∥2=1
x⊥1

∑
(u,v)∈E

(xu − xv)
2 − c

 ∑
(u,v)∈E

(xu − xv)

2

, (2.6)

for some 0 ≤ c ≤ 1
|E| .

Remark 2.1. The above ideas and methods are easily generalised to (non-negatively) edge-
weighted graphs. We leave the details to the interested reader.

Remark 2.2. We have ∑
(u,v)∈E

(xu − xv) =
∑
v∈V

(
d+(v)− d−(v)

)
xv, (2.7)

where d+(v) denotes the out-degree and d−(v) the in-degree of a vertex v ∈ V . Hence,
the alignment incentive can also be seen as the following heuristic: put vertices with larger
difference of out-degree and in-degree in one part and the ones with smaller difference in the
other.

Remark 2.3 (p-Laplacian). It has been demonstrated that using the p-Laplacian for p close
to but strictly larger than 1 leads to better cut quality [BH09, SPK+18]. One may generalise
our penalty term (2.2) also to this setting. The optimisation problem reads now as follows:

argmin
x∈RV

∥x∥p=1
x⊥1

∑
(u,v)∈E

|xu − xv|p − c

∣∣∣∣∣∣
∑

(u,v)∈E

(xu − xv)

∣∣∣∣∣∣
p

, (2.8)

for 0 ≤ c ≤ 1
|E|p−1 . The range of c is again chosen in such a way that the expression in (2.8) is

always non-negative, which follows from Hölder’s inequality. Note that for p = 2, this recovers
the expression (2.6).

Remark 2.4 (Directed Laplacian). In a similar vein, one may also introduce an edge-alignment-
incentive term to the directed Laplacian [Chu05]. Assume G is strongly connected and let P
be the transition probability matrix of a random walk on G. Further, let φ be the Perron–
Frobenius eigenvector of P normalised such that

∑
v∈V φv = 1. The new optimisation problem

reads:

argmin
x∈RV

∥x∥2=1
x⊥√

φ

∑
(u,v)∈E

φuPu,v

(
xu√
φu
− xv√

φv

)2

− c

 ∑
(u,v)∈E

√
φuPu,v

(
xu√
φu
− xv√

φv

)2

, (2.9)

for 0 ≤ c ≤ 1
|E| , where non-negativity follows again from Cauchy–Schwarz. We further

point out that a variant of the correction term, where the weighting
√
φuPu,v of an edge is

replaced by φuPu,v, is already incorporated in the directed Laplacian itself. This is because
the correction term in that case is always zero. Indeed, we have∑

(u,v)∈E

φuPu,v
xu√
φu

=
∑
u∈V

xu
√
φu

∑
v∈V

(u,v)∈E

Pu,v =
∑
u∈V

xu
√
φu = 0 (2.10)

and ∑
(u,v)∈E

φuPu,v
xv√
φv

=
∑
v∈V

xv√
φv

∑
u∈V

(u,v)∈E

φuPu,v =
∑
v∈V

xv
√
φv = 0. (2.11)
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2.1.2. Main algorithm. In order to get from the solution of the optimisation problem (2.6)
to a bi-partition3 V = S ⊔ T , one just takes the pointwise sign of the optimal vector. Details
can be found in Algorithm 2.1.

Algorithm 2.1: Direction-incentivised spectral bi-partition.

Data: A finite directed graph G = (V,E).
Result: A small cut bi-partition S ⊔ T = V such that most edges between S and T

are from S to T .

1 x← solution to (2.6)

2 S ← {v ∈ V | xv > 0}
3 T ← {v ∈ V | xv ≤ 0}
4 if |(S × T ) ∩ E| < |(T × S) ∩ E| then (S, T )← (T, S)

5 return (S, T )

2.2. Evaluation. In this section, we shall demonstrate that Algorithm 2.1 identifies bi-
partitions with more aligned cut edges than direction-oblivious algorithms. We further com-
pare the cut quality against its classic counterpart, Equation (2.1), and state-of-the-art (undi-
rected) partitioners from the literature and show that our algorithm remains competitive. In
other words, the direction incentive from Algorithm 2.1 only has a minor effect on the cut
quality.

2.2.1. Algorithms. In our evaluation, we shall be comparing our direction-incentivised spec-
tral bi-partition, Algorithm 2.1 with c = 1

2|E| , with the following bi-partitioners from the

literature:

• Fiedler eigenvector bi-partitioning [Fie73, Fie89],
• METIS [KK98], and
• KaHIP [SS13].

For each algorithm which supports weight imbalance constraints, we set the maximum weight
imbalance to 0.8, cf. Equation (2.14), in order to allow for a more fair comparison.

2.2.2. Metrics. Given a finite directed graph G = (V,E) and bi-partition U ⊔ W = V of
its vertices, we consider the classic metrics: conductance, cut edges, and weight imbalance.
Furthermore, in order to measure the impact of direction incentive of our method, we measure
the misaligned cut edges.

Conductance. The conductance of the bi-partition is defined as

CON =
|EU×W |+ |EW×U |

|EU×W |+ |EW×U |+min{|EU×U |, |EW×W |}
, (2.12)

where EA×B = E ∩ (A×B) are the edges going from A ⊆ V to B ⊆ V in G.

Cut edges. We compute the proportion of cut edges relative to the number of edges in order
to compare across graphs:

RCE =
|EU×W |+ |EW×U |

|E| . (2.13)

Weight imbalance. We calculate the weight imbalance as

WI =
||U| − |W||
|V| =

max{|U |, |W |}
|V |/2 − 1. (2.14)

3Throughout the paper, we use the notation S ⊔ T to denote a disjoint union.
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Misaligned cut edges. We compute the proportion of misaligned cut edges relative to the
number of cut edges:

RMCE =
min{|EU×W |, |EW×U |}
|EU×W |+ |EW×U |

. (2.15)

2.2.3. Data sets. We consider two sets of directed graphs, synthetic ones and graphs that
come from a variety of real-world applications.

The synthetic ones are generated according to one of three undirected graph distributions:
Erdős–Rényi [ER59], Watts–Strogatz [WS98], and stochastic block model [HLL83]. On each
of these synthetic graphs, we artificially insert a nearly acyclic perfectly balanced bi-partition
{A,B}. We do this by choosing the direction of edges as follows. For each edge which is totally
within A, respectively B, we chose a direction independently and uniformly at random. For
every edge between A and B, chose the direction B to A with probability α and the direction
A to B with probability 1 − α independently. Here, α ∈ [0.01, 0.1] is a parameter which we
call the alignment probability.

Erdős–Rényi (ER). A graph with set of vertices A ⊔ B, where |A| = |B| = 500, and edges
inserted between any pair of vertices with independent and uniform probability p = 0.2.

Watts–Strogatz (WS). A graph with n = 1000 vertices arranged as a circle. The sets A and
B are chosen each as the vertices belonging to a half of the circle. Each vertex is connected to
its nearest k = 50 neighbours via an edge. For each vertex, each edge to one of its clockwise
k/2 nearest neighbours is rewired to a uniformly random vertex independently with uniform
probability p = 0.3.

Stochastic Block Model (SBM). A graph with set of vertices A ⊔ B, where |A| = |B| = 500,
and edges inserted between any pair of vertices in A, respectively B, with independent and
uniform probability pint = 0.25. Edges for a pair of vertices (u, v) ∈ A × B are inserted
independently with uniform probability pext = 0.2.

Real-world directed (RW). We subsequently consider a set of 36 real-world directed graphs
from the university of Florida sparse matrix collection [DH11] and 4 fine-grained scheduling
graphs generated by the HyperDAG DB [PAKY22, PAKY24]. Together, these graphs emerge
from a diverse set of applications, ranging from chemical process simulations to electromag-
netics and fluid dynamics, and have number of vertices in the range [102, 1.6×104] and number
of edges in the range [103, 106]. A complete list of the matrices with their associated statistics
is offered in Table B.1.

2.2.4. Results. We present in Figure 2.1 the bi-partitioning results on the synthetic ER (a),
WS (b), and SBM (c) graphs for decreasing alignment probability α. For each graph instance,
we report the median and interquartile range (IQR), i.e., the range between the 25th and
75th percentiles, for each metric. The performance of the four considered algorithms—our
proposed Algorithm 2.1 (in blue, Spectral-dir), classic spectral bisection [Fie73, Fie89] (in
orange, Spectral-classic), Metis [KK98] (in gray), and KaHIP [SS13] (in green)—is compared
against the ground-truth ‘Reference’ (in red), which corresponds to the bi-partition induced
during the synthetic data generation. Perfect alignment with the reference indicates that the
algorithm accurately recovered the induced partition.

Our method achieves conductance (CON, first column) and cut edge values (RCE, second
column) closest to the reference for all three considered graph distributions. The benefits of
the direction-incentivised spectral bi-partitioning are most apparent in the weight imbalance
(WI, third column) and misaligned cut edges (RMCE, fourth column) metrics. Spectral-dir
is the only method that consistently identifies the induced partitions, as indicated by the
proximity of WI and RMCE values to those of the reference. Both metrics improve (i.e.,
move closer to the reference) as α decreases, meaning fewer cut edges are oriented against the
dominant direction. For the SBM graphs, Spectral-dir alone achieves exact correspondence
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(c) Stochastic Block Model (SBM)

Figure 2.1. Partitioning results for conductance (CON, first column), cut edges (RCE, sec-
ond column), weight imbalance (WI, third column), and misaligned cut edges ratio (RMCE,
right column), on the synthetic datasets of §2.2.3 with a decreasing aligment probability α.
(a): Results for the Erdős–Rényi (ER) graphs. (b): Results for the Watts–Strogatz (WS)
graphs. (c): Results for the Stochastic Block Model (SBM) graphs.

with the reference across all α, demonstrating its ability to recover the ground-truth partitions
regardless of the cut-edge orientation.
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Figure 2.2. Partitioning results for the real-world directed graphs of §2.2.3. (a): Box plot
distribution of the CON results, (b): Box plot distribution of the RCE results, (c): Box plot
distribution of the RMCE results, (d): Cut edges (RCE) over weight imbalance (WI).

For the real-world graphs, we present in Figure 2.2 box plots of the CON (a), RCE (b), and
RMCE (c) distribution results, and a scatter plot (d) to highlight the trade-off between cut
edges (RCE) and weight imbalance (WI). With respect to CON, the classic spectral method
achieves the best result (strictly or tied) in 62.5% of instances, while our proposed method
does so in 55.0%. Our method obtains the best (lowest) score for RMCE in 50.0% of cases,
while KaHIP reports the best results for minimizing RCE in 87.5% of the test graphs. Our
results highlight that the proposed Algorithm 2.1 provides preferable partitioning solutions
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for applications where maintaining directional flow and achieving a low misalignment ratio is
the primary objective.

3. Acyclic bi-partitioning

In this section, we discuss a simple heuristic to turn a bi-partition into an acyclic bi-
partition, whilst attempting to preserve most of the original bi-partition.

3.1. Algorithm. The idea we present here to rectify misaligned edges in a bi-partition of
a directed acyclic graph is based on a topological order and a bisection thereof. In order to
preserve as much from the original bi-partition as possible, we generate a topological order
via a priority, where priority is given to vertices of the first part over those in the second part.
Furthermore, as a secondary priority, vertices with a cut outgoing edge in the right direction
are deprioritised whereas ones with a cut outgoing edge in the wrong direction are prioritised,
and vice versa for cut incoming edges. The details can be found in Algorithm 3.1, where we
use the notation 1T as the indicator function of a set T . We point out that Herrmann et al.
[HOU+19, §4.2.2] have a similar algorithm to fix acyclicity: they move all ancestors of vertices
in S to S or all descendants of vertices in T to T .

Algorithm 3.1: Acyclic fix.

Data: A finite directed acyclic graph G = (V,E), a bi-partition S ⊔ T = V such that
|(S × T ) ∩ E| ≥ |(T × S) ∩ E|, and a balance parameter β ∈]0, 1[.

Result: A bi-partition S′ ⊔ T ′ = V such that (T ′ × S′) ∩ E = ∅.
1 prio[v]← 0, ∀v ∈ V

2 for (u, v) ∈ (S × T ) ∩ E do
3 prio[u]← prio[u] + 1

4 prio[v]← prio[v]− 1

5 for (u, v) ∈ (T × S) ∩ E do
6 prio[u]← prio[u]− 1

7 prio[v]← prio[v] + 1

8 prioQ← ∅
9 for v ∈ V do

10 if number of parents of v ∈ G is 0 then prioQ.insert((1T (v), prio[v], v))

11 TopOrdVec← ∅
12 while not prioQ.empty() do
13 ( , , v)← prioQ.popMin()

14 TopOrdVec.pushback(v)

15 for (v, u) ∈ E do
16 if all parents of u ∈ G are in TopOrdVec then prioQ.insert((1T (u),prio[u], u))

17 smin ← maximal s ∈ Z≥0 such that the first s vertices of TopOrdVec are contained in S

18 s′min ← max{smin,min{|S|, β|V |}}
19 tmin ← maximal t ∈ Z≥0 such that the last t vertices of TopOrdVec are contained in T

20 t′min ← max{tmin,min{|T |, β|V |}}
21 return minimal-cut bisection (S′, T ′) of TopOrdVec s.t. |S′| ≥ s′min and |T ′| ≥ t′min

Remark 3.1. In the case where the bi-partition came from the direction-incentivised spectral
partitioning, see Algorithm 2.1, we are given more nuanced information via the solution to
Equation (2.6). This could also be used as the first priority in Algorithm 3.1 instead, by either
using the values directly or discretising them first. Note that the solution to (2.6) may need
to be multiplied with −1 to have the edges in the right direction.
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3.2. Evaluation. In this section, we shall demonstrate that the acyclic fix, Algorithm 3.1,
preserves the initial partition better when it comes from our direction-incentivised spectral
partitioning method opposed to the classical spectral partitioning method.

In a second step, we show that spectral partitioning methods in conjunction with the
acyclic fix, Algorithm 3.1, produce acyclic bi-partitions that are on par if not better with
ones produced by state-of-the-art algorithms from the literature and that this can be further
improved by local-search algorithms. To this end, we compare our algorithm against ones
from the literature on several graph classes using various metrics.

3.2.1. Algorithms. We compare our direction-incentivised spectral bi-partition, Algorithm
2.1 with c = 1

2|E| , together with the acyclic fix, Algorithm 3.1, with the classic spectral

partitioning also combined with our acyclic fix, and furthermore the following algorithms
from the literature:

• acyclicity-adapted Fiduccia–Mattheyses [CLB94, PSSS21] with initial acyclic bi-
partition given by our direction-incentivised spectral bi-partition, and
• dagP [HKU+17, HOU+19].

For each algorithm which supports weight imbalance constraints, we set the maximum
weight imbalance to 0.8, cf. Equation (2.14), in order to allow for a more fair comparison.

3.2.2. Metrics. We are given a finite directed acyclic graph G = (V,E) and an acyclic bi-
partition U ⊔W = V of its set of vertices. Here, acyclic means that there is no edge going
from a vertex in W to a vertex in U , that is (W × U) ∩ E = ∅.

As in §2.2.2, we measure conductance, cut edges, and weight imbalance. In order to further
evaluate the acyclicity fix, see Algorithm 3.1, we measure the preserved labels from the original
bi-partition.

Preserved labels. Given an original bi-partition S ⊔ T = V of the set of vertices, such that
|(S × T ) ∩ E| ≥ |(T × S) ∩ E|, we measure normalised number of preserved labels as:

NPL =
|S ∩ U |+ |T ∩W |

|V | . (3.1)

3.2.3. Data set. We consider the same set of real-world directed input graphs as in §2.2.3, and
convert them into acyclic instances. For an input unsymmetric adjacency matrix A ∈ RV×V ,
we extract its strictly upper triangular part, AU , and strictly lower triangular part, AL. Let
GU and GL be the directed graphs corresponding to AU and AL, respectively. To form the
acyclic matrix A′, we analyse the strictly upper (AU ) and lower (AL) triangular components of
the input matrix A. If only one of the corresponding graphs, GU or GL, is weakly connected,
we select its matrix. When both are weakly connected, the selection is determined by edge
density, with ties broken in favour of AU . In the case where neither is weakly connected, we
instead select the largest weakly connected component of whichever part, AU or AL, is denser.

3.2.4. Results. In Figure 3.1, we present in three scatter plots the effect of the acyclic fix,
Algorithm 3.1, on the direction-incentivised spectral bi-partitioning (in blue, Spectral-dir) and
on the classic variant (in orange, Spectral-classic). The classic spectral algorithm produces an
inherently acyclic partition in 27.5% of cases, compared to 20.0% for the direction-incentivised
method. However, for the partitions that do require correction, our direction-incentivised
approach leverages the fix more effectively to improve the cut edges (RCE), achieving this
in 43.8% of instances. In contrast, applying the fix to the classic method is more likely
to worsen the RCE (65.5% of cases). Enforcing the acyclicity constraint results in a slight
degradation in partition balance (WI) in 44.8% of classic and 43.8% of directed corrections,
and in conductance (CON) in 72.4% and 75.0% of cases, respectively. For trivial reasons,
we see that a higher percentage of preserved labels (NPL) generally corresponds to smaller
change in absolute difference to conductance (CON), cut edges (RCE), and weight imbalance
(WI). The acyclic fix was able to preserve an average of 95.8% of the labels over all instances
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when the initial bi-partition was given by Spectral-dir, compared to 93.1% in the case of
Spectral–classic.
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Figure 3.1. Impact of the acyclic-fix post-processing step, introduced in Algorithm 3.1,
on the spectral base bi-partitioning algorithms. (a): Change in conductance (CON) over
the fraction of correctly assigned vertices (NPL) (b): Change in cut edges (RCE) over the
fraction of correctly assigned vertices (NPL), (c): Change in weight imbalance (WI) over the
fraction of correctly assigned vertices.

In Figure 3.2, we present the bi-partitioning results on the real-world directed acyclic
graphs. The performance of the four considered algorithms is shown: our proposed Algo-
rithm 2.1 (in blue, Spectral-dir-acyc), classic spectral bisection (in orange, Spectral-classic-
acyc), the acyclicity-adapted Fiduccia-Mattheyses variant using Algorithm 2.1 as initialiser
(in gray, FM-spec-dir-acyc), and dagP (in green). The first three methods incorporate the
acyclic fix introduced in Algorithm 3.1. In Subfigures (a), (b) we show box plots of the CON
and RCE distribution results respectively, and in (a) the trade off between RCE and WI as a
scatter plot. For CON, the two spectral methods exhibit the lowest median values, with the
FM-based variant and classic spectral most frequently achieving the best score (47.5% each).
Regarding RCE, the FM-based method achieves the lowest median, with dagP obtaining the
best score in the highest number of instances (60.0%). The scatter plot in Subfigure (c)
illustrates that the performance of dagP on RCE is associated with high weight imbalance
(WI), a metric for which the classic spectral method attains the best result in 57.5% of cases,
followed by the direction-incentivized proposed variant in 50.0%. These results highlight the
effectiveness of the FM-based refinement of spectral methods to retrieve bi-partitions with
low conductance and number of cut edges.
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Figure 3.2. Results on obtaining acyclic bi-partitions from the real-world directed acyclic
graphs of §3.2.3. (a): Box plot distribution of the CON results for each algorithm under
consideration, (b): Box plot distribution of the RCE results for each algorithm under con-
sideration, (c): Cut edges (RCE) over weight imbalance (WI).
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4. Spectral topological order

4.1. Algorithm. In this section, we describe how the cut-edge direction-incentivised spectral
bi-partitioning from §2.1 can be used to generate a topological order of a directed acyclic graph.

At its core, the bi-partition given by Algorithm 2.1 is used to separate the vertices into ones
that come first in a topological order and ones that come later. On each of those parts, the
algorithm is applied recursively. This results in an order of the vertices which is not necessarily
a topological order. In order to remedy this, we apply a direction fix after each bi-partition
S ⊔ T = V such that cut edges only originate from the first part S, that is (T × S) ∩ E = ∅.
Our scheme resembles the one by Schamberger–Wierum [SW04] for undirected graphs, but
with the added difficulty of generating a linear layout which is also a topological order.

In §4.1.1, we describe the direction-fix algorithm and in §4.1.2, we describe the complete
topological-order algorithm.

4.1.1. Direction fix. In order to state the algorithm, we require some notation. Given a

directed acyclic graph G = (V,E) and an (acyclic) partition
⊔ℓ

i=0 Li = V of its set of vertices,
we write

L1 ≺ L2 ≺ · · · ≺ Lℓ (4.1)

if and only if there are no edges originating from Lj and ending in Li for all j > i. In other
words, this is a topological order on the coarsened graph along the partition.

We present the direction-fix algorithm in Algorithm 4.1, where we use the notation 1T as
the indicator function of a set T .

Algorithm 4.1: Direction fix.

Data: A finite directed acyclic graph G = (V,E), a partition K ⊔ L ⊔M = V such
that K ≺ L ≺M , and a bi-partition S ⊔ T = L.

Result: A bi-partition S′ ⊔ T ′ = L such that (T ′ × S′) ∩ E = ∅.
1 prio[v]← 0, ∀v ∈ L

2 for v ∈ L do
3 prio[v]← prio[v] + |({v} ×M) ∩ E|
4 prio[v]← prio[v]− |(K × {v}) ∩ E|
5 for (u, v) ∈ (S × T ) ∩ E do
6 prio[u]← prio[u] + 1

7 prio[v]← prio[v]− 1

8 for (u, v) ∈ (T × S) ∩ E do
9 prio[u]← prio[u]− 1

10 prio[v]← prio[v] + 1

11 prioQ← ∅
12 for v ∈ L do
13 if number of parents of v ∈ G|L is 0 then prioQ.insert((1T (v),prio[v], v))

14 TopOrdVec← ∅
15 while not prioQ.empty() do
16 ( , , v)← prioQ.popMin()

17 TopOrdVec.pushback(v)

18 for (v, u) ∈ (L× L) ∩ E do
19 if all parents of u ∈ G|L are in TopOrdVec then

prioQ.insert((1T (u), prio[u], u))

20 S′ ← first |S| vertices of TopOrdVec

21 T ′ ← last |T | vertices of TopOrdVec

22 return (S′, T ′)
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Algorithm 4.1 shares a lot of similarities with Algorithm 3.1. There are, however, two
important differences. First, the secondary priority also takes into account the vertices which
come before and after in the vertex precedence list VertPrecList. Second, the bisection of
the topological order is done in a manner which preserves the cardinality of the initial bi-
partition. The former change is an optimisation to keep cut edges short and the latter change
is to preserve more of the spectral information.

4.1.2. Main algorithm. The main algorithm operates on a vertex precedence list VertPrecList:

L1 ≺ L2 ≺ · · · ≺ Lℓ, (4.2)

where
⊔ℓ

i=0 Li = V is a partition of the set of vertices V . This list is initialised simply as
V . In each step, a set of vertices Li with |Li| ≥ 2 is chosen and refined as S ≺ T , that is,
Li = S ⊔ T with S, T ̸= ∅ and E ∩ (T × S) = ∅. The vertex precedence list is subsequently
updated as

· · · ≺ Li−1 ≺ S ≺ T ≺ Li+1 ≺ · · · . (4.3)

One easily verifies that this is indeed a valid vertex precedence list in the sense of Equa-
tion (4.1). The algorithm terminates as soon as all of the sets Li consist of a single vertex.
The details of the algorithm may be found in Algorithm 4.2.

Algorithm 4.2: Spectral topological order.

Data: A finite directed acyclic graph G = (V,E).
Result: A topological order of G.

1 VertPrecList← {V }
2 while ∃L ∈ VertPrecList with |L| > 1 do
3 Let L ∈ VertPrecList with |L| > 1

4 Let K be the union of all sets N ≺ L in VertPrecList

5 Let M be the union of all sets N ≻ L in VertPrecList

6 x← solution to (2.6) with the restriction x|K ≡ 1/|V |1/2 and x|M ≡ −1/|V |1/2
7 S, T ← ∅
8 for v ∈ L do
9 if xv > 0 then S.insert(v) else T .insert(v)

10 if L = V and |(S × T ) ∩ E| < |(T × S) ∩ E| then (S, T )← (T, S)

11 (S, T )← DirectionFix(G,K,L,M, S, T ) // see Algorithm 4.1

12 Replace L with S ≺ T in VertPrecList

13 return [u for u ∈ U for U ∈ VertPrecList]

We note that the algorithm indeed produces a topological order as it maintains, via the
vertex precedence list, a topological order of the coarsened graph (along the partition given
by the vertex precedence list) and said coarsened graph is canonically isomorphic to the initial
graph when the algorithm terminates. The latter is due to the fact that each set of vertices in
the vertex precedence list consists of exactly a single vertex when the algorithm terminates.

The notable difference of Algorithm 4.2 to the recursive splitting algorithm of Schamberger–
Wierum [SW04] lies in Line 6, where the bi-partition takes into account the previous bi-
partitions and their effect on locality.

Remark 4.1. The spectral topological order algorithm, Algorithm 4.2, can be seen as a refine-
ment of a recursive acyclic bi-partitioning algorithm. As such, it (or modifications thereof)
can be used to generate more balanced acyclic bi-partitions and even k-way acyclic partitions
with individually prescribed sizes for each part of the partition.
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4.2. Evaluation. In this section, we will demonstrate that Algorithm 4.2 produces topolog-
ical orders with excellent locality both from a data-centric and a temporal point of view. To
this end, we compare our algorithm against ones from the literature on several graph classes
using various metrics.

4.2.1. Algorithms. We compare our spectral topological order algorithm, Algorithm 4.2 with
c = 1

2|E| , and the classic variant (c = 0), with the following algorithms from the literature:

• depth-first search,
• breadth-first search with minimum-out-degree ordering,
• adapted Cuthill–Mckee [CM69],
• adapted Gorder [WYLL16] with (recommended) window size of 5, and
• recursive applications of dagP4 [HKU+17, HOU+19] similar5 to Algorithm 4.2.

The final algorithm does not exist per se in the literature, but may be seen as a näıve
adaptation of the method by Schamberger–Wierum [SW04] to directed acyclic graphs using
the state-of-the-art acyclic partitioner dagP.

4.2.2. Metrics. We are given a finite directed acyclic graph G = (V,E) and a topological
order ⪯ on G, which we shall represent as an enumeration σ of the vertices in this section,
that is, a bijection σ : V → {0, 1, . . . , |V | − 1}.

There are several metrics to evaluate the ‘locality’ of the topological order both from a
data-centric view and from a temporal point of view. Most notably, there is the bandwidth
[DPS02], reuse distance also known as LRU-stack distance [MGST70], and cut width [DPS02].
In the literature, this type of problem is known as a graph-layout problem. We refer to the
surveys [Chu88, DPS02, Pet13].

Edge-length distribution. The length ω(e) of an edge e = (u, v) ∈ E is defined as σ(v)− σ(u).
We note that this quantity is (strictly) positive. The edge-length distribution is the collection
ω(e), e ∈ E.

This distribution gives rise to data-locality metrics. For example, we note that the maxi-
mum over this distribution is known as the bandwidth and minimising the sum of the distri-
bution as the minimum-linear-arrangement problem.

Reuse-distance distribution. In order to define reuse distance, one should think of each vertex
producing an output which then gets accessed by its out-neighbours. This produces an access
pattern, where we can measure the number of distinct memory accesses between any two
accesses to the same piece of memory (output of a vertex). A precise definition of the access
pattern and the reuse-distance distribution may be found in Algorithms 4.3 and 4.4. This
distribution gives rise to types of temporal locality.

Algorithm 4.3: Access pattern.

Data: A directed graph G = (V,E) and a topological order ⪯.
Result: An access pattern A.

1 A← ∅
2 for v ∈ V in topological order ⪯ do
3 for u in-neighbour of v in topological order ⪯ do
4 A.push back(u)

5 A.push back(v)

6 return A

4Minor modifications were made to recursively bisect using dagP, as it does not allow splitting a graph with
less than three nodes and would cause a segmentation fault for subgraphs with no edges. Additionally, with
loose balance constraints, dagP may assign all nodes to one part on small graphs to achieve a zero edge-cut;
we therefore enforce a stricter weight imbalance of 0.3.

5More precisely, replace lines 4 through 11 with (S, T )← dagP(G|M ).



SYMMETRY-BREAKING SYMMETRY IN DIRECTED SPECTRAL PARTITIONING 15

Algorithm 4.4: Reuse-distance distribution.

Data: An access pattern A.
Result: Corresponding reuse-distance distribution D.

1 D ← ∅
2 for i = 0, 1, . . . , A.size()− 1 do
3 if ∃j < i such that A[j] = A[i] then
4 k ← max{j < i | A[j] = A[i]}
5 d← |{v ∈ V | ∃j such that k < j < i and A[j] = v}|
6 D.push back(d)

7 return D

Edge-cut distribution. The bisection-cut is the number of cut edges of a bisection of the
enumeration σ of the topological order ⪯. That is

β(i) = |{(u, v) ∈ E | σ(u) ≤ i < σ(v)}|. (4.4)

The edge-cut distribution is the collection of the bisection-cuts β(i) for i = 0, 1, . . . , |V | − 2.
This distribution gives rise to data- and temporal-locality metrics. For example, we note

that the maximum over this distribution is known as the cut width and minimising the sum
of the distribution as the minimum-linear-arrangement problem.

Remark 4.2. The sum of all bisection-cuts is equal to the sum of all edge lengths, cf. [DPS02,
Obs. 2, p. 3] and [Har66].

4.2.3. Data set. We use the same set of real-world directed graphs as in §2.2.3, and convert
them once more into acyclic instances. Given an input adjacency matrix A, we consider its
strictly upper (AU ) and lower (AL) triangular components. The final acyclic matrix, denoted
A′, is chosen by identifying the component with the higher edge density, with ties being
resolved in favour of AU .

4.2.4. Results. In Figure 4.1, we present performance profiles [DM02] for the various metrics
mentioned in §4.2.2.

We observe that the direction-incentivised spectral topological-order algorithm (Spectral-
dir-top) outperforms or is on par with its classic variant (Spectral-classic-top) in all metrics.
We attribute this to the fact that the direction-incentivised spectral acyclic bi-partition 3.1
is able to preserve more of the original bi-partition, cf. Figure 3.1. Spectral-dir-top further
stands out as the single best algorithm for bandwidth, maximum reuse distance, and median
edge cut. It is furthermore amongst the best algorithms for minimum linear arrangement
and total reuse distance, and near the top in cut width. The recursive application of dagP
(dagP-rec) outshines all algorithms on the median edge length, but this comes at the cost of
neglecting the tail end of the edge length distribution, e.g., the bandwidth. Similarly, dagP
does better on the median reuse distance than any other algorithm, but performs poorly on
the maximum reuse distance. Furthermore, dagP is the best on cut width and amongst the
best for total reuse distance. Gorder performs well on the median reuse distance. In general,
Gorder performs better on temporal-locality metrics for which it was originally designed,
but lacks in all other metrics. Cuthill–Mckee and breadth-first search (BFS) perform poorly
except for bandwidth and maximum reuse distance where they land in the middle of the pack.
Likewise, depth-first search (DFS) performs poorly except for median edge length and median
reuse distance where it is above average.
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Figure 4.1. Performance profiles of the algorithms from §4.2.1 on the data set from §4.2.3
using the various metrics from §4.2.2. In each plot, the x-axis represents a threshold and the
y-axis the percentage of graphs which are within this threshold times the result of the best
algorithm.

5. Concluding remarks

We have shown that our direction-incentivised spectral partitioning method, Algorithm
2.1, is able to find bi-partitions with more edges going in one direction. In order to do so, it
may increase the edge cut by a small margin. As is well-known, the spectral methods per-
formed better on conductance rather than edge cut and are thus better suited for classification
purposes rather than balanced minimum cuts.

We have further demonstrated that spectral partitioning methods (with appropriate fixes)
are viable for acyclic partitioning. In particular, when combined with modern multi-level and
local search approaches, we believe it to be able to produce high-quality acyclic partitions.
This extends to weight-balance constrained k-way acyclic partitioning, where we have shown
that recursively splitting (for a topological order) leads to a good cut width, cf. Remark 4.1.

Most importantly, we have conclusively shown that our direction-incentivised spectral topo-
logical order, Algorithm 4.2, produces exquisite topological orders in terms of data and tem-
poral locality and that the direction incentive improves the locality of the classical analogue
even further. In particular, we have found our algorithm to be the best or amongst the
best algorithm for bandwidth, maximum reuse distance, median edge cut, minimum linear
arrangement, and total reuse distance.

We have further corroborated that the recursively partition method of Schamberger–
Wierum [SW04] produces good orderings for the bulk of the graph, meaning it performs
well on median edge length, edge cut, and reuse distance. We believe the method can be
further improved by incorporating ideas mentioned in this paper, specifically by including
information of previously cut edges into the subsequent partitioning iterations in order to also
address the tail ends of the distributions. We leave this inquiry for future work.

We have thus far avoided talking about time. This is because our implementations are
proofs of concepts and little effort has gone into engineering them to be efficient. In practice,
spectral methods tend to be a bit slower, but modern implementations are suitably fast
[HS04, BM13, NM16, PSVY23]. We further point out that Algorithm 4.2, which recursively
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spectrally splits parts of the graph, generically6 only increases the complexity by a logarithmic
factor over the spectral bi-partitioning, Algorithm 2.1.

At last, we bring up the question in what capacity the gains we observed transfer to the
various applications, and leave it open as a research topic.

Appendix A. Inapproximability: proof of Theorem 1.1

We first begin with some formal definitions that are required to state and prove Theorem 1.1.

Definition A.1. Given a directed acyclic graph G = (V,E), a disjoint partitioning V1⊔V2 = V
is called an acyclic bi-partition if there is no directed edge (u, v) ∈ E such that u ∈ V2 and
v ∈ V1. The cost of the bi-partition is the number of edges (u, v) ∈ E such that u ∈ V1 and
v ∈ V2.

Definition A.2. Given a directed acyclic graph G = (V,E) and a real parameter 0 ≤ ε < 1,

the acyclic bi-partition V1 ⊔ V2 = V is ε-balanced if max(|V1|, |V2|) ≤ (1 + ε) · |V |
2 . The goal

of the ε-balanced acyclic bi-partition problem is to find an ε-balanced acyclic bi-partition of
minimal cost.

For the undirected version of the problem, the special case of ε = 0 is sometimes also known
as the graph bisection problem, and has also been extensively studied, see [FK02, Räc08] and
references therein/-to.

Given these definitions, we first restate Theorem 1.1 for completeness.

Theorem 1.1. Assuming the exponential-time hypothesis, there is a δ > 0 such that for
every 0 ≤ ε < 1 the ε-balanced acyclic bi-partition problem does not have a polynomial-time

n1/ log(log(n))δ -factor approximation algorithm, where n = |V | is the size of the input graph.

The theorem provides a particularly interesting contrast to the undirected version of the
same problem, which is known to admit an O(log n)-approximation algorithm [Räc08, LR88].
For the directed case, the only related inapproximability result we are aware of is a simple
reduction which only applies when partitioning into a non-constant number of parts [MPS17].

We split the discussion of the proof into two parts: we first consider the case when the
partitions must have equal size (ε = 0), and then we show how to extend this to any 0 < ε < 1.

Proof for ε = 0. We provide a reduction from the smallest k-edge subgraph problem: given
an undirected graph G0 with N vertices and M edges, and an integer 1 ⩽ k ⩽ M , we need to
find the smallest subset of vertices that spans at least k edges. It is known that there exists

a δ′ > 0 such that this problem is not approximable in polynomial time to a n1/(log logn)δ
′

factor, assuming ETH, see [Man17]. Let us select any δ > δ′.
Given a smallest k-edge subgraph problem with G0 and k, we develop a directed acyclic

graph as follows. We consider two parameters t = 2 · M and ℓ0 = t · N + M + 2. The
main ingredients of our construction will be block gadgets: a set of vertices v1, ..., vℓ such
that (vi, vj) ∈ E for all 1 ≤ i < j ≤ ℓ. Our construction will ensure that we can trivially
find a solution of cost at most (ℓ0 − 2), and all our block gadgets have size ℓ ≥ ℓ0. This
implies that if the vertices v1, ..., vℓ are not all assigned to the same part, then there are at
least (ℓ− 1) > (ℓ0 − 2) edges cut within the gadget, and hence we already have a higher cost
than in the trivial solution. As such, any reasonable solution places each block gadget either
entirely into V1 or entirely into V2.

Our directed acyclic graph will consist of the following block gadgets: two block gadgets
B1 and B2, a block gadget Be for each undirected edge e of G0, and a single vertex vu for each
vertex u of G0. We add a single edge from an arbitrary vertex of B1 to an arbitrary vertex of
B2. For each vertex u incident to edge e in G0, we add an edge from vu to an arbitrary vertex
of Be. Finally, for all vertices vu that represent a vertex in G0, we add t distinct edges from

6We are assuming here that the spectral bi-partition always finds a δ-balanced bi-partition for a fixed δ < 1,
and that its time complexity is upper-bounded by a super-additive and monotone function.
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vu to t arbitrary vertices of B2. As for the size of the block gadgets, the number of vertices
will be

• (M − k) · ℓ0 +N + 1 in B1,
• k · ℓ0 +N + 1 in B2,
• ℓ0 in each Be.

Finally, we add N further isolated vertices to the directed acyclic graph. Altogether, the size
of the construction is n = 2M · ℓ0 + 4 ·N + 2 = O(N ·M2) = O(N5).

We have |B1| + |B2| > n
2 , so the two blocks cannot be in the same part. Due to the edge

between them, this implies that B1 is in V1 and B2 is in V2. Since ℓ0 > 2 ·N , in order to have
exactly n

2 vertices in both parts without splitting a block gadget, we need to assign exactly
k block gadgets Be to V1, and the remaining (M − k) block gadgets Be to V2. We can then
assign any desired subset of the N vertices vu to V1, and the rest to V2, since we can balance
it afterwards with the N isolated vertices.

Selecting the k gadgets Be to assign to V1 corresponds to selecting k edges in G0. If an
edge e in G0 is selected this way, and it is incident to a vertex u in G0, then this implies
that vu must also be in V1, since vu has an edge to a vertex in Be. As such, the vertices vu
corresponding to all the endpoints of the k selected edges must be in V1. All these vertices vu
will have t outgoing edges to B2 in V2, and some further edges to the Be incident to u; some
of these might also be in V2. On the other hand, if a vertex u has all of its incident edges
in V2, then no reasonable solution will place vu in V1, since this results in a lot of cut edges;
indeed, any such solution can be easily improved by exchanging vu with an isolated vertex.

This means that if a set of k selected edges in u0 spans c vertices, then the resulting
bi-partition will have cost c · t plus the sum of the degree of the spanned vertices, i.e. cost
between c · t and c · t+M . With t = 2M , this cost is always dominated by the term c · t. The
observation also holds the other way around: if we have a reasonable solution in the directed
acyclic graph for the acyclic bi-partition problem (i.e., no blocks are cut, no vu is placed in
V1 unless necessary), and the solution has cost between c · t and (c+ 1) · t for some c ∈ Z≥0,
then this allows us to select a subset of c vertices in G0 that induce at least k edges.

More formally, let OPTSkES and OPTABP denote the optimum costs in the original small-
est k-edge subgraph problem and the derived acyclic bi-partition problem, respectively. As
discussed before, we have OPTABP ≤ t·OPTSkES+M . Assume now that we have a polynomial-

time algorithm that approximates the acyclic bi-partition problem to a n1/(log logn)δ factor.
We can assume that this algorithm returns a reasonable solution (no blocks are cut, no vu is
placed in V1 unless necessary), otherwise we begin by replacing it by a reasonable solution
as discussed above; this only further decreases its cost. Assume that the algorithm returns a
solution of cost SOLABP. Consider the derived solution of smallest k-edge subgraph problem,
where we select the k edges whose edge gadgets are in V1; let us denote its cost by SOLSkES.
Recall that by assumption, we have

SOLABP ≤ n1/(log logn)δ ·OPTABP . (A.1)

Recall from before that SOLABP ≥ t · SOLSkES, and hence

t · SOLSkES ≤ n1/(log logn)δ · (t ·OPTSkES +M) . (A.2)

With t > M , we also get

SOLSkES ≤ n1/(log logn)δ · (OPTSkES + 1) ≤ 2 · n1/(log logn)δ ·OPTSkES , (A.3)

where the second inequality follows easily for OPTSkES ≥ 1. Recall that there is a constant

c0 such that n ≤ c0 ·N5, so we can upper-bound n1/(log logn)δ by (c0 ·N5)1/(log logN)δ . Then,

(2c0 ·N5)1/(log logN)δ is in turn upper-bounded by N6/(log logN)δ for sufficiently large N . This
implies

SOLSkES ≤ N6/(log logN)δ ·OPTSkES . (A.4)
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With δ > δ′ and N large enough, N6/(log logN)δ is upper-bounded by N1/(log logN)δ
′
, hence

SOLSkES ≤ N1/(log logN)δ
′
·OPTSkES . (A.5)

As such, our algorithm allows to approximate the smallest k-edge subgraph problem in poly-
nomial time to a factor that is not possible if ETH holds. □

The same reduction can easily be adapted to the case of more flexible balance constraints.

Proof for 0 < ε < 1. In order to adapt the proof above to the ε-balanced case, we only need
to adjust the size of B1 and B2 to ensure that we are still forced to place k edge gadgets into
V1, i.e., we can only fit B2, at most (M − k) edge gadgets and N further vertices into V2. For
simplicity, let s denote the total size of the edge and vertex gadgets and isolated vertices, i.e.,
s = M · ℓ0 + 2N . Let s0 denote the size of (M − k) edge gadgets plus N further vertices, i.e.,
s0 = (M − k) · ℓ0 +N . We need to ensure that

|B2|+ s0 ≤ (1 + ε) · n
2
≤ |B2|+ s0 +N , (A.6)

while |B1|+|B2| > (1+ε)· n2 also remains true. For this, we can first select n large enough such
that s < (1− ε) · n2 . We can then set |B2| = ⌊(1 + ε) · n2 ⌋ − s0, and finally |B1| = n− |B2| − s.

Note that these choices also implicitly ensure for V1 that |B1| + k · ℓ0 + N ≤ (1 + ε) · n2 :
after substituting our choices of |B1|, |B2|, s0 and s, we get n ≤ (1 + ε) · n2 + ⌊(1 + ε) · n2 ⌋,
which holds for n large enough. □

Remark A.3. If one assumes the stronger Gap-ETH conjecture instead of ETH, then the same
reduction shows an inapproximability to an no(1) factor [Man17].

Appendix B. List of graphs

arc130 materials science 130 1,282 75.9%

b2 ss chemical process 1,089 4,228 1.5%

barth structural simulation 6,691 26,439 0.0%

barth4 structural simulation 6,019 23,492 0.0%

barth5 structural simulation 15,606 61,484 0.0%

bayer03 chemical process 6,747 56,196 0.3%

bp 1600 optimisation 822 4,841 1.1%

CG bcsstk05 scheduling 11,041 23,116 0.0%

CG nos1 scheduling 10,256 19,384 0.0%

circuit204 circuit simulation 1,020 5,883 43.8%

conf5 0-4x4-10 optimisation 3,072 119,808 92.3%

cz5108 fluid dynamics 5,108 51,412 43.4%

dw2048 electromagnetics 2,048 10,114 98.5%

dw4096 electromagnetics 8,192 41,746 96.3%

epb0 thermodynamics 1,794 7,764 50.1%

Graph Domain Vertices Edges Sym. Edges

Table B.1. All graphs from the SuiteSparse Matrix Collection [DH11] and
generated by the HyperDAG DB [PAKY22, PAKY24] used in the paper with
source domain, number of vertices, number of edges, and percentage of sym-
metric edges listed. (Continued on next page)
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foldoc networks 13,356 120,238 47.9%

fp electromagnetics 7,548 834,222 76.8%

fpga dcop 15 circuit simulation 1,220 5,892 81.8%

fs 541 1 3D problem 541 4,285 68.3%

g7jac050sc economic problem 14,760 145,157 3.2%

gemat12 power network 4,929 33,111 0.1%

gre 512 chip simulation 512 2,192 0.0%

lhr14c chemical process 14,270 307,858 0.7%

lshp1270 thermodynamics 1,270 8,668 100.0%

mahindas economic problem 1,258 7,682 1.7%

mark3jac020sc economic problem 9,129 52,883 6.1%

olm5000 fluid dynamics 5,000 19,996 66.7%

orani678 optimisation 2,529 90,158 7.1%

p2p-Gnutella06 networks 8,717 31,525 0.0%

pores 2 fluid dynamics 1,224 9,613 61.2%

POW3SPMV bcspwr05 scheduling 5,904 9,297 0.0%

psmigr 3 economic problem 3,140 543,160 47.9%

qh882 networks 882 3,354 92.6%

rajat06 circuit simulation 10,922 28,922 0.0%

rdist3a chemical process 2,398 61,896 14.0%

rw5151 optimisation 5,151 20,199 49.0%

SPMV west0497 scheduling 4,448 5,181 0.0%

ted A thermodynamics 10,605 424,587 56.6%

utm5940 electromagnetics 5,940 83,842 52.9%

watt 1 fluid dynamics 1,856 11,360 98.7%

Graph Domain Vertices Edges Sym. Edges

Table B.1. All graphs from the SuiteSparse Matrix Collection [DH11] and
generated by the HyperDAG DB [PAKY22, PAKY24] used in the paper with
source domain, number of vertices, number of edges, and percentage of sym-
metric edges listed.
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Figure C.1. Edge-length, reuse-distance, and edge-cut distributions of the topological orders generated by the algorithms in §4.2.1 on each individual
graph from the data set in §4.2.3. For each graph and metric, the values have been rescaled such that the worst performing algorithm takes the value 1.
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effective for locality-aware scheduling? In PPAM 2019-13th International Conference on Parallel
Processing and Applied Mathematics, 2019.

[PAKY22] Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman. Hyper-
DAG DB. https://github.com/Algebraic-Programming/HyperDAG_DB, 2022.

[PAKY24] Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman. Efficient
multi-processor scheduling in increasingly realistic models. In Proceedings of the 36th ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA ’24, pages 463–474, New York, NY,
USA, 2024. Association for Computing Machinery.

[Pet13] Jordi Petit. Addenda to the survey of layout problems. Bulletin of EATCS, 3(105), 2013.
[PSSS21] Merten Popp, Sebastian Schlag, Christian Schulz, and Daniel Seemaier. Multilevel acyclic hyper-

graph partitioning. In 2021 Proceedings of the Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pages 1–15. SIAM, 2021.

[PSVY23] Dimosthenis Pasadakis, Olaf Schenk, Verner Vlačić, and Albert-Jan N. Yzelman. Nonlinear spec-
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